Decision Trees

Reading

* Chapters 8.1, 8.2

—James, Gareth, et al. An introduction to statistical learning.
Vol. 112. New York: springer, 2013.

— Available online: https://www.statlearning.com/

https://www.statlearning.com/

Overview

* Decision trees are a popular classification/regression model
* They are often preferred because they are intuitive and easy to
interpret
—Similar to a standard computer program

* Vanilla decision tree performance is often inferior to other
methods

* Many improvements have been proposed such as random
forests and so on

—Random forests are on par with some of the best methods
in classification, at a cost in interpretability

High-level description

* A decision tree is a predictive model
based on if-cases

* Predict baseball players’ salary (in log-scale)
based on years and number of hits last year

its <|117.5
5.11

* Very easy to interpret the tree’s prediction

6.00 6.74

—E.g., if a player has at least 4.5 years of experience and
made less than 117.5 hits the previous year, their predicted
salary is 10 = $1M

e Can split each branch arbitrarily for finer precision predictions

* This is a regression tree since it predicts continuous values

— However, it can only output finitely many values, so the
distinction with classification is blurry

Elements of a decision tree

Internal m

Internal nodes
—Where the predictor space is split

 Branches
—Subsets of the tree that connect nodes

Hits <

Terminal nodes or leaves 5.1

— Where outputs are produced

. . Leaf
* Decisions are made from top to bottom =

by convention

Branch

Decision Tree Intuition

* The decision tree works by producing
linear cuts in the feature space o
— For each region R;, the prediction
is the average over all points in R;
R

* Can achieve arbitrary precision given

Years

enough cuts
— A bit rudimentary for a small

number of cuts
* |ts main advantage is its interpretability and graph structure

— Decision trees received increased attention with the recent

push for interpretable Al

Training the Decision Tree

* Decision tree training is more an art than a science
—This is true for many ML techniques in general

* Users need to make several decisions before even starting
—How many splits to include?
— Are the splits axis-aligned or arbitrary lines?
— Which variable to split on first?
—Some or all of these can be chosen algorithmically also

Training the Decision Tree, cont’d

* Suppose we want to have J regions: Ry, ..., R;

—How do we find the best regions?

* Least squares!

A z (i — f(x)" =

(x;,y;)€ED

Rg_i_};?]z]: z (yz— f,-(xl-))z

j=1 i:xl-ERj
—i.e., find regions to minimize the sum of squared errors

—where f;(x) is the mean of all y; € R}, call it VR,

 What is the challenge with this approach?

—There are exponentially many (in J and p) tree shapes
* Unclear which tree shapes lead to better performance

Least Squares for Decision Trees

e Suppose first] = 2
* Need to pick a threshold t; along some dimension d
—Let x4 denote dimension d of input x
— Left branch is taken if x¢ < t
—Need to go through all dimensions and pick the best one
—So far so good (linear in the number of dimensions)
e Whatif] = 3?
— Need to pick two thresholds
e But which one goes first?

* Also, how do we arrange the tree — longer left or right branch?
* Hard to say which shape will generalize better

Least Squares for Decision Trees, cont’d

* |f we can’t try all tree shapes, how do we grow the tree?
— A greedy approach!

—It’s a standard approximation technique for combinatorial
problems

 Sometimes produces quite good (or even optimal) solutions

* Greedy means that we only choose the best next split without
considering how it might affect future splits

Greedy Least Squares

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}

— Dataset is now split according to examples in R; and R,
Dy ={(x;,y;) € D|x; € Ry}
D, ={(x;,y:) € D|x; € R;}

—where D = {(x]_; }’1); neey (xN) yN)}

—What is the prediction in each region?

o1 Z
le — |D1| Vi
(xi!yi)EDl

1
yR2_|D_2| Z Vi

(xi!yi) €D,

Greedy Least Squares, cont’d

* For 1%t split, need to pick a threshold t; along dimension d
— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}
—What is the prediction in each region?

le |D1 yl
(x1,yi)€D,

YR, = |1)_2| z Vi
(x1,¥i)ED,

—What is the total squared error in each region?

er, = z (J’i —le)z
(x4,Yi)ED4

er,=) (= 9m)

(x1,yi)€ED,

Greedy Least Squares, cont’d

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}

* Need to pick d and t; to minimize mean squared error:

1
MSE(d,t;,D) = W Z ()’i - 37R1)2 + z (yi - yRZ)Z

(x;,yi)ED (x;,yi)ED
xld<td x{ith

1 . :)
— As usual, we’ll drop the DI factor since it doesn’t affect
minimum (but will keep abbreviation MSE for consistency)

MSE(d,t;,D) = z (yi—?R1)2+ z (Yi_sz)z

(x;,yi)ED (x;,yi)ED
xfl<td xldztd

Greedy Least Squares, cont’d

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}

* Need to pick d and t; to minimize mean squared error:

MSE(d,t;,D) = z (yi—f/Rl)2+ z (Yi_sz)z

(xi,y)€D (x;,¥)€D
xld<td x{ith
= eRl ~+ eRz

* |terate through all p dimensions (recall x; € RP)

— For each dimension d, find threshold t; that minimizes
MSE(d, t;, D) on the training data (how?)

Greedy Least Squares, cont’d

MSE 4
 MISE may not be convexin t, so we can’t _L_. |
just set the derivative to O e

* But MSE is piecewise-constant on the

training set
—Why?

* Because the prediction per region is only changed if an example is
added or removed

* Small threshold changes may not change this
* One can do an exhaustive search over the range of ¢
— Set a small enough step size and step through the range of t
—Pick the t* that results on lowest MISE

 Alternatively, can sort all examples along dimension d
—Increment threshold to include, e.g., 5%, 10%,... of data

Greedy Least Squares, cont’d

* Iterate through all p dimensions

— For each dimension d, find threshold t; that minimizes
MSE(d, ty, D) on the training data

— Finally, pick the combination (d, t;) that minimizes
MSE(d,t;, D)

—We have now created regions R; and R,

* To create future regions, we split R; or R, in the same way

—Terminate when we have | regions (or too few data points
per region)

Algorithm lllustration

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d*,t3,D) = eg, + e,

Spliton (d*, t})

1. Compute MSE(d,t;, D,) for each (d, t;) pair 1. Compute MSE(d, ty,D,) for each
2. Find (d™, t;") that minimizes (d, tg) pair

MSE(d*,tg,d*,t;", D) = eg, + eg,, +eg,, 2. Find (d*, t;") that minimizes
MSE(d*, ty,d*,t3",D) = e, + eg,, + er,,

Suppose splitting R, results in lower loss

17

Algorithm lllustration

1.
2.

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d*,t3,D) = eg, + e,

Spliton (d*, t})

1. Compute MSE(d,t;,D,) for each (d, t;) pair
2. Find (d™",t;™) that minimizes

MSE(d*, ¢, d*, t5,d***, t5*,D)

= €Ry; T €Ry, T €R,y TRy,

Spliton (d**, t;"

Compute MSE(d, ty,D,1) foreach (d,t;) pair 1. Compute MSE(d,t;, Dy,) for each (d, t;) pair
Find (d***, t;™) that minimizes 2. Find (d™,t;™) that minimizes

MSE(d* ¢}, d*, t5, d**, t5*,D) MSE(d*, ¢}, d*, t5,d**, 5, D)

= R, + €R1> + €R111 + €R112 = €R, + €R11 + €R121 + €R122

Suppose splitting R4 results in lowest loss

18

Algorithm lllustration

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d*,t3,D) = eg, + e,

Spliton (d*, t})

In first round loss was
1. Compute MSE(d,t;,D,) for each (d, t;) pair
2. Find (d*,t;") that minimizes

MSE(d",ty, d™,t],D) = eg, + eg,, + €g,,

Spliton (d**, t;"

Spliton (d*™,t;™)

In second round loss was

1. Compute MSE(d,t;,D,) foreach (d, t;) pair
2. Find (d**,t;™) that minimizes

MSE(d*, t:l; d**, t:i*, d***, t:i**, D)

= €Ryy T Ry T €Ry; T €Ryy

Do we need to recalculate each time?
19

Loss Improvement

Loss calculation for R, was first
eRl + eR21 + eRZZ

e and then
€R14 + €R1, + €R,4 + €R,,

Notice that splitting on R, does not affect the rest of the loss

— After a split, the node’s contribution to the total loss
changes fromeg, toeg,. + eg,,

* The loss improvement associated with R, is then
er, — (er,, T €r,,)
* Needs to be calculated once (when node is created)

* Then always split on node with highest loss improvement

Algorithm lllustration

1. Compute MSE(d, t;, D) for each
(d, tg) pair

2. Find (d*, t;) that minimizes
MSE(d*,t3,D) = eg, + e,

Spliton (d*, t})

Don’t forget to replace MSE with 0-1 loss in
the case of classification

21

Classification Trees

* Very similar to regression trees

* |nstead of outputting the average label per region, they output
the majority class
* You can use standard classification losses
—E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)
— Other losses are possible as well

Toy Training Example

* We have two classes and the training data is

((2,2),4), ((2,2.5),4),((2.2,2.8),+),((2.5,2.2), +), ((2.52,2.53), +),

((3,2,2.1),+),((3.1,2.6), +)

((1,2.4),-),((1.5,3.5),—),((2.15,3.8),—),((3,0.1),-),((3.3,4), -),
((3.8,3.49),-), ((3.8,0.5),—), ((3.9,2.05), -)

24

Toy Training Example, root

* We have two classes and the training data is

((2,2),4), ((2,2.5),4),((2.2,2.8),+),((2.5,2.2), +), ((2.52,2.53), +),
((3,2,2.1),+),((3.1,2.6), +)

((1,2.4),-),((1.5,3.5),—),((2.15,3.8),—),((3,0.1),-),((3.3,4), -),
((3.8,3.49),-), ((3.8,0.5),—), ((3.9,2.05), -)

Positive examples: 7
((22), 1),
((2,2.5),+),((2.2,2.8),+),
((2.52.2),+),((2.52,2.53),+),
(32,2.1),+),((3.1,2.6),+)

Negative examples: 8
Predicted ((1,24),-),((1.53.5),-),
label: - ((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.83.49),-),
((3.8,0.5),—-), ((3.9,2.05),—)

Loss: 7 (all positive examples are classified incorrectly)

25

Toy Training Example, split along x axis

Positive examples: 7 Negative examples: 8

((2,2),4), ((1,24),-),((1.53.5),-),
((2,2.5),+),((2.2,2.8), +), ((2.15,3.8),-),((3,0.1),-),
((2.5,2.2),+),((2.52,2.53), 4), label: - ((3:34),-), ((3.8,3.49),-),
((32,2.1),+),((3.1,2.6),4) ((3.8,0.5),—), ((3.9,2.05),-)

Predicted

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
X =2 ((32.2.1),+),((3.1,2.6), +)

Negative examples: 6
((2.15,3.8),-),((3,0.1),-),
((3.3,4),-), ((3.8,3.49), -),
((3.8,0.5),—), ((3.9,2.05),—)

Let’stryt = 2

x <2

Negative examples: 2
((1,24),-),((1.5,3.5),-)

Predicted
label: +

Predicted
label: -

Olloss=0+6

Toy Training Example, split along x axis

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’stry t = 3.2

x < 3.2 x = 3.2 Negative examples: 4
, ((3.34),-), ((3.8,3.49),-),

Negative examples: 4 ((38,0.5),-), ((3.9,2.05),-)
((1,2.4),-),((1.53.5),-),

((2.15,3.8),-),((3,0.1),-)

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8), +),
((2.52.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted
label: +

Predicted
label: -

Olloss=4+0

* Best threshold along x axis is 3.2, with a loss of 4!

28

Toy Training Example, split along y axis

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Positive examples: 7
((22),4),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),+),((2.52,2.53), +),
y = 0.6 (3,2,2.1),+),((3.1,2.6), +)

Negative examples: 6

((1,2.4),-),((1.53.5),-),
((2.15,3.8),-),((3:3.4),-),
((3.8,3.49),-), ((3.9,2.05),-)

Let'stry t = 0.6

y < 0.6

Predicted
label: -

Predicted

Negative examples: 2
label: +

((3,0.1),-),((3.8,0.5),—-)

Olloss=0+6

Toy Training Example, split along y axis

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.
Let'stry t = 2.7

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8), +),
((2.5,2.2),4),((2.52,2.53), +),
((3.22.1),+),((3.1,2.6), +)

Negative examples: 4
((1.5,3.5),-),((2.15,3.8), -),
((3.34),-), ((3.8,3.49),-),

Negative examples: 4

((1,2.4),-),((3,0.1),-),
((3.8,0.5),—), ((3.9,2.05),—)

Predicted
label: +

Predicted
label: -

Olloss=4+0

* Best threshold along y axis is 2.7, with a loss of 4!

31

e Split along x axis

32

Toy Training Example, new tree

x < 3.2 x = 3.2 Negative examples: 4

((3.34),-), ((3.8,3.49),-),

Negative examples: 4 ((38,0.5),-), ((3.9,2.05),)

((1,2.4),-),((1.5,3.5),-),
((2.15,3.8),-),((3,0.1),-)

Positive examples: 7
((2.2), 1),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),4),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2:6), +)

Predicted
label: -

Predicted
label: +

Olloss=4+0

Next split

* Right leaf is already pure, so nothing to improve

e Consider left leaf only

34

Toy Training Example, split left leaf along x axis

Positive examples: 7
((2,2),+), Predicted
((22.5),+),((2.2,2.8),+), label: -
((2.5,2.2),+),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2.6), +)

Negative examples: 4

((1,2.4),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-)

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

Positive examples: 7

((2,2),+),

((2,2.5),+),((2.2,2.8),+),
x> 1.6 ((2.5,2.2),+),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2.6), +)

Negative examples: 2
((2.15,3.8),-),((3,0.1),-)

Let'stryt = 1.6

x < 1.6

Negative examples: 2
((1,2.4),-),((1.53.5),-)

Predicted
label: -

Predicted
label: -

Olloss=0+2

Toy Training Example, split left leaf along y axis

Positive examples: 7 Negative examples: 4
((2,2),+), Predicted & pies:

((2,2.5),+),((2.2,2.8), +), label: - ((1,24),-),((1.53.5),-),
((2.5,2.2),+),((2.52,2.53), +), e ((2.15,3.8),-),((3,0.1),-)
((3.2,2.1),+),((3.1,2.6), +)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

Let'stry t = 2.7

Negative examples: 2

((1,2.4),-),(B,0.1),-) Negative examples: 2
Positive examples: 7 ((15,3.5),), (21538).)
((2,2),4),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),

((32,2.1),+),((3.1,2.6), +)

Predicted
label: +

Predicted
label: -

Olloss=2+0

* Split along y axis

37

Current Tree

Negative examples: 4

((3.34),-), ((3.8,3.49),-),
((3.8,0.5), -), ((3.9,2.05), —)

Predicted
label: -

y <27

Negative examples: 2
((1,24),-),((3,0.1),-)

Predicted
label: -

Predicted Negative examples: 2

Positive examples: 7
((1.5,3.5),-), ((2.15,3.8), —)

((2,2),+),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),+),((2.52,2.53), +),
((3,2,2.1),+),((3.1,2.6), +)

label: +

38

Current Splits

Output - |
A I_
- I
- 1 -
------------ 4
+ I
o+ v Output -
+ I
+ + I -
l
Output + 1 -
-1

e Can continue building the tree for perfect training accuracy

39

Trees vs. Linear Regression

* Linear regression is a well understood and robust algorithm
— However, does not work very well when data is highly
nonlinear
* Trees can capture all sorts of non-linearities
— But very susceptible to overfitting

o —

;EJG/)E.Q
- -
L'
\
1 1 1 1 1 1
2 1 0 1 2 -1
K1
o

Tree Pruning

* If we pick J to be too large, the decision tree might become
very complex

—In the extreme case of] = N, the tree becomes a table that
just remembers all training data

—What is the issue with that?
— Overfitting!
 We want the tree to capture patterns in the data without being
too sensitive to noise in the training data
— We will talk about overfitting in more detail later

* How do we prune?
— Regularization!

Cost Complexity Pruning using Regularization

* Suppose we want a subtree with low MSE and few leaves

* A principled way to do that is to add a term to the loss function
* Suppose the original tree is T

* Let a be a small positive number

e Then the new loss is
|T|

> (vi-x,) +alrl

j=1 i:xiERj
—i.e., finda T c T, that minimizes the above loss
—where |T| denotes the number of leaves in T

* This technique is called regularization (more later)

* If interested, see slides at the back of deck for more detail

Effect of Regularization

* Notice that training error keeps decreasing for larger trees
—We can bring it down to 0 with a very large tree

 However, test error starts increasing after some point
— Overfitting!
— A very common phenomenon (more later)

* Cross validation produces = E——

a better estimate of test -1 — Tes
error

— Will discuss more later

Mean Squared Error

Bagging and Random Forests

Decision trees are nice and intuitive but they produce worse
predictions than other methods in general

Many improvements have been proposed over the years

Bagging: train multiple trees by creating multiple datasets
using sampling with replacement

— Trees might be correlated

Random forests: decrease correlation by only training on a
subset of features per split

— Forces trees to have different structure

Summary

* Decision trees are a nice graphical and easy-to-interpret model
— Unfortunately, they are inferior to other classical methods

» Splits are too simplistic, focusing on one feature at a time
* Training on high-dimensional data is very slow

Can be used with high-level features of the data
—E.g., brightness, symmetry, etc.

* Bagging and random forests provide a significant boost in
performance

Random forests became quite popular recently with the latest
push for interpretability

Cost Complexity Pruning

* Suppose we want to pick a subtree with the property that it
has low MSE and few leaves

* A principled way to do that is to add a term to the loss function
* Suppose the original tree is T
* Let a be a small positive number

e Then the new loss is
|T|

2
> > (vi—9s,) +al
j=1 i:xiERj
—i.e., finda T c T, that minimizes the above loss
—where |T| denotes the number of leaves in T

Cost Complexity Pruning, cont’d

e Then the new loss is
|IT|

z z 3’R + alT|
j:

* Note that when a = 0, the above loss becomes MSE

* As we increase a we penalize larger trees
—As a = oo, the optimal tree converges to a one-leaf tree
— For intermediate «, the loss balances between trees with
low MSE and few leaves
* This technique is called regularization
— Will talk more about regularization later

* If interested, see slides at the back of deck for more detail

Cost Complexity Pruning, cont’d

* How do we pick the optimal T for a given «?

* Keep in mind MSE(T) > MSE(T,) forany T c T,
—Why?
— By construction, when we refine a tree, we reduce the MSE

* We can recursively construct the optimal T from T,
— Start from the bottom of each branch
— Compute the current loss vs. the loss if leaves are merged
—If merging reduces loss, then merge; otherwise, move up

1 ﬂ 2 ﬂ 3 j 4

| X2<ty | X2<ty .
R, Ry Ry Xz<ty
R R, Ry R R, Ry N
¢ ¢ R, Ry R
? s
Ry Ry Ry Rs R !
Ry Rs
4

Cross Validation

* How do we pick a'?

—« is called a hyper-parameter: a parameter we pick at
design-time that is not optimized during training proper

Cross validation!

* Classic cross validation is used to estimate a model’s test error
— Split the data randomly into 90% training and 10% testing
—Train on the training data and record the test accuracy
— Repeat multiple (e.g., 10) times
— Take the average test error over all runs
— A better estimate of generalization error than a single split

* Try different values for a and pick the one that results in
lowest cross-validation error

Cross Validation, cont’d

* Cross validation is especially useful for small datasets when it is
hard to get a good test error estimate

* Not widely used today since datasets are quite large
— Performing well on modern test sets is usually a good sign
— Re-splitting the data and retraining can be quite costly

* Cross validation is an important tool when it comes to
generalization

— We'll talk more about generalization next

	Slide 1: Decision Trees
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: High-level description
	Slide 5: Elements of a decision tree
	Slide 6: Decision Tree Intuition
	Slide 7: Training the Decision Tree
	Slide 8: Training the Decision Tree, cont’d
	Slide 9: Least Squares for Decision Trees
	Slide 10: Least Squares for Decision Trees, cont’d
	Slide 11: Greedy Least Squares
	Slide 12: Greedy Least Squares, cont’d
	Slide 13: Greedy Least Squares, cont’d
	Slide 14: Greedy Least Squares, cont’d
	Slide 15: Greedy Least Squares, cont’d
	Slide 16: Greedy Least Squares, cont’d
	Slide 17: Algorithm Illustration
	Slide 18: Algorithm Illustration
	Slide 19: Algorithm Illustration
	Slide 20: Loss Improvement
	Slide 21: Algorithm Illustration
	Slide 22: Classification Trees
	Slide 24: Toy Training Example
	Slide 25: Toy Training Example, root
	Slide 26: Toy Training Example, split along x axis
	Slide 27: Toy Training Example, split along x axis
	Slide 28
	Slide 29: Toy Training Example, split along y axis
	Slide 30: Toy Training Example, split along y axis
	Slide 31
	Slide 32
	Slide 33: Toy Training Example, new tree
	Slide 34: Next split
	Slide 35: Toy Training Example, split left leaf along x axis
	Slide 36: Toy Training Example, split left leaf along y axis
	Slide 37
	Slide 38: Current Tree
	Slide 39: Current Splits
	Slide 40: Trees vs. Linear Regression
	Slide 41: Tree Pruning
	Slide 42: Cost Complexity Pruning using Regularization
	Slide 43: Effect of Regularization
	Slide 44: Bagging and Random Forests
	Slide 45: Summary
	Slide 46: Cost Complexity Pruning
	Slide 47: Cost Complexity Pruning, cont’d
	Slide 48: Cost Complexity Pruning, cont’d
	Slide 49: Cross Validation
	Slide 50: Cross Validation, cont’d

