
Reinforcement Learning Intro

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 1

• E.A. Lee and S.A. Seshia, Introduction to Embedded Systems:
CPS Approach, Second Edition, MIT Press, 2017

– https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee
Seshia_DigitalV2_2.pdf

– Chapter 2

• Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapter 1
2

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

• RL is learning what to do, i.e., map situations to actions

– Typically in the form of maximizing a numerical reward

• The learner is not told what to do

–Need to explore the space and discover which actions yield
the most return

• RL can be used in many settings

– Control, scheduling of tasks, training language models

• Control is most relevant to this course

–An alternative to standard control theoretic methods,
especially in complex environments, such as image-based
control

3

Comparison with other types of learning

• Different from supervised learning

–No access to carefully collected labeled data

• Different from unsupervised learning

–Not trying to learn relationships between unlabeled data

• Similar to unsupervised learning

– Learning is largely “unsupervised”, agent must explore and
learn on its own

• Similar to supervised learning

–Over time, labeled state-action-reward pairs are collected

• Overall, RL considered a different learning paradigm

4

• A benchmark reinforcement learning problem

• Learn a controller to get an underpowered car up a hill
– Need to go up left hill first

– Small negative reward after each step (smaller for higher inputs)

– Big positive reward if goal is reached

• Learning problem considered “solved” if average reward over
100 random trials is over 90

–Go up the hill *fast* while conserving energy

Example, Mountain Car

Initial condition chosen
randomly from this range

5

• A benchmark reinforcement learning problem

• Learn a controller to stabilize the pendulum vertically
– Need to swing it to one side first and then swing the other way

– Small negative reward after each step (smaller for higher inputs)

– The longer it takes you to stabilize the pendulum, the lower the reward

• There is no “solved” threshold, an average reward above -200
is generally a good sign

Example, Inverted Pendulum

6

• (Soon-to-be) A benchmark reinforcement learning problem

• Learn a controller to navigate a hallway environment
– Get a small positive reward after each step with no crash

– Get a big negative reward upon crash

– Over time, learn to avoid walls

• This problem can be solved with standard control techniques
but only for known environments with regular shapes

Example, F1/10

7

Standard Control Loop

8

PlantEnvironment

Sensors

Controller

Actuators

Other Examples

• Chess (and other games)

– Select a (sequence of) move that leads to victory

• Learning to walk (in simulation)

– Select joint/muscle actions that lead to stability and
movement

• Learn to flip pancakes

• Fold proteins

• Many, many, many more

9

Elements of RL

• Agent
– Robot, decision maker who is learning the task

• Environment
– Agent’s environment, e.g., obstacles, other objects, other agents

• Policy
– A mapping from perceived states (measurements) to actions

– i.e., a controller

• Reward signal
– Defines the goal of the RL problem

– Observe a reward after each action and corresponding state change

– Easier for some tasks than for others – need to be able to quantify the
conceptual goal (e.g., walking, driving safely)

10

Standard Control Approach

• Model system/environment

– Typically, in the form of automata/differential equations

• Encode goal as a cost function over some time horizon

• Design controller to minimize cost function

• This paradigm is known as model predictive control (MPC)

• Can also build (simpler) controllers without needing models

–More later

11

A Simple Dynamics Model

• Suppose a car is moving in a straight line at 𝑣 𝑚/𝑠

• How much will the car have travelled after 𝑇 𝑠?
𝑣𝑇 𝑚

• Let the car’s position at time 0 be 𝑝0 and at time 𝑇 be 𝑝𝑇

𝑝𝑇 = 𝑝0 + 𝑣𝑇

• Suppose every 𝑇 seconds velocity jumps up by 𝑎 𝑚/𝑠

• How do we adapt the model (for discrete times when velocity
is changed)?

𝑝𝑘𝑇 = 𝑝 𝑘−1 𝑇 + 𝑣(𝑘−1)𝑇𝑇

𝑣𝑘𝑇 = 𝑣 𝑘−1 𝑇 + 𝑎

–where 𝑘 = 1,2, …

12

Elements of a dynamical system model

• Note: notation will change when we get to RL proper

• System has a state, denoted by 𝒙 ∈ ℝ𝑛

– Captures position, velocity, acceleration, etc.

• Control inputs are denoted by 𝒖 ∈ ℝ𝑝

– Captures throttle, steering, etc.

• Measurements are denoted by 𝒚 ∈ ℝ𝑞

– Could measure states directly, e.g., odometry, GPS

– Could be high-dimensional such as camera, LiDAR

13

State Evolution

• As time passes, the system state evolves based on the previous
state and the current control inputs

• We typically model the state as a signal:
𝒙: ℝ+ → ℝ𝑛

– i.e., for a given time 𝑡, 𝒙(𝑡) returns the state at that time

• If we want to model the evolution of 𝒙 in continuous time, we
describe it with ordinary differential equations:

ሶ𝒙 ≔
𝜕𝒙(𝑡)

𝜕𝑡
= 𝑓 𝒙 𝑡 , 𝒖 𝑡

• Modern systems are digital, so a discrete-time model makes
more sense (since controller is sampled at discrete times)

𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

–where 𝑘 is incremented with the sampling rate (e.g., 10Hz)
14

State Evolution Example

• Going back to the position/velocity example:
𝑝𝑘𝑇 = 𝑝 𝑘−1 𝑇 + 𝑣(𝑘−1)𝑇𝑇

𝑣𝑘𝑇 = 𝑣 𝑘−1 𝑇 + 𝑎

• This is a discrete-time model where 𝒙 = 𝑝, 𝑣 𝑇, 𝑢𝑘 = 𝑎, so

𝑓 𝑥1, 𝑥2 , 𝑢 =
𝑥1 + 𝑥2𝑇

𝑥2 + 𝑢

• In this case, 𝑓 is linear, so the system can also be written as
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝑢𝑘

–where 𝑨 =
1 𝑇
0 1

, 𝑩 =
0
1

• Note that we implicitly dropped the 𝑇 in the subscript

– It is redundant, since 𝑘 is chosen for a sampling rate of 𝑇

15

Measurement model

• Measurements are typically modeled as a function of the state:
𝒚𝑘 = 𝑔(𝒙𝑘)

• In our example, if we can only measure position, then
𝒚𝑘 = 𝑪𝒙𝑘

–where 𝑪 = 1 0

• In case of more complex measurements, 𝑔 may be quite
complex or (as is often the case) unknown

– In the F1/10 case, LiDAR measurements can be modeled as
a function of the car state and the hallway dimensions

–Modeling a camera would be significantly harder

16

General Model Form

• In its most general form, the model can be written as
𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

𝒚𝑘 = 𝑔 𝒙𝑘
𝒖𝑘 = ℎ 𝒚𝑘

– This model has the Markov property, i.e., the current state
depends only on the previous state and control
• It doesn’t matter how we got to the previous state

17

Designing Controllers

• Suppose we focus on the state-feedback problem first, i.e.,
𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

𝒖𝑘 = ℎ 𝒙𝑘

• Given 𝑓, one needs to design a controller 𝒖𝑘 = ℎ(𝒙𝑘)

– E.g., to navigate the track as fast as possible

–How do we pick the controls 𝒖𝑘?

–Minimize a cost function (surprise, surprise), e.g.,

𝐽 = 𝒙𝑘+𝐻
𝑇 𝑸𝒙𝑘+𝐻 + ෍

𝑗=0

𝐻−1

𝒙𝑘+𝑗
𝑇 𝑸𝒙𝑘+𝑗 + 𝒖𝑘+𝑗

𝑇 𝑹𝒖𝑘+𝑗 + 𝒙𝑘+𝑗
𝑇 𝑵𝒖𝑘+𝑗

– where 𝐻 is a time horizon, 𝑸, 𝑹 and 𝑵 are user-defined matrices

18

19

Cost Function Considerations

• The cost function

𝐽 = 𝒙𝑘+𝐻
𝑇 𝑸𝒙𝑘+𝐻 + ෍

𝑗=0

𝐻−1

𝒙𝑘+𝑗
𝑇 𝑸𝒙𝑘+𝑗 + 𝒖𝑘+𝑗

𝑇 𝑹𝒖𝑘+𝑗 + 𝒙𝑘+𝑗
𝑇 𝑵𝒖𝑘+𝑗

is known as the linear quadratic regulator (LQR)

– Can be solved iteratively for linear systems

• Matrices 𝑸, 𝑹 and 𝑵 chosen to satisfy control requirements

– e.g., reach a target, minimize fuel consumption

• Having a horizon allows to plan more complex strategies

– E.g., mountain car is easily solved

• Optimal control is extremely well studied

– Strong theory and optimality guarantees for linear systems

–However, non-linear systems have no general solutions

RL vs. Control

• In many existing settings, standard control is superior to RL

– Easier to understand, requires (significantly) less
computation and easier to adapt/modify

• However, complex controllers require good models

–Hard to model complex systems (e.g., a quadruped robot)

• Furthermore, building symbolic algorithms to analyze high-
dimensional measurements is very hard

– E.g., recognize objects in images

– This is known as the perception problem

• In such cases, it makes sense to try to directly learn the
controller from data

20

Exploration vs Exploitation

• One of the major challenges in RL

• More exploration allows the agent to observe larger parts of
the state space and discover higher-reward actions

– Essentially learn the unknown system model

–At the expense of more random actions and failures

• More exploitation allows the agent to perform actions that are
already known to produce good rewards

–At the expense of getting stuck in a local minimum

• Fundamental trade-off that does not have an obvious solution

– Solution is typically task-specific

21

RL vs Control, cont’d

• RL works best when we have a structured task with the ability
to generate a lot of data

– E.g., games, protein folding

– In such cases, it is likely to be superior to standard control

• However, RL is computationally very expensive

–A lot of iterations necessary and typically no convergence
guarantees

–Often not easy to identify the issue (insufficient exploration,
small models, not enough training)

22

F1/10 Car Simulator

• Developed a model for the F1/10 car as part of my research

• Car navigates a hallway environment while avoiding collisions

–Has access to LiDAR measurements (laser scan)

• Modeled the car dynamics as well as the LiDAR measurements

• Control inputs are throttle and steering

23

F1/10: control velocity

• Suppose we would like to achieve a target velocity of 2 m/s

• What is a simple approach to achieve that velocity?

– Try some throttle and observe the error

– If your velocity is under the target, increase thrust

– It is enough to know that there is a positive relationship
between thrust and velocity

• Attempt 1: apply thrust that is proportionate to the error, i.e.,
difference between current and target velocity

– Suppose we observe velocity 𝑣 = 1

– Error is 𝑒 = 𝑣𝑇 − 𝑣 = 1

–Apply throttle proportionate to error, e.g.,
𝑢 = 𝐾𝑝𝑒

24

Response of Proportionate Controller

25

• Step response: How will
system output change if at
time 0, with 𝑣 = 0, we change
reference input to 2?

• Beyond convergence, what
are desired characteristics of
the response?

Characteristics of the Step Response

1. Overshoot: Difference between
maximum output value and
reference value

2. Rise Time: Time at which the
output value crosses reference
value

3. Settling Time: Time at which
output value reaches steady-state
value

4. Steady State Error: Difference
between steady-state output
value and reference

26

Why is there steady-state error?

Eventually error becomes small
enough so that a proportional
controller can’t remove it

Rise time

Overshoot

Settling time

Steady state error

Improving the Step Response

• Performance of the P-controller
depends on the value of the
proportional gain constant 𝐾𝑃

• What happens if we increase it?

• Rise time decreases, but
overshoot increases

• Steady-state error remains!

• How do we get rid of steady-
state error?

27

Adding up errors over time

28

• PI Controller: add up errors over
time and adjust throttle
accordingly

– Even if steady-state error is
very small, it will eventually
accumulate and be corrected

–Overshoot, rise time, settling
time increase (why?)

• PD controller: adding derivative
term to proportional controller
gets rid of overshoot

– Steady state error remains

PID Controller

29

Reference 𝑟

𝑢𝑃 = 𝐾𝑃𝑒

Proportional

Measurement 𝑦

Plant
𝑢𝐼 = 𝐾𝐼𝑒𝐼

Integral

𝑒𝐼 = 𝑒𝐼 + 𝑒

𝑒𝐷 = Δ𝑒/Δ𝑡

𝑢𝐷 = 𝐾𝐷𝑒𝐷

Derivative

Error 𝑒
Σ

Σ
Control 𝑢

𝑢𝑃

𝑢𝐼

𝑢𝐷

-

PID Controller

• If 𝑒(𝑡) is the error signal, then the output 𝑢(𝑡) of the PID
controller is the sum of 3 terms:

– Proportional term: 𝐾𝑃𝑒(𝑡), 𝐾𝑃 is called proportional gain
(response to current error)

– Integral term: 𝐾𝐼 0׬

1
𝑒 𝑡 𝑑𝑡, 𝐾𝐼 is integral gain (response to

error accumulated so far)

–Derivative term: 𝐾𝐷 ሶ𝑒, 𝐾𝐷 is derivative gain (response to
current rate of change of error)

• Special cases of controllers: P, PD, PI

– You rarely need all 3

30

PID Controller for F1/10 Car Velocity

• Excellent performance on all metrics
• 𝐾𝑃 = 18, 𝐾𝐷 = 0.2, 𝐾𝐼 = 4

• Small rise time, settling time, negligible steady state error, no
overshoot

31

Deficiencies of PID controller

• When is the PID controller not sufficient?

– For example, can you solve Mountain Car?

–No, because you need to get farther from the goal first

• PID controller is only good when the error provides enough
information

– Sometimes, you need to plan ahead

–Need to know how your control affects the plant

–Need to know the dynamics of the plant!

• For more sophisticated control, we need to model the plant

• For even more complex tasks and in case of bad models, need
RL

32

	Slide 1: Reinforcement Learning Intro
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Comparison with other types of learning
	Slide 5: Example, Mountain Car
	Slide 6: Example, Inverted Pendulum
	Slide 7: Example, F1/10
	Slide 8: Standard Control Loop
	Slide 9: Other Examples
	Slide 10: Elements of RL
	Slide 11: Standard Control Approach
	Slide 12: A Simple Dynamics Model
	Slide 13: Elements of a dynamical system model
	Slide 14: State Evolution
	Slide 15: State Evolution Example
	Slide 16: Measurement model
	Slide 17: General Model Form
	Slide 18: Designing Controllers
	Slide 19: Cost Function Considerations
	Slide 20: RL vs. Control
	Slide 21: Exploration vs Exploitation
	Slide 22: RL vs Control, cont’d
	Slide 23: F1/10 Car Simulator
	Slide 24: F1/10: control velocity
	Slide 25: Response of Proportionate Controller
	Slide 26: Characteristics of the Step Response
	Slide 27: Improving the Step Response
	Slide 28: Adding up errors over time
	Slide 29: PID Controller
	Slide 30: PID Controller
	Slide 31: PID Controller for F1/10 Car Velocity
	Slide 32: Deficiencies of PID controller

