Multi-Armed Bandits

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 2

 Slivkins, Aleksandrs. "Introduction to multi-armed bandits."
Foundations and Trends® in Machine Learning 12.1-2 (2019)

— https://arxiv.org/pdf/1904.07272
— Chapter 1

e Agarwal, Alekh, et al. "Reinforcement learning: Theory and
algorithms." CS Dept., UW, WA, USA, Tech. Rep 32 (2019): 96.

— https://rltheorybook.github.io/rltheorybook AJKS.pdf
— Chapter 6 (will consider a modified version of their proof)

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/pdf/1904.07272
https://arxiv.org/pdf/1904.07272
https://rltheorybook.github.io/rltheorybook_AJKS.pdf
https://rltheorybook.github.io/rltheorybook_AJKS.pdf

Overview

 Multi-armed bandits have many applications
— Dynamic advertising on websites
— Dynamic pricing
—Investment
—etc.

* It’s a sequential decision-making problem
—Simpler than the general RL setting since there is no state
— Pick one out of k actions at each step so as to maximize
some reward (e.g., profits)
* Agenda
—formalize the standard multi-armed bandit setting
— derive the popular upper confidence bound algorithm

Multi-Armed Bandit

e Suppose you are in a casino all by yourself

—There are k slot machines, each with a different probability
of success

— At any given time, you can only be on one slot machine

 Pull one arm

—You would like to learn which slot machine is the best

Multi-armed Bandits Formalization

e At each time, you can select 1 out of k actions

e Each action has an unknown expected reward
—E.g., slot machine payout rate

* Your goal is to learn the expected rewards over time
—Then you select the action with highest expected reward

* Bonus points if you can minimize the number of attempts
— At the beginning, you are in exploration phase
* Trying different actions randomly and seeing the rewards

— Eventually, you switch to the exploitation phase

 When you have a good estimate of rewards, you pick actions to
maximize the rewards

— Balancing the 2 is one of the fundamental challenges in RL

Multi-armed Bandits Formalization, cont’d

* The agent has K possible actions, i.e., A = {a4, ..., ag}

* At each round t, you taken an action A; and observe a reward
Rii1
* Each action a has an unknown reward function is
Re(a) = E[R;41]4; = a]
—where A; is the random variable for the action at time step t

—where R;, 1 is the random variable for the reward at time
stept +1

* By convention, the reward is received one step after the action is
taken

* Goal: estimate R, (a) for all actions a and learn the best action
a* = argmaxR,(a)
a

Naive Approach

 How do we estimate the expected reward of each action?
— Hint: what probabilistic tools did we discuss?

* Try each action N number of times and collect the rewards
— Calculate the average reward per action
—As N — oo, the average will converge to the true expected
reward (law of large numbers)
* What can we say about a specific finite N?

—For any N, can construct a confidence interval around your
current estimate

e E.g., using a concentration bound like Hoeffding’s inequality

Probability Aside: Hoeffding’s Inequality

* Let Xy, ..., X;;, be nindependent random variables
—Each bounded by a; < X; < b;

. LetS, = X; + - + X,

* Hoeffding’s Theorem:

PS5, — E[S,] = t] < 2t
[n - [n] = t] = exp {_ ?:1(191' _ai)z}

—Given a sample S,,, bound its deviation from the true mean

—The larger t is, the higher the probability the mean is within
t of the sample

—The smaller the bounds (b; — a;), the tighter the bound on
Sn
— A type of concentration bound

Probability Aside: Hoeffding’s Inequality, cont’d

* Hoeffding’s Theorem:

) e < 2t2
[Sn — E[Sh] = t] < exp {_ (b — ai)z}

 Two-tailed version:

2t2
— >t <2 —
IP)“Sn IE[Sn]l — t] — exp{ ?:1(bi _ ai)z}

— Proved using the union bound

Probability Aside: Hoeffding’s Inequality, cont’d

* Suppose we know the reward varies by at most some B > 0
— For simplicity, suppose B = 1

* The bound simplifies to:

P[S,, — E[S,,] = t] < exp {— 2%2}

* Furthermore, suppose we are interested in bounding the mean

1
P E(Sn _ E[Sn]) =t

= P[S,, — E[S,] = nt] < exp{—2t?n}

Probability Aside: Hoeffding’s Inequality, cont’d

1
P la 1S, —E[Sp]l = ¢t < ZeXp{—thn}

2ny
n

* How do we construct a 95%-confidence interval around

—Solve for t such that

2exp{—2t?n} = 0.05
e, t = c\/E
n

—where ¢ = \/—0.5 x10g(0.05/2) = /0.5 * log(2/0.05)

* In general, for any confidence 1 — ¢:
c = \/0.5 * log(2/96)

Probability Aside: Hoeffding’s Inequality, cont’d

1
P lg 1S, —E[Sp]l = ¢t < ZeXp{—thn}

2np
n

* How do we construct a 1 — d-confidence interval around

—Sett=c\/1
n

* wherec = \/0.5 * log(2/9)

* So finally:

Probability Aside: Hoeffding’s Inequality, cont’d

* So finally,

e The 1 — 6 confidence interval for the true E [%"] is thus

1IS E[S,]| =
n n n —C

\

1
n

-
S 1S

——c|=,—+c
noon'n

1
n

<0

Multi-armed Bandits, Online Version

* |In practice, we have to choose an action every time
— Can’t pre-collect N datapoints for each action

* So how do we choose that action?
— Keep a running average of each action
— At each step, choose the action with the highest average

* This is OK, but has a major limitation

—Some actions may get very few points if they get a few bad
samples

—You are not guaranteed to find the best action in the limit
—How do we fix this issue?

Multi-armed Bandits, e-greedy

* e-greedy action selection

* At each step, choose the action with the highest average
— But with probability 1 — ¢, for small e > 0
— With probability €, pick another action at random

 k — 1 other actions, so other actions get k—: probability each

* 10-armed example from the book
—The € = 0.1 case converges fastest in this example
—The € = 0 case eventually plateaus

1
-=0.1

14

Average
reward

054

% 60% |
Optimal
action 0% J

Multi-armed Bandits, e-greedy Implementation

* When computing the running average, we don’t need to add
up all past rewards every time

. . 1
—E.g., suppose average at time tis g*(a) = - ‘R

* For simplicity, here we assume we pull a each time

—What is the average gt*1(a), in terms of gt (a) and R;{?
R,+R,+ - +R
410, — M 2 t+1
(@) t+1
_ ! (Ry +--+Ry) + ! R
Ct+10t S
t (R +-+R) 1

= + R
t+1 t t+1

=gt +——R
Tt T T e

1
=q'(a) + t_l_—l(Rt+1 —q'(a))

1

Multi-armed Bandits, e-greedy Implementation,
cont’d

* When computing the running average, we don’t need to add
up all past rewards every time

. . 1
—E.g., suppose average at time tis g*(a) = - ‘R

—What is the average gtt1(a), in terms of gt (a) and R;{?
1
q**1(a) = q'(a) + t_l_—l(Rt+1 - q%(a))

* Compute the difference between the new reward and the
running average

—This is a simple example of temporal difference learning
(more later)

Successive Elimination Algorithm

* Canyou design an algorithm that declares victory with high
probability?
—i.e., it keeps trying actions until it is 95%-confident that it
has identified the best action

* For simplicity, suppose we have 2 actions
— Suppose we keep running 95%-confidence intervals for each
[LCB (al)i UCB (al)]r [LCB (az), UCB (aZ)]

* Can terminate algorithm when one interval is entirely larger
than the other, e.g.,:
LCB(a,) > UCB(aq)

Successive Elimination Algorithm, cont’d

e What about more actions?

— Successively eliminate actions whose upper bound is lower
than the best action’s lower bound

UCB:(a’)

pia’)
somewhere | ¢
here

last round they overlap

@)
somewhere
here

LCBi(a)

20

Calculating Confidence Intervals Online

e Can’t directly apply Hoeffding’s inequality to calculate the
confidence intervals
—Why?
—The rewards R; are not necessarily independent!
— Consider the following algorithm:

* sample action a; two times and then only sample a4 a 3rd time if
Rl — RZ — O
* Clearly R; only exists when Ry = R, =0

—How do we get around this issue?

Calculating Confidence Intervals Online, cont’d

* Suppose we are allowed to make a total of T actions

* Each action a gets a total of 0 < n(a) < T actions
— Note that n(a) is random and depends on the algorithm
—Let §;, 4 be the sample sum for the rewards received when
taking action a

* The following bound holds for any algorithm
\/ZTlog(l/(S) <5
n(a)

P

|Sn,a _ [E[Sn,a” =

1
n(a)
— Proof requires theory of martingales

* Shown at the end of this deck

Calculating Confidence Intervals Online, cont’d

* The following bound holds for any algorithm

1 V2T log(1/8)
n(a) |Sn,a o [E[Sn,a“ = n(a)]

* Very similar to the original Hoeffding bound

2 log 1
o6,

—Similar to original Hoeffding bound except n(a) is random

<94

P

—If we assume T = n(a), we get

P

* Ultimately the bounds are the same: T is fixed, so the choice of
0 will determine the confidence interval size

Upper-Confidence-Bound Algorithm

* We know that without exploration we are almost certainly
going to converge to a suboptimal action

* On the other hand, too much exploration may take a long time
to converge

—So far, we've seen e-greedy exploration, which
indiscriminately selects the next action randomly

* |s there a way to perform targeted exploration?

* Pick the action with the highest UCB!
—Why is this a good idea?
* Either the highest-UCB action is already the best

* or the highest-UCB action has a large confidence interval, which
means it could benefit from more exploration

* |n both cases it makes sense to select that action

Upper-Confidence-Bound Algorithm, cont’d

* Suppose we have a choice of K actions
* Fort € [1,K]:
—Take each action once and observe the reward

e Fort > K:
— Calculate running reward averages g‘(a;) for each action q;

Cc

n(a;)

—Take action a; = a;+, where i* = argmax q®(q;) +
[
1
* wherec = 2log (E)
— Book uses a different ¢ (no time to prove)
» Tighter confidence bounds can be derived specific to UCB

— Observe corresponding reward 1;

* Update q*(a;+) and increment n(a;-)

Upper-Confidence-Bound Algorithm, cont’d

* UCB algorithm generally outperforms e-greedy

* UCB is not widely used in the general RL setting, however

—May introduce a lot of variance in a high-dimensional action
space

* If we have many actions, we will require a lot of data in order to try
all actions enough times and get good confidence intervals

15k UCB c=2
| W
Average

reward
05F

1 250 500 750 1000
Steps

Conclusion

* Multi-armed bandits is a well-studied setting with a number of
strong theoretical results

* |t can be considered as a simplified RL setting where the
environment has no state

* In this lecture, we considered the case where we made no
assumptions about rewards
— Except that they are bounded

* Next time, we’ll look at Bayesian bandits where we assume a
prior about the reward distribution

Proof of Confidence Bound

* Suppose we are allowed to make a total of T actions

* Each action a gets a total of 0 < n(a) < T actions
— Note that n(a) is random and depends on the algorithm
—Let 5, 4 be the sample average for the rewards received
when taking action a

* The following bound holds for any algorithm

1 V2T log(1/6) <5
n(a) n(a) -

» Sutton book uses a slightly different bound but

P

|Sn,a _ [E[Sn,a” =

Probability Aside: Hoeffding-Azuma Inequality

* Definition: A sequence of random variables X, ..., Xt is a
martingale difference sequence if
E[X;] < o0
E|X:|Xo, ... X—1] =0

* Theorem [Hoeffding-Azuma Inequality]: Let X, ..., X7 be a
martingale difference sequence and suppose |X; — X;_1| < c;.
Then, foralle > 0,T > 0:

T] 2
P ZX-ZE <exp<)
i—0 l 221 16

Proof of Confidence Bound, cont’d

* Consider a fixed action a and fixed algorithm A

" S : :
—Let it = % be the running average at time step t

—Let u, = E[R;;+1|A; = a] be the true expected reward for
action a

— Assume each action a is tried once initially, with random
reward R,

* Define the following random variables
Xo = Rq — ta, X1 = H{A; = a}(R; — tg), ... Xy = WAy = a}(Rry1 — Ug)
—Each X; is 0 when action a is not taken at time t and 1
otherwise (normalized to be 0-mean by subtracting u,)

Proof of Confidence Bound, cont’d

* Define the following random variables
Xo =Ry — e Xy = 1{A; = a}(Ry — ug), -, Xy = H{Ar = a}(Rr41 — Ug)
—Each X; is 0 when action a is not taken attime t and r;
otherwise (normalized to be 0-mean by subtracting u,)

* Notice that E[X;|X{, ..., X;—1] =0
— Given all history, 1{A; = a} is deterministic
* Decided by the algorithm A
—Either 1{A; = a} = 0 (in which case expectation is 0)
—0r1{4; = a} = 1, in which case E[X;| Xy, ..., X;—1] =
IE[Rt — .ua] =0

* Thus, X4, ..., X7 is a martingale difference sequence

Proof of Confidence Bound, cont’d

* Define the following random variables
Xo =Ry — e Xy = 1{A; = a}(Ry — ug), -, Xy = H{Ar = a}(Rr41 — Ug)
—Each X; is 0 when action a is not taken at time t and 1
otherwise (normalized to be 0-mean by subtracting u,)

* Also notice that |X; — X;_{| < 1forallt
—Recall R; € [0,1], which means u, € [0,1] and hence
R; — u, €10,1] and X; € [0,1]

* By the Hoeffding-Azuma inequality, for any ¢t

—e? —e?
P ZXL =€l < exp (2 Zt 12) < exp <2_t>
. =1

Proof of Confidence Bound, cont’d

* Define the following random variables
Xo = Rq — Ua, X1 = H{A; = a}(Ry — fhg), -, X
= 1{Ar = a}(Rr41 — Uq)

* By the Hoeffding-Azuma inequality, for any fixed t
- :

—e? —e?
P ZXL =€l < €Xp<22t 012) < exp<2—t>
1=

=0

* Notice that

zx Zl{A = a}R;ys — Zl{A = alu,

Snt a — Ne(@pg
= ne(@)fig — ne(@uq

Proof of Confidence Bound, cont’d

* Define the following random variables
Xo =Rg — Ug, X1 = 1{141 — a}(RZ o Ma)r ey X
= 1{Ar = a}(Rr41 — Uq)

* By the Hoeffding-Azuma inequality, for any fixed t
- :

—62 —62
P ZXL =€l < €Xp<22t 012) < exp<2—t>
l=

=0

* Finally,

> X = €| = Pln (@) — ne(@tg > €]

] 2
- € €
—]P [.ua _ .ua 2 nt(a)] S eXp <Z_t)

Proof of Confidence Bound, cont’d

ot € |- —e?
— X —
.ua .ua — nt(a) =€ p Zt
_e2
* Solving for § = exp (7), we get

€ = \/—Ztlog(S) = \/Ztlog(l/cﬁ)
* Thus, for 1 — 6 confidence:

Nt \/Ztlog(l/(ﬁ)
Hg — Ug = n,(a)

—Plugging in T = t, we get the final result

P <94

	Slide 1: Multi-Armed Bandits
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Multi-Armed Bandit
	Slide 5: Multi-armed Bandits Formalization
	Slide 6: Multi-armed Bandits Formalization, cont’d
	Slide 7: Naïve Approach
	Slide 8: Probability Aside: Hoeffding’s Inequality
	Slide 9: Probability Aside: Hoeffding’s Inequality, cont’d
	Slide 10: Probability Aside: Hoeffding’s Inequality, cont’d
	Slide 11: Probability Aside: Hoeffding’s Inequality, cont’d
	Slide 12: Probability Aside: Hoeffding’s Inequality, cont’d
	Slide 13: Probability Aside: Hoeffding’s Inequality, cont’d
	Slide 15: Multi-armed Bandits, Online Version
	Slide 16: Multi-armed Bandits, script epsilon-greedy
	Slide 17: Multi-armed Bandits, script epsilon-greedy Implementation
	Slide 18: Multi-armed Bandits, script epsilon-greedy Implementation, cont’d
	Slide 19: Successive Elimination Algorithm
	Slide 20: Successive Elimination Algorithm, cont’d
	Slide 21: Calculating Confidence Intervals Online
	Slide 22: Calculating Confidence Intervals Online, cont’d
	Slide 23: Calculating Confidence Intervals Online, cont’d
	Slide 24: Upper-Confidence-Bound Algorithm
	Slide 25: Upper-Confidence-Bound Algorithm, cont’d
	Slide 26: Upper-Confidence-Bound Algorithm, cont’d
	Slide 27: Conclusion
	Slide 28: Proof of Confidence Bound
	Slide 29: Probability Aside: Hoeffding-Azuma Inequality
	Slide 30: Proof of Confidence Bound, cont’d
	Slide 31: Proof of Confidence Bound, cont’d
	Slide 32: Proof of Confidence Bound, cont’d
	Slide 33: Proof of Confidence Bound, cont’d
	Slide 34: Proof of Confidence Bound, cont’d
	Slide 35: Proof of Confidence Bound, cont’d

