Decision Trees

Reading

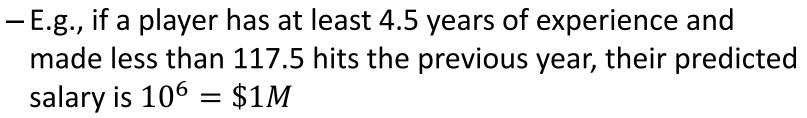
- Chapters 8.1, 8.2
 - James, Gareth, et al. An introduction to statistical learning.
 Vol. 112. New York: springer, 2013.
 - Available online: https://www.statlearning.com/

Overview

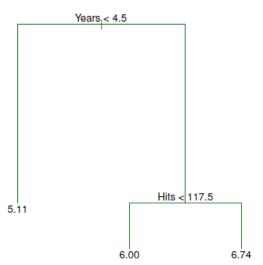
- Decision trees are a popular classification/regression model
- They are often preferred because they are intuitive and easy to interpret
 - Similar to a standard computer program
- Vanilla decision tree performance is often inferior to other methods
- Many improvements have been proposed such as random forests and so on
 - Random forests are on par with some of the best methods in classification, at a cost in interpretability

High-level description

- A decision tree is a predictive model based on if-cases
- Predict baseball players' salary (in log-scale)
 based on years and number of hits last year
- Very easy to interpret the tree's prediction

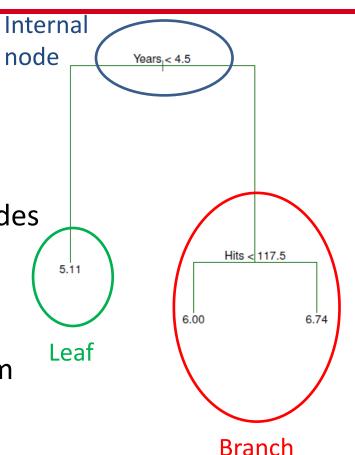


- Can split each branch arbitrarily for finer precision predictions
- This is a regression tree since it predicts continuous values
 - However, it can only output finitely many values, so the distinction with classification is blurry



Elements of a decision tree

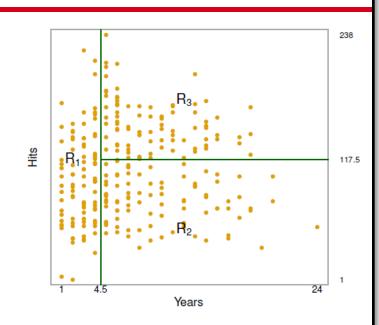
- Internal nodes
 - Where the predictor space is split
- Branches
 - Subsets of the tree that connect nodes
- Terminal nodes or leaves
 - Where outputs are produced
- Decisions are made from top to bottom by convention



Decision Tree Intuition

- The decision tree works by producing linear cuts in the feature space
 - For each region R_j , the prediction is the average over all points in R_i
- Can achieve arbitrary precision given enough cuts
 - A bit rudimentary for a small number of cuts

 Decision trees received increased attention with the recent push for interpretable AI



Training the Decision Tree

- Decision tree training is more an art than a science
 - This is true for many ML techniques in general
- Users need to make several decisions before even starting
 - How many splits to include?
 - Are the splits axis-aligned or arbitrary lines?
 - Which variable to split on first?
 - Some or all of these can be chosen algorithmically also

Training the Decision Tree, cont'd

- Suppose we want to have J regions: $R_1, ..., R_J$
 - How do we find the best regions?
 - Least squares!

$$\min_{R_{1},...,R_{J}} \sum_{(x_{i},y_{i})\in\mathcal{D}} (y_{i} - f(x_{i}))^{2} =$$

$$\min_{R_{1},...,R_{J}} \sum_{j=1}^{J} \sum_{i:x_{i}\in R_{j}} (y_{i} - f_{j}(x_{i}))^{2}$$

- −i.e., find regions to minimize the sum of squared errors
- where $f_j(\mathbf{x})$ is the mean of all $y_i \in R_j$, call it \hat{y}_{R_j}
- What is the challenge with this approach?
 - —There are exponentially many (in J and p) tree shapes
 - Unclear which tree shapes lead to better performance

Least Squares for Decision Trees

- Suppose first J = 2
- ullet Need to pick a threshold t_d along some dimension d
 - Let x^d denote dimension d of input x
 - -Left branch is taken if $x^d < t_d$
 - Need to go through all dimensions and pick the best one
 - So far so good (linear in the number of dimensions)
- What if J = 3?
 - Need to pick two thresholds
 - But which one goes first?
 - Also, how do we arrange the tree longer left or right branch?
 - Hard to say which shape will generalize better

Least Squares for Decision Trees, cont'd

- If we can't try all tree shapes, how do we grow the tree?
 - A greedy approach!
 - It's a standard approximation technique for combinatorial problems
 - Sometimes produces quite good (or even optimal) solutions
- Greedy means that we only choose the best next split without considering how it might affect future splits

Greedy Least Squares

- For 1st split, need to pick a threshold t_d along dimension d
 - That would create potential split regions

$$R_1(d, t_d) = \left\{ \boldsymbol{x} \in \mathbb{R}^p \middle| x^d < t_d \right\} \text{ and } R_2(d, t_d) = \left\{ \boldsymbol{x} \in \mathbb{R}^p \middle| x^d \ge t_d \right\}$$

– Dataset is now split according to examples in R_1 and R_2

$$\mathcal{D}_1 = \{ (\boldsymbol{x}_i, y_i) \in \mathcal{D} | \boldsymbol{x}_i \in R_1 \}$$

$$\mathcal{D}_2 = \{ (\boldsymbol{x}_i, y_i) \in \mathcal{D} | \boldsymbol{x}_i \in R_2 \}$$

- -where $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}$
- What is the prediction in each region?

$$\hat{y}_{R_1} = \frac{1}{|\mathcal{D}_1|} \sum_{(x_i, y_i) \in \mathcal{D}_1} y_i$$

$$\hat{y}_{R_2} = \frac{1}{|\mathcal{D}_2|} \sum_{(x_i, y_i) \in \mathcal{D}_2} y_i$$

- For 1st split, need to pick a threshold t_d along dimension d
 - That would create potential split regions

$$R_1(d, t_d) = \left\{ \boldsymbol{x} \in \mathbb{R}^p \middle| x^d < t_d \right\} \text{ and } R_2(d, t_d) = \left\{ \boldsymbol{x} \in \mathbb{R}^p \middle| x^d \ge t_d \right\}$$

— What is the prediction in each region?

$$\hat{y}_{R_1} = \frac{1}{|\mathcal{D}_1|} \sum_{(x_i, y_i) \in \mathcal{D}_1} y_i$$

$$\hat{y}_{R_2} = \frac{1}{|\mathcal{D}_2|} \sum_{(x_i, y_i) \in \mathcal{D}_2} y_i$$

– What is the total squared error in each region?

$$e_{R_1} = \sum_{(x_i, y_i) \in \mathcal{D}_1} (y_i - \hat{y}_{R_1})^2$$

$$e_{R_2} = \sum_{(x_i, y_i) \in \mathcal{D}_2} (y_i - \hat{y}_{R_2})^2$$

- For 1st split, need to pick a threshold t_d along dimension d
 - That would create potential split regions

$$R_1(d, t_d) = \{ \mathbf{x} \in \mathbb{R}^p | x^d < t_d \} \text{ and } R_2(d, t_d) = \{ \mathbf{x} \in \mathbb{R}^p | x^d \ge t_d \}$$

• Need to pick d and t_d to minimize mean squared error:

$$MSE(d, t_d, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \left(\sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d < t_d}} \left(y_i - \hat{y}_{R_1} \right)^2 + \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d \ge t_d}} \left(y_i - \hat{y}_{R_2} \right)^2 \right)$$

- As usual, we'll drop the $\frac{1}{|\mathcal{D}|}$ factor since it doesn't affect minimum (but will keep abbreviation MSE for consistency)

$$MSE(d, t_d, \mathcal{D}) = \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d < t_d}} \left(y_i - \hat{y}_{R_1} \right)^2 + \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d \ge t_d}} \left(y_i - \hat{y}_{R_2} \right)^2$$

- For 1st split, need to pick a threshold t_d along dimension d
 - That would create potential split regions

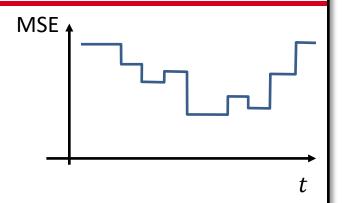
$$R_1(d, t_d) = \{ \mathbf{x} \in \mathbb{R}^p | x^d < t_d \} \text{ and } R_2(d, t_d) = \{ \mathbf{x} \in \mathbb{R}^p | x^d \ge t_d \}$$

• Need to pick d and t_d to minimize mean squared error:

$$MSE(d, t_d, \mathcal{D}) = \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d < t_d \\ = e_{R_1} + e_{R_2}}} (y_i - \hat{y}_{R_1})^2 + \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ x_i^d \ge t_d \\ = e_{R_2}}} (y_i - \hat{y}_{R_2})^2$$

- Iterate through all p dimensions (recall $oldsymbol{x}_i \in \mathbb{R}^p$)
 - For each dimension d, find threshold t_d that minimizes $MSE(d, t_d, \mathcal{D})$ on the training data (how?)

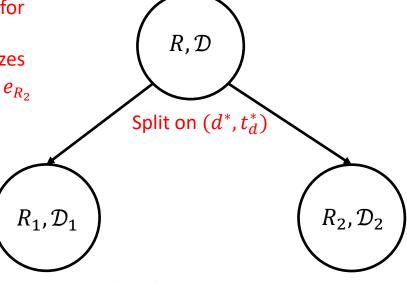
- MSE may not be convex in t, so we can't just set the derivative to 0
- But MSE is piecewise-constant on the training set



- -Why?
 - Because the prediction per region is only changed if an example is added or removed
 - Small threshold changes may not change this
- One can do an exhaustive search over the range of t
 - Set a small enough step size and step through the range of t
 - Pick the t^* that results on lowest MSE
- ullet Alternatively, can sort all examples along dimension d
 - Increment threshold to include, e.g., 5%, 10%,... of data

- Iterate through all p dimensions
 - For each dimension d, find threshold t_d that minimizes $MSE(d, t_d, \mathcal{D})$ on the training data
 - Finally, pick the combination (d, t_d) that minimizes $MSE(d, t_d, \mathcal{D})$
 - We have now created regions R_1 and R_2
- To create future regions, we split R_1 or R_2 in the same way
 - Terminate when we have J regions (or too few data points per region)

- 1. Compute $MSE(d, t_d, \mathcal{D})$ for each (d, t_d) pair
- 2. Find (d^*, t_d^*) that minimizes $MSE(d^*, t_d^*, \mathcal{D}) = e_{R_1} + e_{R_2}$

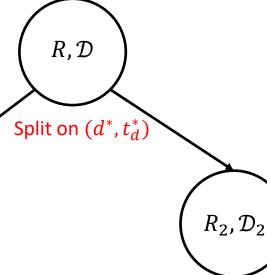


- 1. Compute $MSE(d, t_d, \mathcal{D}_1)$ for each (d, t_d) pair
- 2. Find (d^{**}, t_d^{**}) that minimizes $MSE(d^*, t_d^*, d^{**}, t_d^{**}, \mathcal{D}) = e_{R_2} + e_{R_{11}} + e_{R_{12}}$

- 1. Compute $MSE(d, t_d, \mathcal{D}_2)$ for each (d, t_d) pair
- 2. Find (d^{**}, t_d^{**}) that minimizes $MSE(d^*, t_d, d^{**}, t_d^{**}, \mathcal{D}) = e_{R_1} + e_{R_{21}} + e_{R_{22}}$

Suppose splitting R_1 results in lower loss

- 1. Compute $MSE(d, t_d, \mathcal{D})$ for each (d, t_d) pair
- 2. Find (d^*, t_d^*) that minimizes $MSE(d^*, t_d^*, \mathcal{D}) = e_{R_1} + e_{R_2}$



Split on (d^{**}, t_d^{**})

 R_1, \mathcal{D}_1

- $\begin{pmatrix} R_{11}, \mathcal{D}_{11} \end{pmatrix} \qquad \begin{pmatrix} R_{12}, \mathcal{D}_{12} \end{pmatrix}$
- 1. Compute $MSE(d, t_d, \mathcal{D}_2)$ for each (d, t_d) pair
- 2. Find (d^{***}, t_d^{***}) that minimizes

$$MSE(d^*, t_d^*, d^{**}, t_d^{**}, d^{***}, t_d^{***}, \mathcal{D})$$

= $e_{R_{11}} + e_{R_{12}} + e_{R_{21}} + e_{R_{22}}$

- 1. Compute $MSE(d, t_d, \mathcal{D}_{11})$ for each (d, t_d) pair
- 2. Find (d^{***}, t_d^{***}) that minimizes

$$MSE(d^*, t_d^*, d^{**}, t_d^{**}, d^{***}, t_d^{***}, \mathcal{D})$$

= $e_{R_2} + e_{R_{12}} + e_{R_{111}} + e_{R_{112}}$

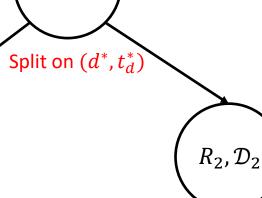
- 1. Compute $MSE(d, t_d, \mathcal{D}_{12})$ for each (d, t_d) pair
- 2. Find (d^{***}, t_d^{***}) that minimizes

$$MSE(d^*, t_d^*, d^{**}, t_d^{**}, d^{***}, t_d^{***}, \mathcal{D})$$

= $e_{R_2} + e_{R_{11}} + e_{R_{121}} + e_{R_{122}}$

- 1. Compute $MSE(d, t_d, \mathcal{D})$ for each (d, t_d) pair
- 2. Find (d^*, t_d^*) that minimizes $MSE(d^*, t_d^*, \mathcal{D}) = e_{R_1} + e_{R_2}$

 R_{111} , \mathcal{D}_{111}



 R, \mathcal{D}

 R_{12}, \mathcal{D}_{12}

 R_1, \mathcal{D}_1

Split on (d^{**}, t_d^{**})

 R_{112} , \mathcal{D}_{112}

 R_{11}, \mathcal{D}_{11}

Split on (d^{***}, t_d^{***})

In first round loss was

- 1. Compute $MSE(d, t_d, \mathcal{D}_2)$ for each (d, t_d) pair
- 2. Find (d^{**}, t_d^{**}) that minimizes

$$MSE(d^*, t_d^*, d^{**}, t_d^{**}, \mathcal{D}) = e_{R_1} + e_{R_{21}} + e_{R_{22}}$$

In second round loss was

- L. Compute $MSE(d, t_d, \mathcal{D}_2)$ for each (d, t_d) pair
- 2. Find (d^{***}, t_d^{***}) that minimizes

$$MSE(d^*, t_d^*, d^{**}, t_d^{**}, d^{***}, t_d^{***}, \mathcal{D})$$

= $e_{R_{11}} + e_{R_{12}} + e_{R_{21}} + e_{R_{22}}$

Do we need to recalculate each time?

Loss Improvement

• Loss calculation for R_2 was first

$$e_{R_1} + e_{R_{21}} + e_{R_{22}}$$

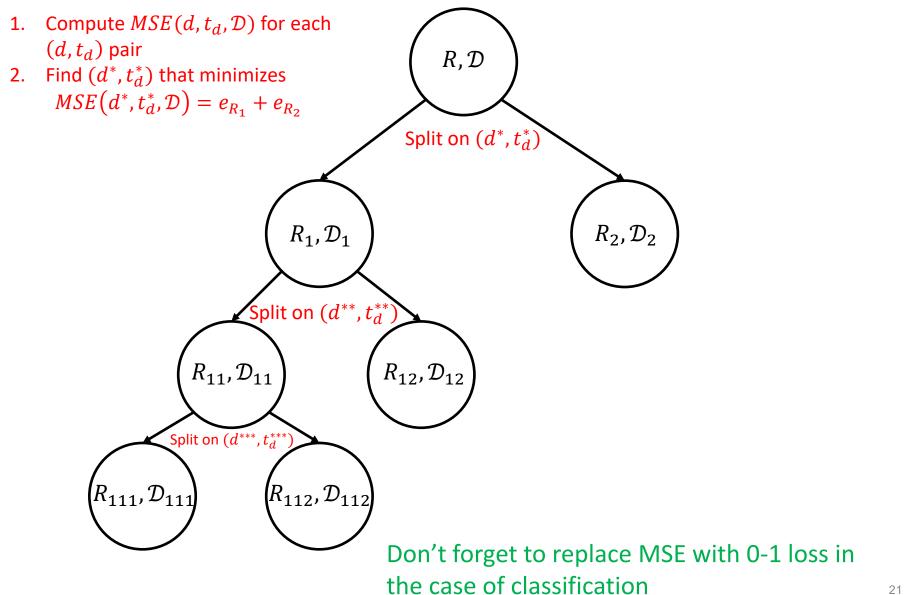
and then

$$e_{R_{11}} + e_{R_{12}} + e_{R_{21}} + e_{R_{22}}$$

- Notice that splitting on R_2 does not affect the rest of the loss
 - After a split, the node's contribution to the total loss changes from e_{R_2} to $e_{R_{21}}+e_{R_{22}}$
- The loss improvement associated with R_2 is then

$$e_{R_2} - (e_{R_{21}} + e_{R_{22}})$$

- Needs to be calculated once (when node is created)
- Then always split on node with highest loss improvement



Classification Trees

- Very similar to regression trees
- Instead of outputting the average label per region, they output the majority class
- You can use standard classification losses
 - E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)
 - Other losses are possible as well

Toy Training Example

• We have two classes and the training data is

$$((2,2),+), ((2,2.5),+), ((2.2,2.8),+), ((2.5,2.2),+), ((2.52,2.53),+), ((3,2,2.1),+), ((3.1,2.6),+)$$

 $((1,2.4),-), ((1.5,3.5),-), ((2.15,3.8),-), ((3,0.1),-), ((3.3,4),-), ((3.8,3.49),-), ((3.8,0.5),-), ((3.9,2.05),-)$



Toy Training Example, root

We have two classes and the training data is

$$((2,2),+), ((2,2.5),+), ((2.2,2.8),+), ((2.5,2.2),+), ((2.52,2.53),+), ((3,2,2.1),+), ((3.1,2.6),+)$$

 $((1,2.4),-), ((1.5,3.5),-), ((2.15,3.8),-), ((3,0.1),-), ((3.3,4),-), ((3.8,3.49),-), ((3.8,0.5),-), ((3.9,2.05),-)$

Positive examples: 7

$$((2,2),+),$$

 $((2,2.5),+),((2.2,2.8),+),$
 $((2.5,2.2),+),((2.52,2.53),+),$
 $((3,2,2.1),+),((3.1,2.6),+)$

Negative examples: 8 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -), ((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)

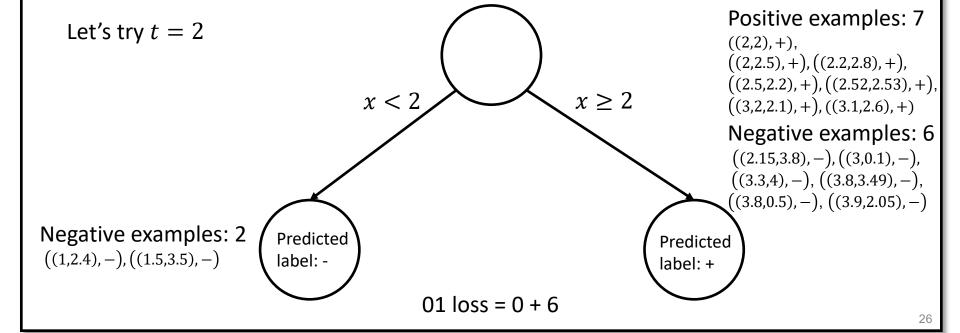
Loss: 7 (all positive examples are classified incorrectly)

Toy Training Example, split along x axis

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53),+),
((3,2,2.1),+),((3.1,2.6),+)

Negative examples: 8 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -), ((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

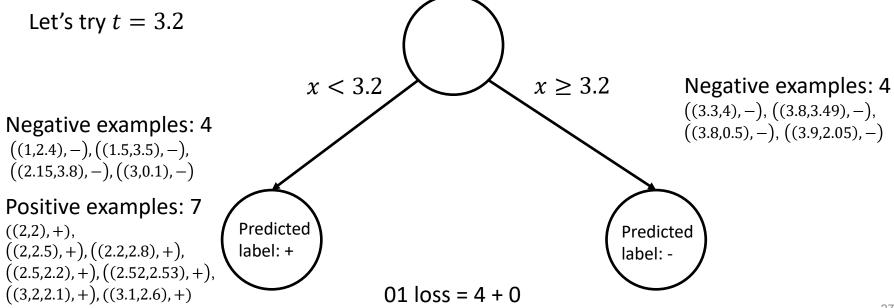


Toy Training Example, split along x axis

Positive examples: 7 ((2,2),+), ((2,2.5),+),((2.2,2.8),+), ((2.5,2.2),+),((2.52,2.53),+), ((3,2,2.1),+),((3.1,2.6),+)

Negative examples: 8 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -), ((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.



27

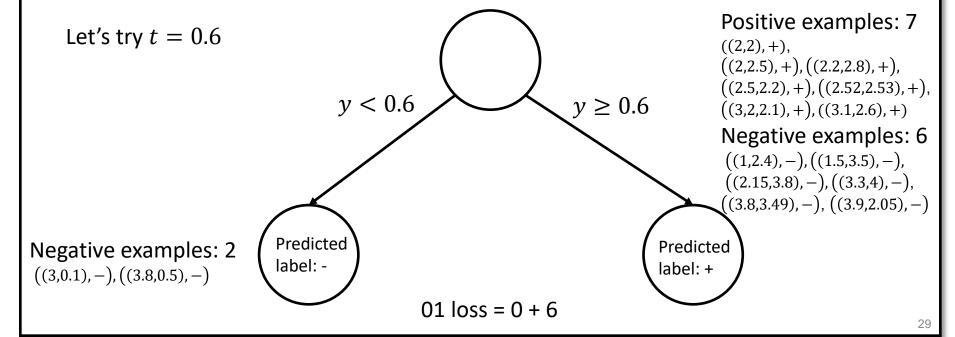
• Best threshold along x axis is 3.2, with a loss of 4!

Toy Training Example, split along y axis

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53),+),
((3,2,2.1),+),((3.1,2.6),+)

Negative examples: 8 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -), ((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

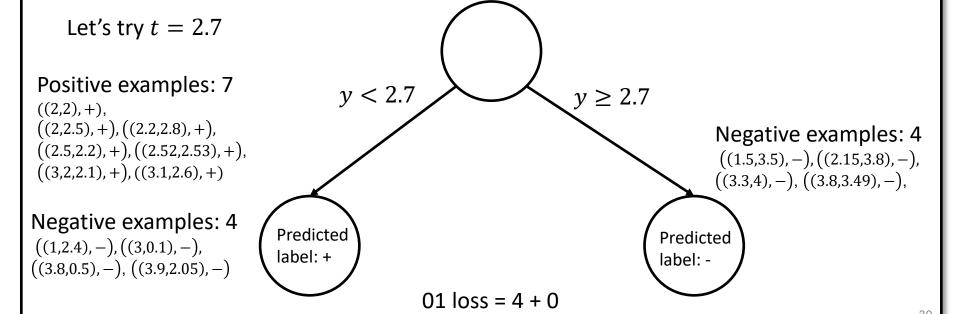


Toy Training Example, split along y axis

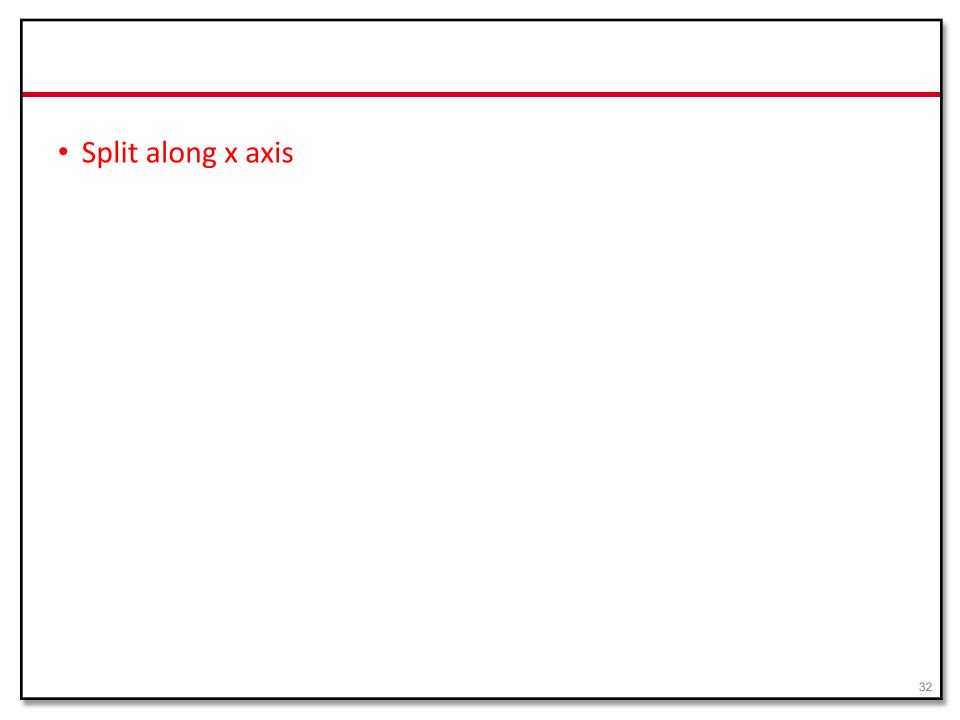
Positive examples: 7 ((2,2),+), ((2,2.5),+),((2.2,2.8),+), ((2.5,2.2),+),((2.52,2.53),+), ((3,2,2.1),+),((3.1,2.6),+)

Negative examples: 8 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -), ((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)

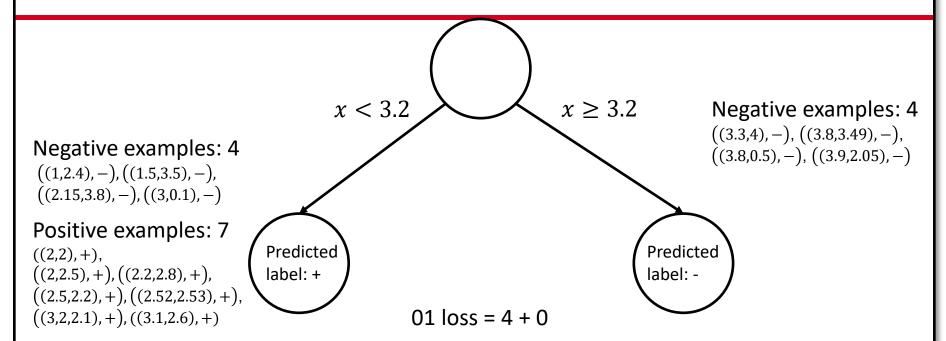
Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.



• Best threshold along y axis is 2.7, with a loss of 4!



Toy Training Example, new tree



Next split

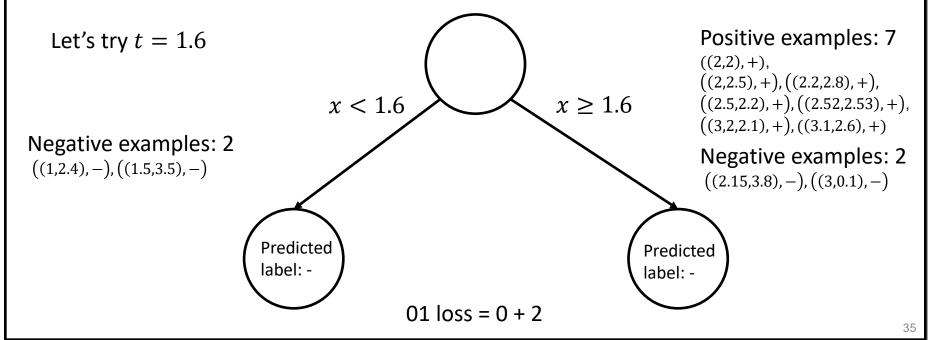
- Right leaf is already pure, so nothing to improve
- Consider left leaf only

Toy Training Example, split left leaf along x axis

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53),+),
((3,2,2.1),+),((3.1,2.6),+)

Negative examples: 4 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -)

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

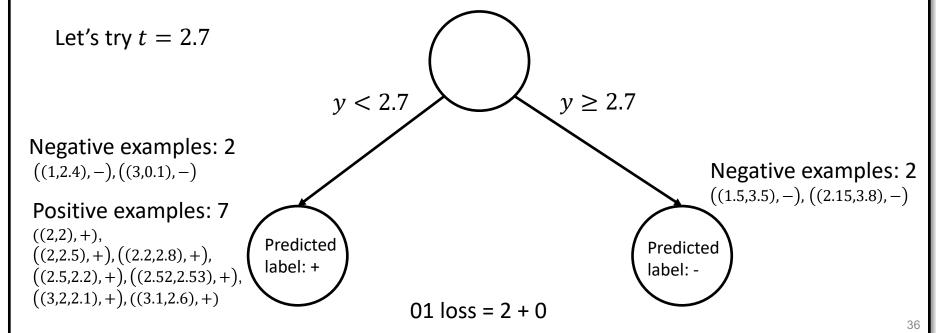


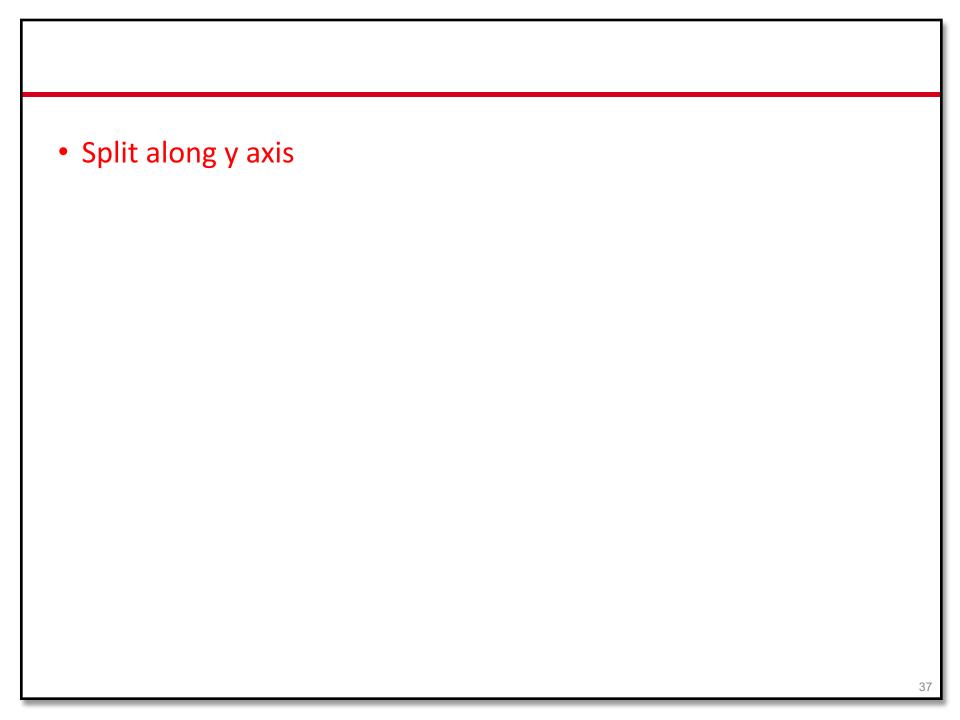
Toy Training Example, split left leaf along y axis

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53),+),
((3,2,2.1),+),((3.1,2.6),+)

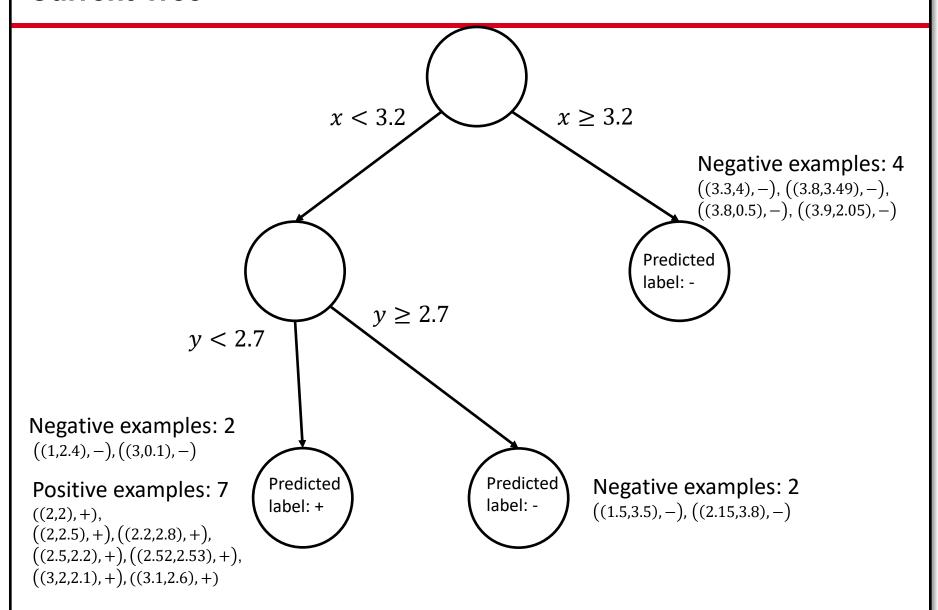
Negative examples: 4 ((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

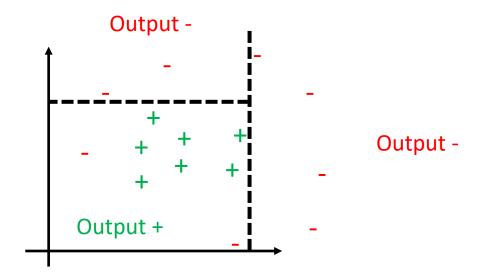




Current Tree



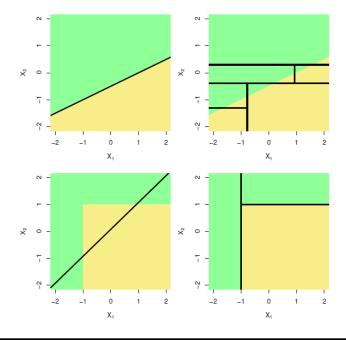
Current Splits



Can continue building the tree for perfect training accuracy

Trees vs. Linear Regression

- Linear regression is a well understood and robust algorithm
 - However, does not work very well when data is highly nonlinear
- Trees can capture all sorts of non-linearities
 - But very susceptible to overfitting



Tree Pruning

- If we pick J to be too large, the decision tree might become very complex
 - In the extreme case of J=N, the tree becomes a table that just remembers all training data
 - What is the issue with that?
 - Overfitting!
- We want the tree to capture patterns in the data without being too sensitive to noise in the training data
 - We will talk about overfitting in more detail later
- How do we prune?
 - Regularization!

Cost Complexity Pruning using Regularization

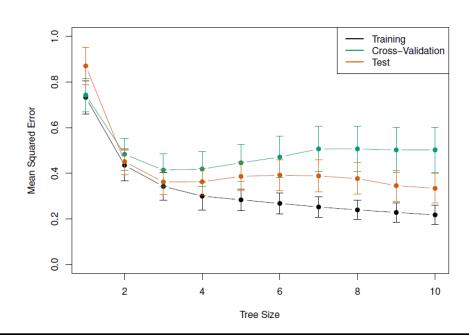
- Suppose we want a subtree with low MSE and few leaves
- A principled way to do that is to add a term to the loss function
- Suppose the original tree is T_0
- Let α be a small positive number
- Then the new loss is

$$\sum_{j=1}^{|T|} \sum_{i:x_i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

- -i.e., find a $T \subset T_0$ that minimizes the above loss
- —where |T| denotes the number of leaves in T
- This technique is called regularization (more later)
- If interested, see slides at the back of deck for more detail

Effect of Regularization

- Notice that training error keeps decreasing for larger trees
 - We can bring it down to 0 with a very large tree
- However, test error starts increasing after some point
 - Overfitting!
 - A very common phenomenon (more later)
- Cross validation produces a better estimate of test error
 - Will discuss more later



Bagging and Random Forests

- Decision trees are nice and intuitive but they produce worse predictions than other methods in general
- Many improvements have been proposed over the years
- Bagging: train multiple trees by creating multiple datasets using sampling with replacement
 - Trees might be correlated
- Random forests: decrease correlation by only training on a subset of features per split
 - Forces trees to have different structure

Summary

- Decision trees are a nice graphical and easy-to-interpret model
 - Unfortunately, they are inferior to other classical methods
 - Splits are too simplistic, focusing on one feature at a time
 - Training on high-dimensional data is very slow
- Can be used with high-level features of the data
 - E.g., brightness, symmetry, etc.
- Bagging and random forests provide a significant boost in performance
- Random forests became quite popular recently with the latest push for interpretability

Cost Complexity Pruning

- Suppose we want to pick a subtree with the property that it has low MSE and few leaves
- A principled way to do that is to add a term to the loss function
- Suppose the original tree is T_0
- Let α be a small positive number
- Then the new loss is

$$\sum_{j=1}^{|T|} \sum_{i:x_i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

- -i.e., find a $T \subset T_0$ that minimizes the above loss
- —where |T| denotes the number of leaves in T

Cost Complexity Pruning, cont'd

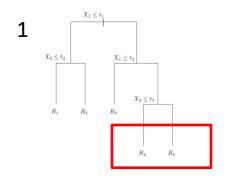
Then the new loss is

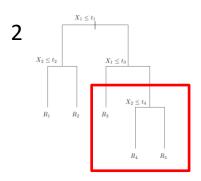
$$\sum_{j=1}^{|T|} \sum_{i:x_i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

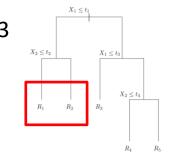
- Note that when $\alpha = 0$, the above loss becomes MSE
- As we increase α we penalize larger trees
 - As $\alpha \to \infty$, the optimal tree converges to a one-leaf tree
 - For intermediate α , the loss balances between trees with low MSE and few leaves
- This technique is called regularization
 - Will talk more about regularization later
- If interested, see slides at the back of deck for more detail

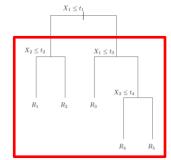
Cost Complexity Pruning, cont'd

- How do we pick the optimal T for a given α ?
- Keep in mind $MSE(T) > MSE(T_0)$ for any $T \subset T_0$
 - -Why?
 - By construction, when we refine a tree, we reduce the MSE
- We can recursively construct the optimal T from T_0
 - Start from the bottom of each branch
 - Compute the current loss vs. the loss if leaves are merged
 - If merging reduces loss, then merge; otherwise, move up









4

Cross Validation

- How do we pick α ?
 - $-\alpha$ is called a hyper-parameter: a parameter we pick at design-time that is not optimized during training proper
- Cross validation!
- Classic cross validation is used to estimate a model's test error
 - Split the data randomly into 90% training and 10% testing
 - Train on the training data and record the test accuracy
 - Repeat multiple (e.g., 10) times
 - Take the average test error over all runs
 - A better estimate of generalization error than a single split
- Try different values for α and pick the one that results in lowest cross-validation error

Cross Validation, cont'd

- Cross validation is especially useful for small datasets when it is hard to get a good test error estimate
- Not widely used today since datasets are quite large
 - Performing well on modern test sets is usually a good sign
 - Re-splitting the data and retraining can be quite costly
- Cross validation is an important tool when it comes to generalization
 - We'll talk more about generalization next