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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 2

• Slivkins, Aleksandrs. "Introduction to multi-armed bandits." 
Foundations and Trends in Machine Learning 12.1-2 (2019): 1-
286.

– https://arxiv.org/pdf/1904.07272

– Chapters 3
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Overview

• In many cases, we might have a prior guess for each action

– E.g., suppose you have two slightly biased coins 
• You want to determine which one has a higher likelihood of heads

• Both are probably close to 0.5, so it makes sense to start from 0.5

• In Bayesian methods, we treat the unknown parameter itself 
as a random variable

• A very different learning paradigm from the alternative where 
the unknown parameter is treated as a fixed constant

• We’ll see how we can use this paradigm in the case of bandits
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Bayesian vs. Frequentist Approach

• One of the classical dichotomies in the learning/statistical 
communities

• Frequentists approach learning problems without any 
preconceptions and just let the data speak for itself

–We are trying to learn some parameter (e.g., a coin bias) 
• choose the estimate that best fits the data we have

• Bayesians claim that we should use our prior knowledge about 
how the world works

– E.g., a coin is biased but the probability of H is most likely 
closer to 0.5 than 1

– Since the prior is not perfect, it is essentially a probability 
distribution of the parameter value
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Bayesian vs. Frequentist Approach, cont’d

• Apart from the philosophical discussion, there are pragmatic 
considerations as well

• Ultimately, we care about how well algorithms perform on real 
data

• My advice is not to be too attached to philosophy but pay close 
attention to what the data is saying

– If you think your prior is good, but a Bayesian approach 
doesn’t work so well, try to understand why
• E.g., you used a wrong distribution class, wrong observation model

–A frequentist approach sounds less biased but it still 
requires assumptions about your data
• Linear, sigmoid, etc.

• Neural networks are the ultimate frequentist tool
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Coin Bias Example

• Suppose I want to estimate the probability of a coin being H

• What is the frequentist approach?

– Flip the coin 𝑁 times

–Use the proportion of Hs as your unbiased estimate of the 
probability of H
• Bonus points: use Hoeffding’s inequality the bound the uncertainty 

around your estimate
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Coin Bias Example, cont’d

• Suppose I want to estimate the probability of a coin being H

• What is the Bayesian approach?

• Model the probability of H as a random variable

–Denote it by 𝜃

• Suppose I have a prior on 𝜃

– For simplicity, my prior says 𝜃 can only take on 10 values:
ℙ 𝜃 = 0.5 = 𝑝1, … , ℙ 𝜃 = 0.6 = 𝑝10

• Suppose I flip the coin and get a H

–How do I update my prior?
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Probability Aside: Bayes Rule

• Recall the definition of conditional probability:

ℙ 𝑋 𝑌 =
ℙ[𝑋, 𝑌]

ℙ[𝑌]

• Can I write ℙ 𝑋 𝑌  as a function of ℙ 𝑌 𝑋 ?

ℙ 𝑌 𝑋 =
ℙ[𝑋, 𝑌]

ℙ[𝑋]

– i.e.,
ℙ 𝑋, 𝑌 = ℙ[𝑋]ℙ 𝑌 𝑋

• Plugging in the top equation

ℙ 𝑋 𝑌 =
ℙ[𝑋]ℙ 𝑌 𝑋

ℙ[𝑌]

• This identity is known as Bayes Rule
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Coin Bias Example, cont’d

• For simplicity, my prior says 𝜃 can only take on 10 values:
ℙ 𝜃 = 0.5 = 𝑝1, … , ℙ 𝜃 = 0.6 = 𝑝10

• Suppose I flip the coin and get a H

–How do I update my prior?
• I want to calculate ℙ 𝜃 = 𝑝|𝑅2 = 1  for each 𝑝 ∈ 0.5, … , 0.6

• Suppose 𝑅2 = 1 if I get a H (and 0 otherwise)

• Using Bayes Rule:
ℙ 𝜃 = 𝑝|𝑅2 = 1 = 

 =
ℙ 𝜃 = 𝑝 ℙ 𝑅2 = 1|𝜃 = 𝑝

ℙ 𝑅2 = 1

–We know ℙ 𝜃 = 𝑝 : it is the prior

–We know ℙ 𝑅2 = 1|𝜃 = 𝑝 = 𝑝

–What about ℙ 𝑅2 = 1 ? 9



Coin Bias Example, cont’d

• Using Bayes Rule:
ℙ 𝜃 = 𝑝|𝑅2 = 1 = 

 =
ℙ 𝜃 = 𝑝 ℙ 𝑅2 = 1|𝜃 = 𝑝

ℙ 𝑅2 = 1

–We know ℙ 𝜃 = 𝑝 : it is the prior

–We know ℙ 𝑅2 = 1|𝜃 = 𝑝 = 𝑝

–What about ℙ 𝑅2 = 1 ?

–Using marginalization and conditional probability

ℙ 𝑅2 = 1 = ෍

𝑝

ℙ 𝑅2 = 1, 𝜃 = 𝑝  

 = ෍

𝑝

ℙ 𝜃 = 𝑝 ℙ 𝑅2 = 1|𝜃 = 𝑝
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Coin Bias Example, cont’d

• The final Bayesian update becomes

ℙ 𝜃 = 𝑝|𝑅2 = 1  =
ℙ 𝜃 = 𝑝 ℙ 𝑅2 = 1|𝜃 = 𝑝

σ𝑝𝑖
ℙ 𝜃 = 𝑝𝑖 ℙ 𝑅2 = 1|𝜃 = 𝑝𝑖

• This is known as the posterior distribution of 𝜃

– Prior → before receiving data

– Posterior → after receiving data

• What do I do after the next flip?

–Use the previous posterior as the next prior

• The Bayesian approach thus has a nice iterative 
implementation

11



Coin Bias Example, Beta Approach

• What issues do you see with our approach so far?

– It is constrained to only 10 possibilities for 𝜃

– I cannot estimate it with higher precision

• Ideally, I will use a continuous distribution so that all real 
values of 𝜃 are possible

– Let’s try the Beta distribution
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Probability Aside: The Beta Distribution

• The Beta distribution models a random
 parameter that defines the probability
 of an event (e.g., coin toss)

• It has parameters 𝛼, 𝛽 > 0, which appear
as exponents of the variable and its
complement, respectively

• The Beta probability density function (pdf) is 

𝑝 𝑥; 𝛼, 𝛽 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥𝛼−1 1 − 𝑥 𝛽−1

–A pdf is almost like a standard probability function
• Not a probability function since the probability of a single point is 0

• It’s similar to a probability function since it has to integrate to 1

න
−∞

∞

𝑝 𝑥; 𝛼, 𝛽 𝑑𝑥 = 1
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Probability Aside: The Beta Distribution

• The Beta distribution models a random
 parameter that defines the probability
 of an event

• It has parameters 𝛼, 𝛽 > 0, which appear
as exponents of the variable and its
complement, respectively

• The Beta probability density function (pdf) is 

𝑝 𝑥; 𝛼, 𝛽 =
𝑥𝛼−1 1 − 𝑥 𝛽−1

0׬

1
𝑢𝛼−1 1 − 𝑢 𝛽−1 𝑑𝑢

–Note that the mean is as follows

𝔼 𝑋 = න
−∞

∞

𝑥𝑝 𝑥; 𝛼, 𝛽 𝑑𝑥 =
1

1 + 𝛽/𝛼

• Notation 𝑝 𝑥; 𝛼, 𝛽  just makes it explicit what the parameters are 14



Coin Bias Example, Beta Approach, cont’d

• Suppose my prior for 𝜃 is a Beta distribution with parameters 
𝛼0, 𝛽0

• Suppose I flip a H as before

• It turns out that Bayes Rule applies to pdfs as well
𝑝 𝑥; 𝛼0, 𝛽0|𝑅2 = 1 = 

 =
𝑝 𝑥; 𝛼0, 𝛽0 ℙ 𝑅2 = 1|𝜃 = 𝑥

ℙ 𝑅2 = 1

 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥𝛼0−1 1 − 𝑥 𝛽0−1 ⋅ 𝑥

 = 𝑐𝑜𝑛𝑠𝑡 ∗  𝑥(𝛼0+1)−1 1 − 𝑥 𝛽0−1

–where 𝑐𝑜𝑛𝑠𝑡 =
1

0׬
1

𝑢𝛼−1 1−𝑢 𝛽−1𝑑𝑢⋅ ℙ 𝑅2=1
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Coin Bias Example, Beta Approach, cont’d

• It turns out that Bayes Rule applies to pdfs as well

𝑝 𝑥; 𝛼0, 𝛽0|𝑅2 = 1 = 𝑐𝑜𝑛𝑠𝑡 ∗  𝑥(𝛼0+1)−1 1 − 𝑥 𝛽0−1

–where 𝑐𝑜𝑛𝑠𝑡 =
1

0׬
1

𝑢𝛼−1 1−𝑢 𝛽−1𝑑𝑢⋅ ℙ 𝑅2=1

• This is another Beta distribution!

–with parameters 𝛼1 = 𝛼0 + 1, 𝛽1 = 𝛽0

– You should make sure 𝑐𝑜𝑛𝑠𝑡 can be simplified to the  
normalizing constant for the new Beta distribution

• We say the Beta distribution is a conjugate prior for the 
Bernoulli distribution

– The posterior and the prior remain in the same probability 
class, with different parameters
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Bayesian Bandits

• Suppose now I have 2 coins and would like to learn which one 
is more likely to come out as H

– Can we map this to a bandit problem?

– Suppose I get a reward of 1 for each H and 0 otherwise

–Which action brings me a higher reward in expectation?

• In the Bayesian world, each coin’s probability of success is a 
random variable

– E.g., the probability of coin 1 being H is denoted by 𝜃1

• Suppose I have a prior on each 𝜃𝑖

– For simplicity, my prior says 𝜃𝑖 can only take on 10 values:
ℙ 𝜃𝑖 = 0.5 = 𝑝𝑖,1, … , ℙ 𝜃𝑖 = 0.6 = 𝑝𝑖,10

• Which coin do you flip next?
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Bayesian Bandits, cont’d

• Suppose I have a prior on each 𝜃𝑖

– For simplicity, my prior says 𝜃𝑖 can only take on 10 values:
ℙ 𝜃𝑖 = 0.5 = 𝑝𝑖,1, … , ℙ 𝜃𝑖 = 0.6 = 𝑝𝑖,10

• Which coin do you flip next?

–Need to calculate which coin is more likely to flip H
ℙ 𝜃1 ≥ 𝜃2 = 

= ෍

𝑝1>𝑝2

ℙ 𝜃1 = 𝑝1, 𝜃2 = 𝑝2

• If ℙ 𝜃1 ≥ 𝜃2 > 0.5, then flip coin 1, else coin 2

• Suppose I flip coin 1 and get a reward of 1

–How do I update 𝜃1?

– I want to calculate ℙ 𝜃1 = 𝑝|𝑅2 = 1, 𝐴1 = 1  for each 𝑝
19



Bayesian Bandits, cont’d

• Using Bayes Rule (same derivation as the 1-coin case):
ℙ 𝜃1 = 𝑝|𝑅2 = 1, 𝐴1 = 1 = 

 =
ℙ 𝜃1 = 𝑝 ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝

ℙ 𝑅2 = 1, 𝐴1 = 1

• We know ℙ 𝜃1 = 𝑝

• What about ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝 ?

–Using the definition of conditional probability
ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝 = ℙ 𝑅2 = 1 𝐴1 = 1, 𝜃1 = 𝑝 ℙ 𝐴1 = 1 𝜃1 = 𝑝

–We know ℙ 𝑅2 = 1 𝐴1 = 1, 𝜃1 = 𝑝 = 𝑝

–Also, note that 𝐴1 does not depend on 𝜃1

• It is purely determined by the data. Formally:
ℙ 𝐴𝑡 𝐻𝑡−1, 𝜃𝑡 = 𝑝 = ℙ 𝐴𝑡 𝐻𝑡−1

• where 𝐻𝑡−1 = [𝐴1, 𝑅1, … , 𝐴𝑡−1, 𝑅𝑡−1]

• and 𝐻0 = ∅ 20



Bayesian Bandits, cont’d

• Using Bayes Rule (same derivation as the 1-coin case):
ℙ 𝜃1 = 𝑝|𝑅2 = 1, 𝐴1 = 1 = 

 =
ℙ 𝜃1 = 𝑝 ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝

ℙ 𝑅2 = 1, 𝐴1 = 1

• We know ℙ 𝜃1 = 𝑝

• What about ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝 ?

–Using the definition of conditional probability
ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝 = ℙ 𝑅2 = 1 𝐴1 = 1, 𝜃1 = 𝑝 ℙ 𝐴1 = 1 𝜃1 = 𝑝

–We know ℙ 𝑅2 = 1 𝐴1 = 1, 𝜃1 = 𝑝 = 𝑝

–Also, note that 𝐴1 does not depend on 𝜃1

• So ℙ 𝐴1 = 1 𝜃1 = 𝑝 = ℙ 𝐴1 = 1

• Can prove using induction for all time steps (see suggested reading)

• Finally, ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝 = 𝑝ℙ 𝐴1 = 1
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Bayesian Bandits, cont’d

• Using Bayes Rule (same derivation as the 1-coin case):
ℙ 𝜃1 = 𝑝|𝑅2 = 1, 𝐴1 = 1 = 

 =
ℙ 𝜃1 = 𝑝 ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝

ℙ 𝑅2 = 1, 𝐴1 = 1

• We know ℙ 𝜃1 = 𝑝  and ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝

• What about ℙ 𝑅2 = 1, 𝐴1 = 1 ?

–Using marginalization and conditional probability

ℙ 𝑅2 = 1, 𝐴1 = 1 = ෍

𝑝

ℙ 𝑅1 = 1, 𝐴1 = 1, 𝜃1 = 𝑝  

 = ෍

𝑝

ℙ 𝜃1 = 𝑝 ℙ 𝑅2 = 1, 𝐴1 = 1|𝜃1 = 𝑝

 = ℙ 𝐴1 = 1 ෍

𝑝

ℙ 𝜃1 = 𝑝 𝑝
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Bayesian Bandits, cont’d

• So the final Bayesian update is
ℙ 𝜃1 = 𝑝|𝑅2 = 1, 𝐴1 = 1 = 

 =
ℙ 𝜃1 = 𝑝 𝑝ℙ 𝐴1 = 1  

ℙ 𝐴1 = 1 σ𝑝𝑖
ℙ 𝜃1 = 𝑝𝑖 𝑝𝑖  

 =
ℙ 𝜃1 = 𝑝 𝑝

σ𝑝𝑖
ℙ 𝜃1 = 𝑝𝑖 𝑝𝑖  

– So the posterior is independent of the algorithm!
• As soon as we flip coin 1, we perform a standard Bayesian update

• Regardless of how many times we flipped other coins in between 
the coin 1 flips

–Need to calculate for all 𝑝 ∈ 0.5, … , 0.6
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Thompson Sampling

• What challenges do you see with the Bayesian approach?

• Calculating the posterior is not trivial when 𝜃 is not finite

– The posterior distribution may be hard to represent 
mathematically
• A beta prior is one way to resolve this, as long as it describes the 

data reasonably well

• Calculating the probability ℙ 𝜃1 > 𝜃2  may not even be 
possible in closed form

–May require heavy computation to approximate, especially 
if you have more actions

• The Thompson sampling algorithm addresses/alleviates these 
challenges
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Thompson Sampling, cont’d

• Calculating the probability ℙ 𝜃1 > 𝜃2  may not even be 
possible in closed form

– Suppose we know the distribution of each 𝜃𝑖, call it 𝒟𝜃𝑖
, but 

don’t have a closed-form expression for ℙ 𝜃1 > 𝜃2

–We can sample 𝑡𝑖 ∼ 𝒟𝜃𝑖
 and then take action corresponding 

to the largest sampled 𝑡𝑖

• The posterior distribution may be hard to represent 
mathematically

– Some distributions have closed-form posteriors, e.g., 
Gaussian and Beta distributions
• Often good approximations of many real-life scenarios
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Thompson Sampling, cont’d

• Algorithm summary:

– Start with prior distribution for each 𝜃𝑖, call it 𝒟𝜃𝑖

– Sample 𝑡𝑖 ∼ 𝒟𝜃𝑖
 for each 𝑖

– Take action 𝑎𝑡 = 𝑎𝑖∗,where 𝑖∗ = 𝑎𝑟𝑔max
𝑖

𝑡𝑖

–Observe reward 𝑟𝑡+1

–Update 𝒟𝜃𝑖∗  using Bayes rule

• E.g., assuming a Beta prior

26


	Slide 1: Bayesian Bandits
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Bayesian vs. Frequentist Approach
	Slide 5: Bayesian vs. Frequentist Approach, cont’d
	Slide 6: Coin Bias Example
	Slide 7: Coin Bias Example, cont’d
	Slide 8: Probability Aside: Bayes Rule
	Slide 9: Coin Bias Example, cont’d
	Slide 10: Coin Bias Example, cont’d
	Slide 11: Coin Bias Example, cont’d
	Slide 12: Coin Bias Example, Beta Approach
	Slide 13: Probability Aside: The Beta Distribution
	Slide 14: Probability Aside: The Beta Distribution
	Slide 15: Coin Bias Example, Beta Approach, cont’d
	Slide 16: Coin Bias Example, Beta Approach, cont’d
	Slide 18: Bayesian Bandits
	Slide 19: Bayesian Bandits, cont’d
	Slide 20: Bayesian Bandits, cont’d
	Slide 21: Bayesian Bandits, cont’d
	Slide 22: Bayesian Bandits, cont’d
	Slide 23: Bayesian Bandits, cont’d
	Slide 24: Thompson Sampling
	Slide 25: Thompson Sampling, cont’d
	Slide 26: Thompson Sampling, cont’d

