
Decision Trees

1



Reading

• Chapters 8.1, 8.2

– James, Gareth, et al. An introduction to statistical learning. 
Vol. 112. New York: springer, 2013.

–Available online: https://www.statlearning.com/

2

https://www.statlearning.com/


Overview

• Decision trees are a popular classification/regression model

• They are often preferred because they are intuitive and easy to 
interpret

– Similar to a standard computer program

• Vanilla decision tree performance is often inferior to other 
methods

• Many improvements have been proposed such as random 
forests and so on

– Random forests are on par with some of the best methods 
in classification, at a cost in interpretability

3



High-level description

• A decision tree is a predictive model 
based on if-cases

• Predict baseball players’ salary (in log-scale)
based on years and number of hits last year

• Very easy to interpret the tree’s prediction

– E.g., if a player has at least 4.5 years of experience and 
made less than 117.5 hits the previous year, their predicted 
salary is 106 = $1𝑀

• Can split each branch arbitrarily for finer precision predictions

• This is a regression tree since it predicts continuous values

–However, it can only output finitely many values, so the 
distinction with classification is blurry

4



Elements of a decision tree

• Internal nodes

–Where the predictor space is split

• Branches

– Subsets of the tree that connect nodes

• Terminal nodes or leaves

–Where outputs are produced

• Decisions are made from top to bottom
by convention

5

Internal 
node

Branch

Leaf



Decision Tree Intuition

• The decision tree works by producing
linear cuts in the feature space

– For each region 𝑅𝑗, the prediction

is the average over all points in 𝑅𝑗

• Can achieve arbitrary precision given
enough cuts

–A bit rudimentary for a small
number of cuts

• Its main advantage is its interpretability and graph structure

–Decision trees received increased attention with the recent 
push for interpretable AI

6



Training the Decision Tree

• Decision tree training is more an art than a science

– This is true for many ML techniques in general

• Users need to make several decisions before even starting

–How many splits to include?

–Are the splits axis-aligned or arbitrary lines?

–Which variable to split on first?

– Some or all of these can be chosen algorithmically also

7



Training the Decision Tree, cont’d

• Suppose we want to have 𝐽 regions: 𝑅1, … , 𝑅𝐽

–How do we find the best regions?
• Least squares!

min
𝑅1,…,𝑅𝐽

෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑦𝑖 − 𝑓 𝒙𝑖
2

=

 min
𝑅1,…,𝑅𝐽

෍

𝑗=1

𝐽

෍

𝑖:𝒙𝑖∈𝑅𝑗

𝑦𝑖 − 𝑓𝑗 𝒙𝑖

2
 

– i.e., find regions to minimize the sum of squared errors

–where 𝑓𝑗 𝒙  is the mean of all 𝑦𝑖 ∈ 𝑅𝑗, call it ො𝑦𝑅𝑗

• What is the challenge with this approach?

– There are exponentially many (in 𝐽 and 𝑝) tree shapes
• Unclear which tree shapes lead to better performance

8



Least Squares for Decision Trees

• Suppose first 𝐽 = 2

• Need to pick a threshold 𝑡𝑑  along some dimension 𝑑 

– Let 𝑥𝑑  denote dimension 𝑑 of input 𝒙

– Left branch is taken if 𝑥𝑑 < 𝑡𝑑

–Need to go through all dimensions and pick the best one

– So far so good (linear in the number of dimensions)

• What if 𝐽 = 3?

–Need to pick two thresholds
• But which one goes first? 

• Also, how do we arrange the tree – longer left or right branch?

• Hard to say which shape will generalize better

9



Least Squares for Decision Trees, cont’d

• If we can’t try all tree shapes, how do we grow the tree?

–A greedy approach!

– It’s a standard approximation technique for combinatorial 
problems
• Sometimes produces quite good (or even optimal) solutions

• Greedy means that we only choose the best next split without 
considering how it might affect future splits

10



Greedy Least Squares

• For 1st split, need to pick a threshold 𝑡𝑑  along dimension 𝑑 

– That would create potential split regions 

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑  and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

–Dataset is now split according to examples in 𝑅1 and 𝑅2
𝒟1 = 𝒙𝑖 , 𝑦𝑖 ∈ 𝒟 𝒙𝑖 ∈ 𝑅1}
𝒟2 = 𝒙𝑖 , 𝑦𝑖 ∈ 𝒟 𝒙𝑖 ∈ 𝑅2}

–where 𝒟 = 𝒙1, 𝑦1 , … , 𝒙𝑁 , 𝑦𝑁

–What is the prediction in each region?

ො𝑦𝑅1
=

1

𝒟1
෍

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖

ො𝑦𝑅2
=

1

𝒟2
෍

𝒙𝑖,𝑦𝑖 ∈𝒟2

𝑦𝑖

11



Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑  along dimension 𝑑 

– That would create potential split regions 

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑  and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

–What is the prediction in each region?

ො𝑦𝑅1
=

1

𝒟1
෍

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖

ො𝑦𝑅2
=

1

𝒟2
෍

𝒙𝑖,𝑦𝑖 ∈𝒟2

𝑦𝑖

–What is the total squared error in each region?

𝑒𝑅1
= ෍

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖 − ො𝑦𝑅1

2

𝑒𝑅2
= ෍

𝒙𝑖,𝑦𝑖 ∈𝒟2

𝑦𝑖 − ො𝑦𝑅2

2

12



Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑  along dimension 𝑑 

– That would create potential split regions 

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑  and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

• Need to pick 𝑑 and 𝑡𝑑  to minimize mean squared error:

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 =
1

𝒟
෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+ ෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

–As usual, we’ll drop the 
1

|𝒟|
 factor since it doesn’t affect 

minimum (but will keep abbreviation MSE for consistency)

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = ෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+ ෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

13



Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑  along dimension 𝑑 

– That would create potential split regions 

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑  and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

• Need to pick 𝑑 and 𝑡𝑑  to minimize mean squared error:

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = ෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+ ෍

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

= 𝑒𝑅1
+ 𝑒𝑅2

 

• Iterate through all 𝑝 dimensions (recall 𝒙𝑖 ∈ ℝ𝑝)

– For each dimension 𝑑, find threshold 𝑡𝑑  that minimizes 
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) on the training data (how?)

14



Greedy Least Squares, cont’d

• MSE may not be convex in 𝑡, so we can’t 
just set the derivative to 0

• But MSE is piecewise-constant on the
training set

–Why?
• Because the prediction per region is only changed if an example is 

added or removed

• Small threshold changes may not change this

• One can do an exhaustive search over the range of 𝑡

– Set a small enough step size and step through the range of 𝑡

– Pick the 𝑡∗ that results on lowest MSE

• Alternatively, can sort all examples along dimension 𝑑

– Increment threshold to include, e.g., 5%, 10%,… of data 15

𝑡

MSE



Greedy Least Squares, cont’d

• Iterate through all 𝑝 dimensions

– For each dimension 𝑑, find threshold 𝑡𝑑  that minimizes 
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) on the training data

– Finally, pick the combination (𝑑, 𝑡𝑑) that minimizes 
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟)

–We have now created regions 𝑅1 and 𝑅2

• To create future regions, we split 𝑅1 or 𝑅2 in the same way

– Terminate when we have 𝐽 regions (or too few data points 
per region)

16



Algorithm Illustration

17

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for 
each 𝑑, 𝑡𝑑  pair

2. Find (𝑑∗, 𝑡𝑑
∗ ) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝒟 = 𝑒𝑅1

+ 𝑒𝑅2

Split on (𝑑∗, 𝑡𝑑
∗ )

𝑅1, 𝒟1 𝑅2, 𝒟2

Suppose splitting 𝑅1 results in lower loss

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟1) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗, 𝑡𝑑

∗∗) that minimizes
𝑀𝑆𝐸 𝑑∗, 𝑡𝑑

∗ , 𝑑∗∗, 𝑡𝑑
∗∗, 𝒟 = 𝑒𝑅2

+ 𝑒𝑅11
+ 𝑒𝑅12

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟2) for each 
𝑑, 𝑡𝑑  pair

2. Find (𝑑∗∗, 𝑡𝑑
∗∗) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑 , 𝑑∗∗, 𝑡𝑑
∗∗, 𝒟 = 𝑒𝑅1

+ 𝑒𝑅21
+ 𝑒𝑅22

𝑅, 𝒟



Algorithm Illustration

18

𝑅12, 𝒟12𝑅11, 𝒟11

Split on (𝑑∗, 𝑡𝑑
∗ )

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟11) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝑑∗∗, 𝑡𝑑

∗∗, 𝑑∗∗∗, 𝑡𝑑
∗∗∗, 𝒟

= 𝑒𝑅2
+ 𝑒𝑅12

+ 𝑒𝑅111
+ 𝑒𝑅112

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟12) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝑑∗∗, 𝑡𝑑

∗∗, 𝑑∗∗∗, 𝑡𝑑
∗∗∗, 𝒟

= 𝑒𝑅2
+ 𝑒𝑅11

+ 𝑒𝑅121
+ 𝑒𝑅122

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟2) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝑑∗∗, 𝑡𝑑

∗∗, 𝑑∗∗∗, 𝑡𝑑
∗∗∗, 𝒟

= 𝑒𝑅11
+ 𝑒𝑅12

+ 𝑒𝑅21
+ 𝑒𝑅22

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

Suppose splitting 𝑅11 results in lowest loss

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for 
each 𝑑, 𝑡𝑑  pair

2. Find (𝑑∗, 𝑡𝑑
∗ ) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝒟 = 𝑒𝑅1

+ 𝑒𝑅2



Algorithm Illustration

19

𝑅112, 𝒟112𝑅111, 𝒟111

Split on (𝑑∗, 𝑡𝑑
∗ )

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

Split on (𝑑∗∗∗, 𝑡𝑑
∗∗∗)

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

𝑅12, 𝒟12𝑅11, 𝒟11

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟2) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗, 𝑡𝑑

∗∗) that minimizes

𝑴𝑺𝑬 𝒅∗, 𝒕𝒅
∗ , 𝒅∗∗, 𝒕𝒅

∗∗, 𝓓 = 𝒆𝑹𝟏
+ 𝒆𝑹𝟐𝟏

+ 𝒆𝑹𝟐𝟐

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟2) for each 𝑑, 𝑡𝑑  pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes

𝑴𝑺𝑬 𝒅∗, 𝒕𝒅
∗ , 𝒅∗∗, 𝒕𝒅

∗∗, 𝒅∗∗∗, 𝒕𝒅
∗∗∗, 𝓓

= 𝒆𝑹𝟏𝟏
+ 𝒆𝑹𝟏𝟐

+ 𝒆𝑹𝟐𝟏
+ 𝒆𝑹𝟐𝟐

In first round loss was 

In second round loss was 

Do we need to recalculate each time?

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for 
each 𝑑, 𝑡𝑑  pair

2. Find (𝑑∗, 𝑡𝑑
∗ ) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝒟 = 𝑒𝑅1

+ 𝑒𝑅2



Loss Improvement

• Loss calculation for 𝑅2 was first
𝑒𝑅1

+ 𝑒𝑅21
+ 𝑒𝑅22

• and then
𝑒𝑅11

+ 𝑒𝑅12
+ 𝑒𝑅21

+ 𝑒𝑅22

• Notice that splitting on 𝑅2 does not affect the rest of the loss

–After a split, the node’s contribution to the total loss 
changes from 𝑒𝑅2

 to 𝑒𝑅21
+ 𝑒𝑅22

• The loss improvement associated with 𝑅2 is then
𝑒𝑅2

− (𝑒𝑅21
+ 𝑒𝑅22

)

• Needs to be calculated once (when node is created)

• Then always split on node with highest loss improvement

20



Algorithm Illustration

21

𝑅112, 𝒟112𝑅111, 𝒟111

Don’t forget to replace MSE with 0-1 loss in 
the case of classification

Split on (𝑑∗, 𝑡𝑑
∗ )

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 
𝑑, 𝑡𝑑  pair

2. Find (𝑑∗, 𝑡𝑑
∗ ) that minimizes

𝑀𝑆𝐸 𝑑∗, 𝑡𝑑
∗ , 𝒟 = 𝑒𝑅1

+ 𝑒𝑅2

Split on (𝑑∗∗∗, 𝑡𝑑
∗∗∗)

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

𝑅12, 𝒟12𝑅11, 𝒟11



Classification Trees

• Very similar to regression trees

• Instead of outputting the average label per region, they output 
the majority class

• You can use standard classification losses

– E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)

–Other losses are possible as well

22



Toy Training Example

• We have two classes and the training data is
( 2,2 , +), 2,2.5 , + , 2.2,2.8 , + , 2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

1,2.4 , − , 1.5,3.5 , − , 2.15,3.8 , − , 3,0.1 , − , 3.3,4 , − , 

3.8,3.49 , − , 3.8,0.5 , − , 3.9,2.05 , −

24

+
+
+

+
+ +

+

-
-

-

-

-

-

-

-



Toy Training Example, root

• We have two classes and the training data is
( 2,2 , +), 2,2.5 , + , 2.2,2.8 , + , 2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

1,2.4 , − , 1.5,3.5 , − , 2.15,3.8 , − , 3,0.1 , − , 3.3,4 , − , 

3.8,3.49 , − , 3.8,0.5 , − , 3.9,2.05 , −

25

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

Loss: 7 (all positive examples are classified incorrectly)



Toy Training Example, split along x axis

26

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’s try 𝑡 = 2

𝑥 < 2 𝑥 ≥ 2

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 1.5,3.5 , −

Negative examples: 6
2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

Predicted 
label: +

01 loss = 0 + 6



Toy Training Example, split along x axis

27

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’s try 𝑡 = 3.2

𝑥 < 3.2 𝑥 ≥ 3.2

01 loss = 4 + 0

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Predicted 
label: +

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

Predicted 
label: -



• Best threshold along x axis is 3.2, with a loss of 4!

28



Toy Training Example, split along y axis

29

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Let’s try 𝑡 = 0.6

𝑦 < 0.6 𝑦 ≥ 0.6

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Predicted 
label: -

Predicted 
label: +

01 loss = 0 + 6

Negative examples: 2
3,0.1 , − , 3.8,0.5 , −

Negative examples: 6
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3.3,4 , − , 

3.8,3.49 , − , 3.9,2.05 , −



Toy Training Example, split along y axis

30

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Let’s try 𝑡 = 2.7

𝑦 < 2.7 𝑦 ≥ 2.7
Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Predicted 
label: +

Predicted 
label: -

01 loss = 4 + 0

Negative examples: 4
1.5,3.5 , − , 2.15,3.8 , − , 

3.3,4 , − , 3.8,3.49 , − ,  

Negative examples: 4
1,2.4 , − , 3,0.1 , − ,

3.8,0.5 , − , 3.9,2.05 , −



• Best threshold along y axis is 2.7, with a loss of 4!

31



• Split along x axis

32



Toy Training Example, new tree

𝑥 < 3.2 𝑥 ≥ 3.2

01 loss = 4 + 0

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Predicted 
label: +

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -



Next split

• Right leaf is already pure, so nothing to improve

• Consider left leaf only

34



Toy Training Example, split left leaf along x axis

35

Predicted 
label: -

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

Let’s try 𝑡 = 1.6

𝑥 < 1.6 𝑥 ≥ 1.6

01 loss = 0 + 2

Negative examples: 2
1,2.4 , − , 1.5,3.5 , −

Predicted 
label: -

Predicted 
label: -

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 2
2.15,3.8 , − , 3,0.1 , −



Toy Training Example, split left leaf along y axis

36

Predicted 
label: -

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

Let’s try 𝑡 = 2.7

𝑦 < 2.7 𝑦 ≥ 2.7

01 loss = 2 + 0

Predicted 
label: +

Predicted 
label: -

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 3,0.1 , − Negative examples: 2

1.5,3.5 , − , 2.15,3.8 , −



• Split along y axis

37



Current Tree

38

𝑥 < 3.2 𝑥 ≥ 3.2

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,  

3.8,0.5 , − , 3.9,2.05 , −

Predicted 
label: -

𝑦 < 2.7
𝑦 ≥ 2.7

Positive examples: 7
( 2,2 , +), 

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + , 

3,2,2.1 , + , ( 3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 3,0.1 , −

Predicted 
label: +

Predicted 
label: -

Negative examples: 2
1.5,3.5 , − , 2.15,3.8 , −



Current Splits

• Can continue building the tree for perfect training accuracy

39

+
+
+

+
+ +

+

-
-

-

-

-

-

-

-

Output -

Output -

Output +



Trees vs. Linear Regression

• Linear regression is a well understood and robust algorithm

–However, does not work very well when data is highly 
nonlinear

• Trees can capture all sorts of non-linearities

– But very susceptible to overfitting

40



Tree Pruning

• If we pick 𝐽 to be too large, the decision tree might become 
very complex

– In the extreme case of 𝐽 = 𝑁, the tree becomes a table that 
just remembers all training data

–What is the issue with that?

–Overfitting!

• We want the tree to capture patterns in the data without being 
too sensitive to noise in the training data

–We will talk about overfitting in more detail later

• How do we prune?

– Regularization!

41



Cost Complexity Pruning using Regularization

• Suppose we want a subtree with low MSE and few leaves

• A principled way to do that is to add a term to the loss function

• Suppose the original tree is 𝑇0

• Let 𝛼 be a small positive number

• Then the new loss is

෍

𝑗=1

|𝑇|

෍

𝑖:𝑥𝑖∈𝑅𝑗

𝑦𝑖 − ො𝑦𝑅𝑗

2
+ 𝛼 𝑇

– i.e., find a 𝑇 ⊂ 𝑇0 that minimizes the above loss

–where |𝑇| denotes the number of leaves in 𝑇

• This technique is called regularization (more later)

• If interested, see slides at the back of deck for more detail 42



Effect of Regularization

• Notice that training error keeps decreasing for larger trees

–We can bring it down to 0 with a very large tree

• However, test error starts increasing after some point

–Overfitting!

–A very common phenomenon (more later)

• Cross validation produces 
a better estimate of test
error

–Will discuss more later

43



Bagging and Random Forests

• Decision trees are nice and intuitive but they produce worse 
predictions than other methods in general

• Many improvements have been proposed over the years

• Bagging: train multiple trees by creating multiple datasets 
using sampling with replacement

– Trees might be correlated

• Random forests: decrease correlation by only training on a 
subset of features per split

– Forces trees to have different structure

44



Summary

• Decision trees are a nice graphical and easy-to-interpret model

–Unfortunately, they are inferior to other classical methods
• Splits are too simplistic, focusing on one feature at a time

• Training on high-dimensional data is very slow

• Can be used with high-level features of the data

– E.g., brightness, symmetry, etc.

• Bagging and random forests provide a significant boost in 
performance

• Random forests became quite popular recently with the latest 
push for interpretability

45



Cost Complexity Pruning

• Suppose we want to pick a subtree with the property that it 
has low MSE and few leaves

• A principled way to do that is to add a term to the loss function

• Suppose the original tree is 𝑇0

• Let 𝛼 be a small positive number

• Then the new loss is

෍

𝑗=1

|𝑇|

෍

𝑖:𝑥𝑖∈𝑅𝑗

𝑦𝑖 − ො𝑦𝑅𝑗

2
+ 𝛼 𝑇

– i.e., find a 𝑇 ⊂ 𝑇0 that minimizes the above loss

–where |𝑇| denotes the number of leaves in 𝑇

46



Cost Complexity Pruning, cont’d

• Then the new loss is

෍

𝑗=1

|𝑇|

෍

𝑖:𝑥𝑖∈𝑅𝑗

𝑦𝑖 − ො𝑦𝑅𝑗

2
+ 𝛼 𝑇

• Note that when 𝛼 = 0, the above loss becomes MSE

• As we increase 𝛼 we penalize larger trees

–As 𝛼 → ∞, the optimal tree converges to a one-leaf tree

– For intermediate 𝛼, the loss balances between trees with 
low MSE and few leaves

• This technique is called regularization

–Will talk more about regularization later

• If interested, see slides at the back of deck for more detail
47



Cost Complexity Pruning, cont’d

• How do we pick the optimal 𝑇 for a given 𝛼?

• Keep in mind 𝑀𝑆𝐸 𝑇 > 𝑀𝑆𝐸(𝑇0) for any 𝑇 ⊂ 𝑇0

–Why?

– By construction, when we refine a tree, we reduce the MSE

• We can recursively construct the optimal 𝑇 from 𝑇0

– Start from the bottom of each branch

– Compute the current loss vs. the loss if leaves are merged

– If merging reduces loss, then merge; otherwise, move up

48

1 2 3 4



Cross Validation

• How do we pick 𝛼?

–𝛼 is called a hyper-parameter: a parameter we pick at 
design-time that is not optimized during training proper

• Cross validation!

• Classic cross validation is used to estimate a model’s test error

– Split the data randomly into 90% training and 10% testing

– Train on the training data and record the test accuracy

– Repeat multiple (e.g., 10) times

– Take the average test error over all runs

–A better estimate of generalization error than a single split

• Try different values for 𝛼 and pick the one that results in 
lowest cross-validation error

49



Cross Validation, cont’d

• Cross validation is especially useful for small datasets when it is 
hard to get a good test error estimate

• Not widely used today since datasets are quite large

– Performing well on modern test sets is usually a good sign

– Re-splitting the data and retraining can be quite costly

• Cross validation is an important tool when it comes to 
generalization

–We’ll talk more about generalization next

50


	Slide 1: Decision Trees
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: High-level description
	Slide 5: Elements of a decision tree
	Slide 6: Decision Tree Intuition
	Slide 7: Training the Decision Tree
	Slide 8: Training the Decision Tree, cont’d
	Slide 9: Least Squares for Decision Trees
	Slide 10: Least Squares for Decision Trees, cont’d
	Slide 11: Greedy Least Squares
	Slide 12: Greedy Least Squares, cont’d
	Slide 13: Greedy Least Squares, cont’d
	Slide 14: Greedy Least Squares, cont’d
	Slide 15: Greedy Least Squares, cont’d
	Slide 16: Greedy Least Squares, cont’d
	Slide 17: Algorithm Illustration
	Slide 18: Algorithm Illustration
	Slide 19: Algorithm Illustration
	Slide 20: Loss Improvement
	Slide 21: Algorithm Illustration
	Slide 22: Classification Trees
	Slide 24: Toy Training Example
	Slide 25: Toy Training Example, root
	Slide 26: Toy Training Example, split along x axis
	Slide 27: Toy Training Example, split along x axis
	Slide 28
	Slide 29: Toy Training Example, split along y axis
	Slide 30: Toy Training Example, split along y axis
	Slide 31
	Slide 32
	Slide 33: Toy Training Example, new tree
	Slide 34: Next split
	Slide 35: Toy Training Example, split left leaf along x axis
	Slide 36: Toy Training Example, split left leaf along y axis
	Slide 37
	Slide 38: Current Tree
	Slide 39: Current Splits
	Slide 40: Trees vs. Linear Regression
	Slide 41: Tree Pruning
	Slide 42: Cost Complexity Pruning using Regularization
	Slide 43: Effect of Regularization
	Slide 44: Bagging and Random Forests
	Slide 45: Summary
	Slide 46: Cost Complexity Pruning
	Slide 47: Cost Complexity Pruning, cont’d
	Slide 48: Cost Complexity Pruning, cont’d
	Slide 49: Cross Validation
	Slide 50: Cross Validation, cont’d

