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Overview

* |n many cases, we might have a prior guess for each action

—E.g., suppose you have two slightly biased coins
* You want to determine which one has a higher likelihood of heads
* Both are probably close to 0.5, so it makes sense to start from 0.5

* In Bayesian methods, we treat the unknown parameter itself
as a random variable

* A very different learning paradigm from the alternative where
the unknown parameter is treated as a fixed constant

We’ll see how we can use this paradigm in the case of bandits




Bayesian vs. Frequentist Approach

* One of the classical dichotomies in the learning/statistical
communities

* Frequentists approach learning problems without any
preconceptions and just let the data speak for itself
—We are trying to learn some parameter (e.g., a coin bias)

 choose the estimate that best fits the data we have

* Bayesians claim that we should use our prior knowledge about
how the world works

—E.g., a coin is biased but the probability of H is most likely
closerto 0.5 than 1

—Since the prior is not perfect, it is essentially a probability
distribution of the parameter value




Bayesian vs. Frequentist Approach, cont’d

* Apart from the philosophical discussion, there are pragmatic
considerations as well

* Ultimately, we care about how well algorithms perform on real
data

* My advice is not to be too attached to philosophy but pay close
attention to what the data is saying

—If you think your prior is good, but a Bayesian approach
doesn’t work so well, try to understand why

* E.g., you used a wrong distribution class, wrong observation model
— A frequentist approach sounds less biased but it still
requires assumptions about your data
* Linear, sigmoid, etc.

* Neural networks are the ultimate frequentist tool




Coin Bias Example

* Suppose | want to estimate the probability of a coin being H

* What is the frequentist approach?
—Flip the coin N times

— Use the proportion of Hs as your unbiased estimate of the
probability of H

* Bonus points: use Hoeffding’s inequality the bound the uncertainty
around your estimate




Coin Bias Example, cont’d

* Suppose | want to estimate the probability of a coin being H
 What is the Bayesian approach?

* Model the probability of H as a random variable
—Denote it by 6

* Suppose | have a prioron 0
— For simplicity, my prior says 6 can only take on 10 values:
P[@ = 0.5] = pq, ..., P[0 = 0.6] = pq,
* Suppose | flip the coin and geta H
—How do | update my prior?




Probability Aside: Bayes Rule

Recall the definition of conditional probability:

 P[X,Y]
P[X|Y] = =
e Can | write P[X|Y] as a function of P[Y|X]?
 P[X,Y]
P[Y|X] = PIX

—i.e.,
P(X,Y] = P[X]P|Y|X]

* Plugging in the top equation
P[X]P[Y]X]

P[Y]

This identity is known as Bayes Rule

P[X|Y] =




Coin Bias Example, cont’d

* For simplicity, my prior says 6 can only take on 10 values:
e Suppose | flip the coin and geta H

—How do | update my prior?
* | want to calculate P[# = p|R, = 1] foreachp € {0.5, ...,0.6}
* Suppose R, = 1 ifl getaH (and 0 otherwise)

* Using Bayes Rule:
Pl =p|R, =1] =
P[0 = p]P[R; = 1|6 = p]

N P[R, = 1]
—We know P[8 = p]: it is the prior
—We know P[R, = 1|0 =p| =p
—What about P[R, = 1]?




Coin Bias Example, cont’d

* Using Bayes Rule:
Pl =p|R, = 1] =
P[6 = p]P[R, = 1|6 = p]

- P[R, = 1]
—We know P[8 = p]: it is the prior
—Weknow P[R, = 1|0 =p]=p
—What about P[R, = 1]?
— Using marginalization and conditional probability

PR, =1]= ) P[R,=1,0 =p]

p
= ) P[0 =pIP[R, = 1/0 = p]
p




Coin Bias Example, cont’d

* The final Bayesian update becomes

P[6 = plR, = 1] =5; P[L9[8=_P]P[Rz — 1 =f]
D; = p;]P[R, = 1|6 = p;]
* This is known as the posterior distribution of 6
— Prior = before receiving data
— Posterior = after receiving data

 What do | do after the next flip?
— Use the previous posterior as the next prior

* The Bayesian approach thus has a nice iterative
implementation




Coin Bias Example, Beta Approach

* What issues do you see with our approach so far?
— It is constrained to only 10 possibilities for 6
— | cannot estimate it with higher precision
* |deally, | will use a continuous distribution so that all real
values of 8 are possible
— Let’s try the Beta distribution




Probability Aside: The Beta Distribution

parameter that defines the probability

 The Beta distribution models a random | \\
of an event (e.g., coin toss)

PDF

* It has parameters a, f > 0, which appear
as exponents of the variable and its
complement, respectively

* The Beta probability density function (pdf) is
p(x;a, ) = const * x* (1 —x)F1
— A pdf is almost like a standard probability function

* Not a probability function since the probability of a single pointis O
* It’s similar to a probability function since it has to integrate to 1

f (6@, B)dx = 1




Probability Aside: The Beta Distribution

* The Beta distribution models a random )
parameter that defines the probability
of an event

PDF

* It has parameters a, f > 0, which appear
as exponents of the variable and its
complement, respectively

* The Beta probability density function (pdf) is
x@1(1 — x)F-1
p(x;a,B) =—
Jouet (1 —wh-1ldu

— Note that the mean is as follows

E[X] =j xp(x; a, B)dx = 1+ B/a

* Notation p(x; a, B) just makes it explicit what the parameters are




Coin Bias Example, Beta Approach, cont’d

* Suppose my prior for @ is a Beta distribution with parameters
o, Bo

e Suppose | flip a H as before

* |t turns out that Bayes Rule applies to pdfs as well

plx; ag, Bo|R, = 1] =
plx; ag, fo]P[R, = 1|0 = x]

B P[R, = 1]

= const * x%71(1 — x)Po~1. x

= const * x(@FTD)=1(1 _ x)Fo~1
1

[ ue=t(1-w)h-1du- P[R,=1]

—where const =




Coin Bias Example, Beta Approach, cont’d

* It turns out that Bayes Rule applies to pdfs as well
plx; ag, Bo|R, = 1] = const * x@FD=1(1 — x)Bo~1
1
fol u?-1(1—-u)P-1ldu- P[Ry=1]

—where const =

* This is another Beta distribution!
—with parametersa; = ag + 1,6, = Sy
—You should make sure const can be simplified to the
normalizing constant for the new Beta distribution

* We say the Beta distribution is a conjugate prior for the
Bernoulli distribution

—The posterior and the prior remain in the same probability

class, with different parameters




Bayesian Bandits

* Suppose now | have 2 coins and would like to learn which one
is more likely to come out as H

— Can we map this to a bandit problem?

—Suppose | get a reward of 1 for each H and 0 otherwise

— Which action brings me a higher reward in expectation?
* |In the Bayesian world, each coin’s probability of success is a

random variable

—E.g., the probability of coin 1 being H is denoted by 64

e Suppose | have a prior on each 6;

— For simplicity, my prior says 8; can only take on 10 values:
P[6; = 0.5] = p;1,...,PlO; = 0.6] = p; 10

* Which coin do you flip next?




Bayesian Bandits, cont’d

e Suppose | have a prior on each 6;
— For simplicity, my prior says 8; can only take on 10 values:
P[6; = 0.5] = p;4,...,P[O; = 0.6] = p; 19
* Which coin do you flip next?

— Need to calculate which coin is more likely to flip H
P[@l 2 92] —

= z P[0, = p1,0; = p,]
P1>D2
* If P[8; = 6,] > 0.5, then flip coin 1, else coin 2
e Suppose | flip coin 1 and get a reward of 1

—How do | update 6,7?
—| want to calculate P[#; = p|R, = 1,A; = 1] foreach p




Bayesian Bandits, cont’d

e Using Bayes Rule (same derivation as the 1-coin case):
P06, =p|R, =14, =1] =
_ Pl6, = p]P[R, = 1,4, = 1|6, = p]
P[R, = 1,4, = 1]

* We know P[0, = p]
* What about P[R, = 1,4, = 1|6, = p]?
— Using the definition of conditional probability
PR, = 1,A; = 116; = p] = PR, = 1|4; = 1,0, = p|P[4; = 1|6, = p]
—We know P[R, = 1|4, = 1,0, =p] =p
— Also, note that A; does not depend on 6,

* Itis purely determined by the data. Formally:
PlA¢|H¢—1,0; = p] = P[A¢|H;_4]

 where H;_1 = [A1, Ry, ..., A¢—1, R¢—1]

and Hy =0




Bayesian Bandits, cont’d

e Using Bayes Rule (same derivation as the 1-coin case):
P06, =p|R, =14, =1] =
_ Pl6, = p]P[R, = 1,4, = 1|6, = p]
P[R, = 1,4, = 1]

* We know P[0, = p]
* What about P[R, = 1,4, = 1|6, = p]?
— Using the definition of conditional probability
P[R, = 1,A, = 1|6; = p] = P[R, = 1|4; = 1,0, = p]P[4; = 1|6; = p]
—We know P[R, = 1|4, = 1,0, =p] =p
— Also, note that A; does not depend on 6,
* So P[4, = 1]|0; = p] = P[4; = 1]
e Can prove using induction for all time steps (see suggested reading)
* Finally, P[R, = 1,A; = 1|6, = p] = pP[4; = 1]




Bayesian Bandits, cont’d

e Using Bayes Rule (same derivation as the 1-coin case):
P06, =p|R, =1,4; =1] =
_ P[6; = p]P[R, = 1,A; = 1]6; = p]

P[R, = 1,4, = 1]
* We know P[0, = p] and P[R, = 1,4, = 1|6, = p]

* What about P[R, = 1,4, = 1]?
— Using marginalization and conditional probability

PR, = 1,4, = 1] = ) PRy =1,4; = 1,6, =]
p
_ Zp[el = p]P[R, = 1,4, = 1|6, = p]
p

= P[4, =11 ) Pl6, =plp
p




Bayesian Bandits, cont’d

* So the final Bayesian update is
P60, =p|R, = 1,A; = 1] =
P[0, = plpP[A; = 1]
PlA; = 1] Zpip[91 = pilp;
P[0, = plp
Zpi P[0, = pilp;
—So the posterior is independent of the algorithm!

e As soon as we flip coin 1, we perform a standard Bayesian update

* Regardless of how many times we flipped other coins in between
the coin 1 flips

—Need to calculate for all p € {0.5, ..., 0.6}




Thompson Sampling

What challenges do you see with the Bayesian approach?

Calculating the posterior is not trivial when 0 is not finite

—The posterior distribution may be hard to represent
mathematically

e A beta prior is one way to resolve this, as long as it describes the
data reasonably well

* Calculating the probability P[8; > 6,] may not even be
possible in closed form

— May require heavy computation to approximate, especially
if you have more actions

The Thompson sampling algorithm addresses/alleviates these
challenges




Thompson Sampling, cont’d

* Calculating the probability P[8; > 6,] may not even be
possible in closed form
—Suppose we know the distribution of each 6;, call it Dy, but
don’t have a closed-form expression for P[0, > 6,]

—We can sample t; ~ Dy, and then take action corresponding
to the largest sampled t;

* The posterior distribution may be hard to represent
mathematically

—Some distributions have closed-form posteriors, e.g.,
Gaussian and Beta distributions

e Often good approximations of many real-life scenarios




Thompson Sampling, cont’d

e Algorithm summary:

— Start with prior distribution for each 6;, call it Dy,
—Sample t; ~ Dy, for each i

—Take action a; = a;«,where i* = argmax t;

— Observe reward 13,4

— Update Dgi* using Bayes rule

* E.g., assuming a Beta prior
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