Reinforcement Learning Intro

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 1

* E.A. Lee and S.A. Seshia, Introduction to Embedded Systems:
CPS Approach, Second Edition, MIT Press, 2017

— https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee
Seshia_DigitalvV2_2.pdf

— Chapter 2
* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.
— Chapter 1

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

RL is learning what to do, i.e., map situations to actions
—Typically in the form of maximizing a numerical reward

The learner is not told what to do
— Need to explore the space and discover which actions yield
the most return
* RL can be used in many settings
— Control, scheduling of tasks, training language models

Control is most relevant to this course

— An alternative to standard control theoretic methods,
especially in complex environments, such as image-based
control

Comparison with other types of learning

 Different from supervised learning
— No access to carefully collected labeled data

 Different from unsupervised learning
— Not trying to learn relationships between unlabeled data

e Similar to unsupervised learning

— Learning is largely “unsupervised”, agent must explore and
learn on its own

* Similar to supervised learning
— Over time, labeled state-action-reward pairs are collected

* Overall, RL considered a different learning paradigm

Example, Mountain Car

* A benchmark reinforcement learning problem

* Learn a controller to get an underpowered car up a hill
— Need to go up left hill first
— Small negative reward after each step (smaller for higher inputs)
— Big positive reward if goal is reached

Initial condition chosen
randomly from this range

* Learning problem considered “solved” if average reward over
100 random trials is over 90

— Go up the hill *fast* while conserving energy

Example, Inverted Pendulum

* A benchmark reinforcement learning problem

* Learn a controller to stabilize the pendulum vertically
— Need to swing it to one side first and then swing the other way
— Small negative reward after each step (smaller for higher inputs)
— The longer it takes you to stabilize the pendulum, the lower the reward

* There is no “solved” threshold, an average reward above -200
is generally a good sign

Example, F1/10

* (Soon-to-be) A benchmark reinforcement learning problem

* Learn a controller to navigate a hallway environment
— Get a small positive reward after each step with no crash
— Get a big negative reward upon crash
— Over time, learn to avoid walls

10m
e
m
i
=]
=
-

v j— Start E—

* This problem can be solved with standard control techniques
but only for known environments with regular shapes

Standard Control Loop

Sensors

A

Environment

\ 4

Controller

3 t' h“i‘ F ‘}4’\
» i

|

Actuators

e

S

Other Examples

e Chess (and other games)
—Select a (sequence of) move that leads to victory

e Learning to walk (in simulation)

—Select joint/muscle actions that lead to stability and
movement

Learn to flip pancakes
* Fold proteins

e Many, many, many more

Elements of RL

* Agent

— Robot, decision maker who is learning the task

* Environment
— Agent’s environment, e.g., obstacles, other objects, other agents

* Policy
— A mapping from perceived states (measurements) to actions
— i.e., a controller

* Reward signal
— Defines the goal of the RL problem
— Observe a reward after each action and corresponding state change

— Easier for some tasks than for others — need to be able to quantify the
conceptual goal (e.g., walking, driving safely)

Standard Control Approach

Model system/environment
—Typically, in the form of automata/differential equations

* Encode goal as a cost function over some time horizon

e Design controller to minimize cost function

This paradigm is known as model predictive control (MPC)

Can also build (simpler) controllers without needing models
— More later

A Simple Dynamics Model

e Suppose a car is moving in a straight lineat v m/s

e How much will the car have travelled after T s?
vl m

Let the car’s position at time 0 be py and at time T be pr
pr = po +vT

* Suppose every T seconds velocity jumps up by a m/s
 How do we adapt the model (for discrete times when velocity
is changed)?

Prr = Pe-1)T t Vge—1)rT
Vkr = V(k-1)T T @

—wherek = 1,2, ...

Elements of a dynamical system model

Note: notation will change when we get to RL proper

System has a state, denoted by x € R"
— Captures position, velocity, acceleration, etc.

* Control inputs are denoted by u € RP
— Captures throttle, steering, etc.

* Measurements are denoted by y € R4
— Could measure states directly, e.g., odometry, GPS
— Could be high-dimensional such as camera, LiDAR

State Evolution

* As time passes, the system state evolves based on the previous
state and the current control inputs

* We typically model the state as a signal:
x:R, - R"
—i.e., for a given time t, x(t) returns the state at that time

* If we want to model the evolution of x in continuous time, we
describe it with ordinary differential equations:

0
x(t) = F(x(D), u(®)

* Modern systems are digital, so a discrete-time model makes
more sense (since controller is sampled at discrete times)

X1 = f (0, uy)
—where k is incremented with the sampling rate (e.g., 10Hz)

State Evolution Example

* Going back to the position/velocity example:
Prr = P(k-1)T T V1)1 T
Vkr = V(k-1)T T @

e This is a discrete-time model where x = [p, v]’, u;, = a, so
X1+ x,T
Fllaaxalw = |72

X9 + Uu
* In this case, f is linear, so the system can also be written as
Xik+1 — Axk + Buk

Tl .0
_Where‘q_lo 1]’3_[1]

* Note that we implicitly dropped the T in the subscript
— It is redundant, since k is chosen for a sampling rate of T

Measurement model

* Measurements are typically modeled as a function of the state:

Yr = 9(Xx)
* |In our example, if we can only measure position, then
Vi = Cx;

—whereC =[1 0]
* In case of more complex measurements, g may be quite
complex or (as is often the case) unknown

—In the F1/10 case, LiDAR measurements can be modeled as
a function of the car state and the hallway dimensions

— Modeling a camera would be significantly harder

General Model Form

* In its most general form, the model can be written as
X1 = f o, wy)
Vi = g(xy)
ur = h(yy)
—This model has the Markov property, i.e., the current state
depends only on the previous state and control

* It doesn’t matter how we got to the previous state

Designing Controllers

» Suppose we focus on the state-feedback problem first, i.e.,
X1 = f (X, Uy)
uy, = h(x)
* Given f, one needs to design a controller u;, = h(xy)
—E.g., to navigate the track as fast as possible
—How do we pick the controls u;,?

—Minimize a cost function (surprise, surprise), e.g.,
H-1
_ T T T T
J = X4nQXpe4n + z Xi+jQXptj + Uy jRUK,j + Xy ;NU
j=0
— where H is a time horizon, Q, R and N are user-defined matrices

Cost Function Considerations

 The cost function
H-1

_ AT T T T
J = X4y QXp4y + Z Xiy jQXptj + Uy jRUy j + X3y jNUy
j=0

is known as the linear quadratic regulator (LQR)
— Can be solved iteratively for linear systems

* Matrices Q, R and N chosen to satisfy control requirements
—e.g., reach a target, minimize fuel consumption

* Having a horizon allows to plan more complex strategies
—E.g., mountain car is easily solved

e Optimal control is extremely well studied
— Strong theory and optimality guarantees for linear systems
— However, non-linear systems have no general solutions

RL vs. Control

* In many existing settings, standard control is superior to RL
— Easier to understand, requires (significantly) less
computation and easier to adapt/modify
* However, complex controllers require good models
— Hard to model complex systems (e.g., a quadruped robot)
* Furthermore, building symbolic algorithms to analyze high-
dimensional measurements is very hard
—E.g., recognize objects in images
—This is known as the perception problem

* |In such cases, it makes sense to try to directly learn the
controller from data

Exploration vs Exploitation

One of the major challenges in RL
* More exploration allows the agent to observe larger parts of
the state space and discover higher-reward actions
— Essentially learn the unknown system model
— At the expense of more random actions and failures
* More exploitation allows the agent to perform actions that are
already known to produce good rewards
— At the expense of getting stuck in a local minimum

e Fundamental trade-off that does not have an obvious solution
— Solution is typically task-specific

RL vs Control, cont’d

* RL works best when we have a structured task with the ability
to generate a lot of data

—E.g., games, protein folding
—In such cases, it is likely to be superior to standard control

 However, RL is computationally very expensive

— A lot of iterations necessary and typically no convergence
guarantees

— Often not easy to identify the issue (insufficient exploration,
small models, not enough training)

F1/10 Car Simulator

* Developed a model for the F1/10 car as part of my research

* Car navigates a hallway environment while avoiding collisions
— Has access to LiDAR measurements (laser scan)

Modeled the car dynamics as well as the LIDAR measurements

* Control inputs are throttle and steering

Region3 |
I

10m
o]
1]
i
o]
b |
-

23

F1/10: control velocity

* Suppose we would like to achieve a target velocity of 2 m/s

* What is a simple approach to achieve that velocity?
—Try some throttle and observe the error
—If your velocity is under the target, increase thrust
— It is enough to know that there is a positive relationship
between thrust and velocity
e Attempt 1: apply thrust that is proportionate to the error, i.e.,
difference between current and target velocity
— Suppose we observe velocity v = 1
—Errorise=vy —v =1
— Apply throttle proportionate to error, e.g.,
u=Kye

Response of Proportionate Controller

» Step response: How wiill
system output change if at
time 0, with v = 0, we change

reference input to 2°?

E 20

315

8 % * Beyond convergence, what

o) . o o

> o are desired characteristics of
the response?

0 5 10 15 20 5 30
Time (steps)

25

Characteristics of the Step Response

/ Rise time
30
25 f I Overshoot
20 & t Steady state error

a
>

<
d

Settling time

b
=]

Velocity (m/s)

(=]
LA

(=]
=]

0 5 10 15 20 5 30
Time (steps)

Why is there steady-state error?

Eventually error becomes small
enough so that a proportional
controller can’t remove it

Overshoot: Difference between
maximum output value and
reference value

Rise Time: Time at which the
output value crosses reference
value

Settling Time: Time at which
output value reaches steady-state
value

Steady State Error: Difference
between steady-state output
value and reference

26

Improving the Step Response

Lt
[]

= Ped
(2} (%2}

Velocity (m/s)

=]
A

=]
=]

e Performance of the P-controller
depends on the value of the
proportional gain constant Kp

(%]
=

[
=]

What happens if we increase it?

Rise time decreases, but
overshoot increases

Steady-state error remains!

0

5

10

15

20

Time (steps)

5 30

How do we get rid of steady-
state error?

27

Adding up errors over time

| L
=] (%3]

(o)
[®a)

Velocity (m/s)

[=]
[]

0.0 4

— 100 1

Velocity

025 4

0.00 A

[
=

=
=]

=

5

1;3 1I5 EIU 2:3 3;31
Time (steps)

0.75 4

0.50 1

10 15 20 2 e
Time (steps)

* Pl Controller: add up errors over
time and adjust throttle
accordingly

— Even if steady-state error is
very small, it will eventually
accumulate and be corrected

— Overshoot, rise time, settling
time increase (why?)

* PD controller: adding derivative
term to proportional controller
gets rid of overshoot

— Steady state error remains

28

PID Controller

Proportional

Reference r; Ertor e

Measurement y

Up
> up = er
Integral
u
e, =e +e| !
St
u, = KIeI
Derivative
Up

5| ep = A /A

up = Kpep

:Control u

Plant

>

29

PID Controller

* If e(t) is the error signal, then the output u(t) of the PID
controller is the sum of 3 terms:

—Proportional term: Kpe(t), Kp is called proportional gain
(response to current error)

—Integral term: K; fol e(t)dt, K; is integral gain (response to
error accumulated so far)
— Derivative term: K é, K, is derivative gain (response to
current rate of change of error)
» Special cases of controllers: P, PD, PI
—You rarely need all 3

PID Controller for F1/10 Car Velocity

200 1
175 1
—
i 150 1
-

EIEE-
Pt

£ 100 1

075 1

Veloc

050
025 1

0L00

0 5 10 15 20 %5 0
Time (steps)

* Excellent performance on all metrics
® Kp — 18,KD — O.Z,KI =4

* Small rise time, settling time, negligible steady state error, no
overshoot

31

Deficiencies of PID controller

 When is the PID controller not sufficient?
— For example, can you solve Mountain Car?
—No, because you need to get farther from the goal first

PID controller is only good when the error provides enough
information

—Sometimes, you need to plan ahead
—Need to know how your control affects the plant
—Need to know the dynamics of the plant!

* For more sophisticated control, we need to model the plant

* For even more complex tasks and in case of bad models, need
RL

	Slide 1: Reinforcement Learning Intro
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Comparison with other types of learning
	Slide 5: Example, Mountain Car
	Slide 6: Example, Inverted Pendulum
	Slide 7: Example, F1/10
	Slide 8: Standard Control Loop
	Slide 9: Other Examples
	Slide 10: Elements of RL
	Slide 11: Standard Control Approach
	Slide 12: A Simple Dynamics Model
	Slide 13: Elements of a dynamical system model
	Slide 14: State Evolution
	Slide 15: State Evolution Example
	Slide 16: Measurement model
	Slide 17: General Model Form
	Slide 18: Designing Controllers
	Slide 19: Cost Function Considerations
	Slide 20: RL vs. Control
	Slide 21: Exploration vs Exploitation
	Slide 22: RL vs Control, cont’d
	Slide 23: F1/10 Car Simulator
	Slide 24: F1/10: control velocity
	Slide 25: Response of Proportionate Controller
	Slide 26: Characteristics of the Step Response
	Slide 27: Improving the Step Response
	Slide 28: Adding up errors over time
	Slide 29: PID Controller
	Slide 30: PID Controller
	Slide 31: PID Controller for F1/10 Car Velocity
	Slide 32: Deficiencies of PID controller

