

Reading

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - http://www.incompleteideas.net/book/the-book-2nd.html
 - Chapter 2
- Slivkins, Aleksandrs. "Introduction to multi-armed bandits."
 Foundations and Trends in Machine Learning 12.1-2 (2019): 1-286.
 - https://arxiv.org/pdf/1904.07272
 - Chapters 3

Overview

- In many cases, we might have a prior guess for each action
 - E.g., suppose you have two slightly biased coins
 - You want to determine which one has a higher likelihood of heads
 - Both are probably close to 0.5, so it makes sense to start from 0.5
- In Bayesian methods, we treat the unknown parameter itself as a random variable
- A very different learning paradigm from the alternative where the unknown parameter is treated as a fixed constant
- We'll see how we can use this paradigm in the case of bandits

Bayesian vs. Frequentist Approach

- One of the classical dichotomies in the learning/statistical communities
- Frequentists approach learning problems without any preconceptions and just let the data speak for itself
 - We are trying to learn some parameter (e.g., a coin bias)
 - choose the estimate that best fits the data we have
- Bayesians claim that we should use our prior knowledge about how the world works
 - E.g., a coin is biased but the probability of H is most likely closer to 0.5 than 1
 - Since the prior is not perfect, it is essentially a probability distribution of the parameter value

Bayesian vs. Frequentist Approach, cont'd

- Apart from the philosophical discussion, there are pragmatic considerations as well
- Ultimately, we care about how well algorithms perform on real data
- My advice is not to be too attached to philosophy but pay close attention to what the data is saying
 - If you think your prior is good, but a Bayesian approach doesn't work so well, try to understand why
 - E.g., you used a wrong distribution class, wrong observation model
 - A frequentist approach sounds less biased but it still requires assumptions about your data
 - Linear, sigmoid, etc.
 - Neural networks are the ultimate frequentist tool

Coin Bias Example

- Suppose I want to estimate the probability of a coin being H
- What is the frequentist approach?
 - Flip the coin N times
 - Use the proportion of Hs as your unbiased estimate of the probability of H
 - Bonus points: use Hoeffding's inequality the bound the uncertainty around your estimate

- Suppose I want to estimate the probability of a coin being H
- What is the Bayesian approach?
- Model the probability of H as a random variable
 - Denote it by θ
- Suppose I have a prior on θ
 - For simplicity, my prior says θ can only take on 10 values: $\mathbb{P}[\theta = 0.5] = p_1, ..., \mathbb{P}[\theta = 0.6] = p_{10}$
- Suppose I flip the coin and get a H
 - How do I update my prior?

Probability Aside: Bayes Rule

Recall the definition of conditional probability:

$$\mathbb{P}[X|Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]}$$

• Can I write $\mathbb{P}[X|Y]$ as a function of $\mathbb{P}[Y|X]$?

$$\mathbb{P}[Y|X] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[X]}$$

-i.e.,

$$\mathbb{P}[X,Y] = \mathbb{P}[X]\mathbb{P}[Y|X]$$

Plugging in the top equation

$$\mathbb{P}[X|Y] = \frac{\mathbb{P}[X]\mathbb{P}[Y|X]}{\mathbb{P}[Y]}$$

This identity is known as Bayes Rule

• For simplicity, my prior says θ can only take on 10 values:

$$\mathbb{P}[\theta = 0.5] = p_1, \dots, \mathbb{P}[\theta = 0.6] = p_{10}$$

- Suppose I flip the coin and get a H
 - How do I update my prior?
 - I want to calculate $\mathbb{P}[\theta = p | R_2 = 1]$ for each $p \in \{0.5, ..., 0.6\}$
 - Suppose $R_2 = 1$ if I get a H (and 0 otherwise)
- Using Bayes Rule:

$$\mathbb{P}[\theta = p | R_2 = 1] = \frac{\mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]}{\mathbb{P}[R_2 = 1]}$$

- We know $\mathbb{P}[\theta = p]$: it is the prior
- We know $\mathbb{P}[R_2 = 1 | \theta = p] = p$
- What about $\mathbb{P}[R_2 = 1]$?

Using Bayes Rule:

$$\mathbb{P}[\theta = p | R_2 = 1] = \frac{\mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]}{\mathbb{P}[R_2 = 1]}$$

- We know $\mathbb{P}[\theta = p]$: it is the prior
- We know $\mathbb{P}[R_2 = 1 | \theta = p] = p$
- What about $\mathbb{P}[R_2 = 1]$?
- Using marginalization and conditional probability

$$\mathbb{P}[R_2 = 1] = \sum_{p} \mathbb{P}[R_2 = 1, \theta = p]$$
$$= \sum_{p} \mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]$$

The final Bayesian update becomes

$$\mathbb{P}[\theta = p | R_2 = 1] = \frac{\mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]}{\sum_{p_i} \mathbb{P}[\theta = p_i] \mathbb{P}[R_2 = 1 | \theta = p_i]}$$

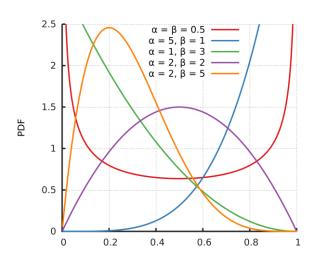
- This is known as the posterior distribution of θ
 - − Prior → before receiving data
 - Posterior → after receiving data
- What do I do after the next flip?
 - Use the previous posterior as the next prior
- The Bayesian approach thus has a nice iterative implementation

Coin Bias Example, Beta Approach

- What issues do you see with our approach so far?
 - It is constrained to only 10 possibilities for θ
 - I cannot estimate it with higher precision
- Ideally, I will use a continuous distribution so that all real values of θ are possible
 - Let's try the Beta distribution

Probability Aside: The Beta Distribution

- The Beta distribution models a random parameter that defines the probability of an event (e.g., coin toss)
- It has parameters $\alpha, \beta > 0$, which appear as exponents of the variable and its complement, respectively



The Beta probability density function (pdf) is

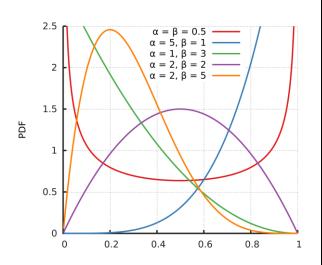
$$p(x; \alpha, \beta) = const * x^{\alpha - 1} (1 - x)^{\beta - 1}$$

- A pdf is almost like a standard probability function
 - Not a probability function since the probability of a single point is 0
 - It's similar to a probability function since it has to integrate to 1

$$\int_{-\infty}^{\infty} p(x; \alpha, \beta) dx = 1$$

Probability Aside: The Beta Distribution

- The Beta distribution models a random parameter that defines the probability of an event
- It has parameters $\alpha, \beta > 0$, which appear as exponents of the variable and its complement, respectively



The Beta probability density function (pdf) is

$$p(x; \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du}$$

Note that the mean is as follows

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x; \alpha, \beta) dx = \frac{1}{1 + \beta/\alpha}$$

• Notation $p(x; \alpha, \beta)$ just makes it explicit what the parameters are

Coin Bias Example, Beta Approach, cont'd

- Suppose my prior for θ is a Beta distribution with parameters α_0,β_0
- Suppose I flip a H as before
- It turns out that Bayes Rule applies to pdfs as well

$$\begin{split} p[x;\alpha_0,\beta_0|R_2=1] &= \\ &= \frac{p[x;\alpha_0,\beta_0]\mathbb{P}[R_2=1|\theta=x]}{\mathbb{P}[R_2=1]} \\ &= const*x^{\alpha_0-1}(1-x)^{\beta_0-1}\cdot x \\ &= const*x^{(\alpha_0+1)-1}(1-x)^{\beta_0-1} \\ -\text{where } const &= \frac{1}{\int_0^1 u^{\alpha-1}(1-u)^{\beta-1}du\cdot\mathbb{P}[R_2=1]} \end{split}$$

Coin Bias Example, Beta Approach, cont'd

It turns out that Bayes Rule applies to pdfs as well

$$p[x; \alpha_0, \beta_0 | R_2 = 1] = const * x^{(\alpha_0 + 1) - 1} (1 - x)^{\beta_0 - 1}$$

-where
$$const = \frac{1}{\int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du \cdot \mathbb{P}[R_2=1]}$$

- This is another Beta distribution!
 - with parameters $\alpha_1=\alpha_0+1$, $\beta_1=\beta_0$
 - You should make sure const can be simplified to the normalizing constant for the new Beta distribution
- We say the Beta distribution is a conjugate prior for the Bernoulli distribution
 - The posterior and the prior remain in the same probability class, with different parameters

Bayesian Bandits

- Suppose now I have 2 coins and would like to learn which one is more likely to come out as H
 - Can we map this to a bandit problem?
 - Suppose I get a reward of 1 for each H and 0 otherwise
 - Which action brings me a higher reward in expectation?
- In the Bayesian world, each coin's probability of success is a random variable
 - E.g., the probability of coin 1 being H is denoted by $heta_1$
- Suppose I have a prior on each $heta_i$
 - For simplicity, my prior says θ_i can only take on 10 values: $\mathbb{P}[\theta_i=0.5]=p_{i.1},\dots,\mathbb{P}[\theta_i=0.6]=p_{i.10}$
- Which coin do you flip next?

- Suppose I have a prior on each θ_i
 - For simplicity, my prior says θ_i can only take on 10 values: $\mathbb{P}[\theta_i=0.5]=p_{i.1},\dots,\mathbb{P}[\theta_i=0.6]=p_{i.10}$
- Which coin do you flip next?
 - Need to calculate which coin is more likely to flip H $\mathbb{P}[\theta_1 \ge \theta_2] =$

$$=\sum_{p_1>p_2}\mathbb{P}\left[\theta_1=p_1,\theta_2=p_2\right]$$

- If $\mathbb{P}[\theta_1 \ge \theta_2] > 0.5$, then flip coin 1, else coin 2
- Suppose I flip coin 1 and get a reward of 1
 - How do I update θ_1 ?
 - -I want to calculate $\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1]$ for each p

Using Bayes Rule (same derivation as the 1-coin case):

$$\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] = \frac{\mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]}{\mathbb{P}[R_2 = 1, A_1 = 1]}$$

- We know $\mathbb{P}[\theta_1 = p]$
- What about $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$?
 - Using the definition of conditional probability

$$\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p] = \mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] \mathbb{P}[A_1 = 1 | \theta_1 = p]$$

- We know $\mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] = p$
- Also, note that A_1 does not depend on θ_1
 - It is purely determined by the data. Formally: $\mathbb{P}[A \mid H] = \mathbb{P}[A \mid H] = \mathbb{P}[A \mid H]$

$$\mathbb{P}[A_t|H_{t-1},\theta_t=p]=\mathbb{P}[A_t|H_{t-1}]$$

- where $H_{t-1} = [A_1, R_1, ..., A_{t-1}, R_{t-1}]$
- and $H_0 = \emptyset$

Using Bayes Rule (same derivation as the 1-coin case):

$$\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] = \frac{\mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]}{\mathbb{P}[R_2 = 1, A_1 = 1]}$$

- We know $\mathbb{P}[\theta_1 = p]$
- What about $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$?
 - Using the definition of conditional probability

$$\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p] = \mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] \mathbb{P}[A_1 = 1 | \theta_1 = p]$$

- We know $\mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] = p$
- Also, note that A_1 does not depend on θ_1
 - So $\mathbb{P}[A_1 = 1 | \theta_1 = p] = \mathbb{P}[A_1 = 1]$
 - Can prove using induction for all time steps (see suggested reading)
 - Finally, $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p] = p \mathbb{P}[A_1 = 1]$

Using Bayes Rule (same derivation as the 1-coin case):

$$\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] = \frac{\mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]}{\mathbb{P}[R_2 = 1, A_1 = 1]}$$

- We know $\mathbb{P}[\theta_1 = p]$ and $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$
- What about $\mathbb{P}[R_2 = 1, A_1 = 1]$?
 - Using marginalization and conditional probability

$$\mathbb{P}[R_2 = 1, A_1 = 1] = \sum_{p} \mathbb{P}[R_1 = 1, A_1 = 1, \theta_1 = p]$$

$$= \sum_{p} \mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$$

$$= \mathbb{P}[A_1 = 1] \sum_{p} \mathbb{P}[\theta_1 = p] p$$

So the final Bayesian update is

$$\begin{split} \mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] = \\ = \frac{\mathbb{P}[\theta_1 = p] p \mathbb{P}[A_1 = 1]}{\mathbb{P}[A_1 = 1] \sum_{p_i} \mathbb{P}[\theta_1 = p_i] p_i} \\ = \frac{\mathbb{P}[\theta_1 = p] p}{\sum_{p_i} \mathbb{P}[\theta_1 = p_i] p_i} \end{split}$$

- So the posterior is independent of the algorithm!
 - As soon as we flip coin 1, we perform a standard Bayesian update
 - Regardless of how many times we flipped other coins in between the coin 1 flips
- Need to calculate for all $p \in \{0.5, ..., 0.6\}$

Thompson Sampling

- What challenges do you see with the Bayesian approach?
- Calculating the posterior is not trivial when θ is not finite
 - The posterior distribution may be hard to represent mathematically
 - A beta prior is one way to resolve this, as long as it describes the data reasonably well
- Calculating the probability $\mathbb{P}[\theta_1 > \theta_2]$ may not even be possible in closed form
 - May require heavy computation to approximate, especially if you have more actions
- The Thompson sampling algorithm addresses/alleviates these challenges

Thompson Sampling, cont'd

- Calculating the probability $\mathbb{P}[\theta_1>\theta_2]$ may not even be possible in closed form
 - Suppose we know the distribution of each θ_i , call it \mathcal{D}_{θ_i} , but don't have a closed-form expression for $\mathbb{P}[\theta_1 > \theta_2]$
 - We can sample $t_i \sim \mathcal{D}_{\theta_i}$ and then take action corresponding to the largest sampled t_i
- The posterior distribution may be hard to represent mathematically
 - Some distributions have closed-form posteriors, e.g.,
 Gaussian and Beta distributions
 - Often good approximations of many real-life scenarios

Thompson Sampling, cont'd

- Algorithm summary:
 - Start with prior distribution for each θ_i , call it \mathcal{D}_{θ_i}
 - -Sample $t_i \sim \mathcal{D}_{\theta_i}$ for each i
 - -Take action $a_t = a_{i^*}$, where $i^* = arg \max_i t_i$
 - Observe reward r_{t+1}
 - Update $\mathcal{D}_{\theta_{i^*}}$ using Bayes rule
 - E.g., assuming a Beta prior