Finite State Automata and Markov Chains

Reading

- E.A. Lee and S.A. Seshia, Introduction to Embedded Systems: CPS Approach, Second Edition, MIT Press, 2017
 - Book: https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee Seshia_DigitalV2_2.pdf
 - Chapter 3

 Not exactly a standard DFA chapter, has a dynamical system bias, but similar to MDPs

A Simple Dynamics Model

- Suppose a car is moving in a straight line at v m/s
- How much will the car have travelled after T s?
 vT m
- Suppose the car's position at time 0 is p_0 and at time T is p_T $p_T = p_0 + vT$
- Suppose every T seconds velocity jumps up by a m/s
- How do we adapt the model (for discrete times when velocity is changed)?

$$p_{kT} = p_{(k-1)T} + v_{(k-1)T}T$$
$$v_{kT} = v_{(k-1)T} + a$$

- where k = 1, 2, ...

A Simple Dynamics Model, cont'd

Discrete-time position/velocity model

$$p_{kT} = p_{(k-1)T} + v_{(k-1)T}T$$
$$v_{kT} = v_{(k-1)T} + a$$

• This is a discrete-time model where $\mathbf{x} = [p, v]^T$, $u_k = a$, so

$$f([x_1, x_2], u) = \begin{bmatrix} x_1 + x_2 T \\ x_2 + u \end{bmatrix}$$

• In this case, f is linear, so the system can also be written as

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k$$

-where
$$m{A} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$$
 , $m{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Note that we implicitly dropped the T in the subscript
 - —It is redundant, since k is chosen for a sampling rate of T

General Model Form

In its most general form, the model can be written as

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$$
$$\mathbf{u}_k = h(\mathbf{x}_k)$$

- This model has the Markov property, i.e., the current state depends only on the previous state and control
 - It doesn't matter how we got to the previous state
- Given f, one needs to design a controller $\boldsymbol{u}_k = h(\boldsymbol{y}_k)$
 - E.g., to navigate the track as fast as possible
 - In standard control, how do we pick the controls $oldsymbol{u}_k$?
 - Minimize a cost function (surprise, surprise), e.g.,

$$J = x_{k+H}^{T} Q x_{k+H} + \sum_{j=0}^{H-1} x_{k+j}^{T} Q x_{k+j} + u_{k+j}^{T} R u_{k+j} + x_{k+j}^{T} N u_{k+j}$$

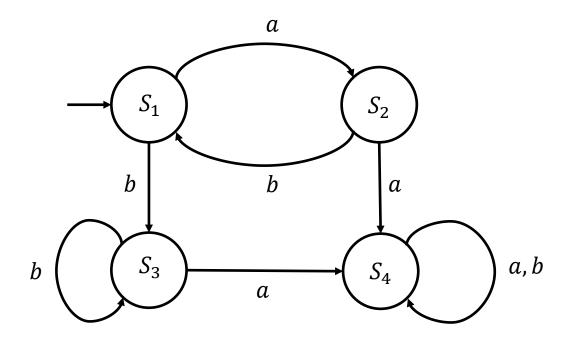
— where H is a time horizon, Q, Q, R and N are user-defined matrices

Reinforcement learning modeling and cost function

- Historically, RL theory has been based on finite state models
 - —The *f* formulation is infinite-state
 - However, deep RL is increasingly (and surprisingly) able to work in infinite-state settings
 - RL models (often) also have the Markov property
- Unlike optimal control, RL doesn't minimize a cost function
 - It maximizes a reward function
 - Mathematically, there is no difference
 - Maybe RL researchers are young and optimistic O.o.

Finite State Machines

- One of the fundamental models in computer science
- Also known as deterministic finite automata (DFA)
- Historically used to model computer programs
 - DFAs are a simple model but have served us well



Finite State Machines Formalization

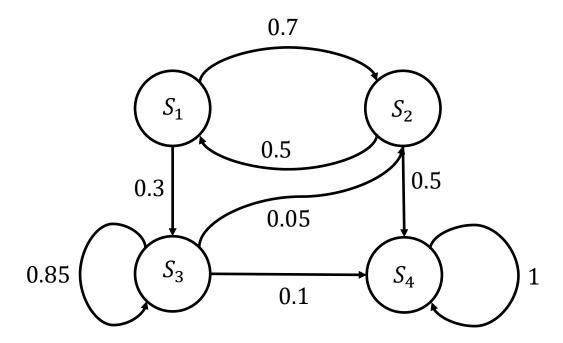
- A DFA is a tuple (A, S, S_0, δ, F) , where
 - *A* is the input alphabet
 - S is the finite set of states
 - S_0 is the initial state
 - $\delta: S \times A \to S$ is the transition function
 - F is the (possibly empty) set of final (accepting) states
- For each state and input pair S and A, $\delta(S,A)$ outputs exactly one state
 - Hence the deterministic in the name
 - $-\text{e.g.}, \, \delta(S_1, a) = S_2$
- In a non-deterministic FA (NFA), δ can output 0 or more values
 - Every NFA can be converted to an equivalent DFA

DFA Expressivity

- DFAs are one of the simplest models of computation
 - E.g., simpler than pushdown automata, Turing machines
- At the same time, many problems are just extremely large DFAs
 - E.g., games are for the most part (very large) DFAs
 - E.g., in chess, every position is a state and every input (move/action) causes a transition to exactly one state
- Classical RL was actually developed for stochastic models, not deterministic
 - More expressive than DFAs
- To get there, we need to talk about Markov chains first

Markov Chains

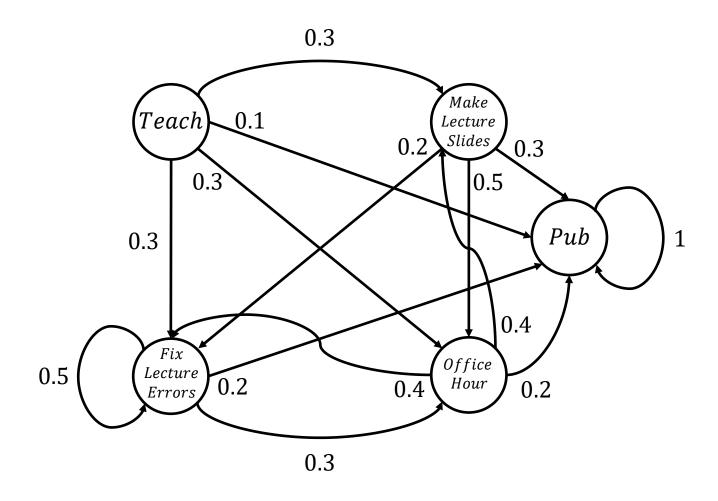
- Markov chains are effectively probabilistic automata
 - Formulation can be made more general, but we'll only need the finite-state version



- Each transition has an associated probability
 - E.g., probability of going from S_1 to S_2 is 0.7

Workday Example

Markov chain describing my workday



Formalization

- A Markov Chain is a tuple (S, P, η) , where
 - *S* is the finite set of states
 - $P: S \times S \to \mathbb{R}$ is the probabilistic transition function
 - $\eta: S \to \mathbb{R}$ is the initial state distribution
- Called Markov chain because the probability of the current state is determined only by the previous state

$$\mathbb{P}[S_t|S_{t-1}, S_{t-2}, \dots, S_0] = \mathbb{P}[S_t|S_{t-1}] = P(S_{t-1}, S_t)$$

- —where S_t denotes the state after t steps
- Examples:

$$\mathbb{P}[S_0 = Teach] = \eta(Teach)$$

$$\mathbb{P}[S_t = Pub|S_{t-1} = Office\ Hour, S_0 = Teach] =$$

$$\mathbb{P}[S_t = Pub|S_{t-1} = Office\ Hour] =$$

$$= 0.2$$

Examples

- What is the probability that I am at Pub two steps after Teach?
 - Need to look at all possible ways to get to Pub in two steps
- Formally:

```
\mathbb{P}[S_2 = Pub | S_0 = Teach] = 
\mathbb{P}[S_1 = Pub, S_2 = Pub | S_0 = Teach] + 
\mathbb{P}[S_1 = Office\ Hour, S_2 = Pub | S_0 = Teach] + 
\mathbb{P}[S_1 = Fix\ Lecture\ Errors, S_2 = Pub | S_0 = Teach] + 
\mathbb{P}[S_1 = Make\ Lecture\ Slides, S_2 = Pub | S_0 = Teach] +
```

- Summing through all possibilities is called marginalization
- Recall the definition of conditional probability:

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A,B]}{\mathbb{P}[B]}$$

Examples

- What is the probability that I am at Pub two steps after Teach?
 - Need to look at all possible ways to get to Pub in two steps
- Formally:

```
\mathbb{P}[S_2 = Pub | S_0 = Teach] = \\ \mathbb{P}[S_1 = Pub, S_2 = Pub | S_0 = Teach] + \\ \mathbb{P}[S_1 = Office\ Hour, S_2 = Pub | S_0 = Teach] + \\ \mathbb{P}[S_1 = Fix\ Lecture\ Errors, S_2 = Pub | S_0 = Teach] + \\ \mathbb{P}[S_1 = Make\ Lecture\ Slides, S_2 = Pub | S_0 = Teach]
```

- Summing through all possibilities is called marginalization
- Probabilities are:

```
\begin{split} \mathbb{P}[S_1 = Pub, S_2 = Pub | S_0 = Teach] = \\ \mathbb{P}[S_2 = Pub | S_1 = Pub, S_0 = Teach] \mathbb{P}[S_1 = Pub | S_0 = Teach] = \\ \mathbb{P}[S_2 = Pub | S_1 = Pub] \mathbb{P}[S_1 = Pub | S_0 = Teach] = 0.1 \end{split}
```

Examples, cont'd

- What is the probability that I am at Pub two steps after Teach?
 - Need to look at all possible ways to get to Pub in two steps
- All possible paths
 - -Pub, Pub
 - -Office Hour, Pub
 - -Fix Lecture Errors, Pub
 - Make Lecture Slides, Pub
- Probabilities are:

$$\mathbb{P}[S_1 = Office\ Hour, S_2 = Pub | S_0 = Teach] = 0.06$$

$$\mathbb{P}[S_1 = Fix\ Lecture\ Errors, S_2 = Pub | S_0 = Teach] = 0.06$$

$$\mathbb{P}[S_1 = Make\ Lecture\ Slides, S_2 = Pub | S_0 = Teach] = 0.09$$

• Total probability is 0.1 + 0.06 + 0.06 + 0.09 = 0.31

Linear Algebra Aside

- Suppose we are given a square matrix $A \in \mathbb{R}^{n \times n}$
- A vector $oldsymbol{v}$ is said to be an eigenvector of $oldsymbol{A}$ if

$$Av = \lambda v$$

- Where $\lambda \in \mathbb{R}$ is a corresponding eigenvalue
- The matrix $m{A}$ has n eigenvectors, $m{v}_i$
 - -And n corresponding eigenvalues, λ_i
- If eigenvalues are distinct, the eigenvectors form a basis in \mathbb{R}^n
 - -i.e., any $x \in \mathbb{R}^n$ can be written as a linear combination

$$\boldsymbol{x} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n$$

- There may be repeated eigenvalues
- A is full rank iff $\lambda_i \neq 0$ for all i

Transition Matrix

- We can store all transition probabilities in a matrix ${m P}$
- Entry P_{ij} denotes the probability of going from state i to j
- E.g., let states be ordered: Teach, Of fice Hour, MLS, FLE, Pub
- The transition matrix becomes:

$$\mathbf{P} = \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \\ 0 & 0 & 0.4 & 0.4 & 0.2 \\ 0 & 0.5 & 0 & 0.2 & 0.3 \\ 0 & 0.3 & 0 & 0.5 & 0.2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

What properties does P have?

Transition Matrix Properties

- Each row must sum up to 1
 - -Why?
 - For each state, transition probabilities must sum up to 1
- Has an eigenvalue of 1
 - Why? What is the corresponding eigenvector?
 - Pick any row, p_i^T
 - − Let $\mathbf{1} \in \mathbb{R}^{|S|}$ be a vector of all ones
 - What is $p_i^T \mathbf{1}$?
 - 1! So 1 is an eigenvector

Transition Matrix Properties, cont'd

- Let η_t represent the probabilities the system is in any given state at time t
 - -E.g., $\eta_t = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$ means the state is Teach
- What happens if we multiply $\eta_t^T P$?

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \\ 0 & 0 & 0.4 & 0.4 & 0.2 \\ 0 & 0.5 & 0 & 0.2 & 0.3 \\ 0 & 0.3 & 0 & 0.5 & 0.2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \\ 0 & 0.3 & 0 & 0.5 & 0.2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \end{bmatrix}$$

- We get the distribution of states after one step, i.e., ${m \eta}_{t+1}^T$
 - What happens if we multiply $\eta_t^T PP$?

Transition Matrix Properties, cont'd

• What happens if we multiply $\boldsymbol{\eta}_t^T \boldsymbol{P} \boldsymbol{P}$?

$$\boldsymbol{\eta}_t^T \boldsymbol{P} \boldsymbol{P} = \boldsymbol{\eta}_{t+1}^T \boldsymbol{P} = \boldsymbol{\eta}_{t+2}^T$$

- Now suppose you are given $oldsymbol{\eta}_0$
 - -The distribution at time 0
- How do you express η_t as a function of η_0 and P?

$$\boldsymbol{\eta}_t^T = \boldsymbol{\eta}_0^T \boldsymbol{P}^t$$

- Can quickly compute state distributions over time
- What does this expression remind you of?
 - It's a linear system!

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$$
$$\mathbf{\eta}_{t+1} = \mathbf{P}^T \mathbf{\eta}_t$$
$$= (\mathbf{P}^T)^{t+1} \mathbf{\eta}_0$$

Linear Algebra Aside, cont'd

- Suppose a square matrix ${m A}$ has eigenvalues $\lambda_1,\dots,\lambda_n$
- What are the eigenvalues of A^2 ?

$$\lambda_1^2, \ldots, \lambda_n^2$$

• Take any eigenvalue λ_i and corresponding eigenvector $oldsymbol{v}_i$

$$AAv_i = A\lambda_i v_i = \lambda_i^2 v_i$$

• In general, the eigenvalues of A^k are

$$\lambda_1^k, \ldots, \lambda_n^k$$

— The eigenvectors are the same as those of A

Linear System Solution

Consider a general discrete-time linear system

$$\mathbf{x}_k = \mathbf{A}^k \mathbf{x}_0$$

- Suppose A has distinct eigenvalues for simplicity
- Recall that the eigenvectors of A form a basis in \mathbb{R}^n , so

$$\boldsymbol{x}_0 = a_1 \boldsymbol{v}_1 + \dots + a_n \boldsymbol{v}_n$$

Then

$$\mathbf{A}^k \mathbf{x}_0 = a_1 \lambda_1^k \mathbf{v}_1 + \dots + a_n \lambda_n^k \mathbf{v}_n$$

• Under what conditions does x_k converge to **0**?

$$|\lambda_i| < 1$$
, for all i

Transition Matrix Linear Systems

Consider the transition matrix linear system

$$\boldsymbol{\eta}_{t+1} = \left(\boldsymbol{P}^T\right)^{t+1} \boldsymbol{\eta}_0$$

- We know that 1 is an eigenvector of P
 - Also known as a right eigenvector
 - However, we are now interested in left eigenvectors
 - AKA eigenvectors of P^T

$$\boldsymbol{v}^T \boldsymbol{P} = \left(\boldsymbol{P}^T \boldsymbol{v} \right)^T$$

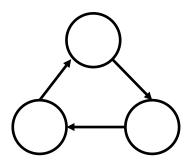
- It turns out that P also has a left eigenvalue of 1
 - Left and right eigenvalues are the same for square matrices
 - Eigenvectors may be different
- This means the system never converges to 0
 - But what does it converge to?

Transition Matrix Linear Systems, cont'd

• Consider a row vector μ such that

$$\mu P = \mu$$

- Then μ is an eigenvector corresponding to eigenvalue 1
 - There could be more than 1 such vectors
- What graph property determines whether there is a unique μ ?
 - -There is one μ per closed communication class
 - i.e., loop in the graph that cannot be left
 - Formally, having one such class is known as irreducibility
- Another requirement is aperiodicity
 - If you have a periodic graph,you will never converge

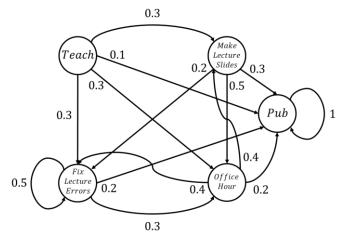


Stationary Distribution

• If you have an aperiodic, irreducible Markov chain, then there is a unique μ such that

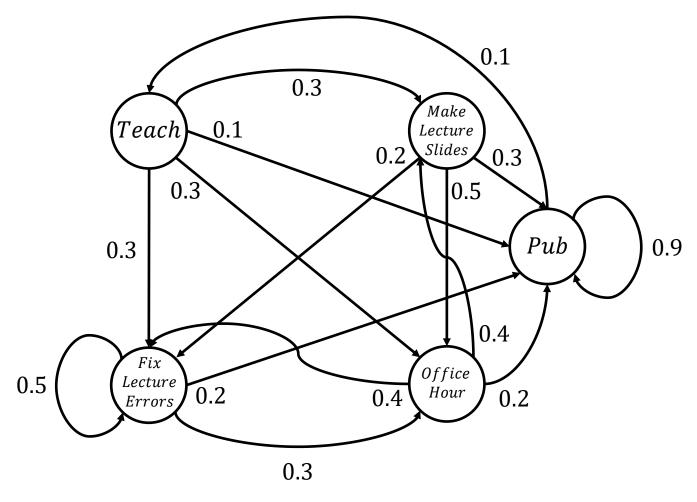
$$\mu P = \mu$$

- This is known as the stationary distribution
 - Each element of μ denotes the *proportion* of time spent in that state in the long run
- What is μ for the workday example?
 - -It is $[0 \ 0 \ 0 \ 1]$
 - -Pub is an absorbing state
 - With probability 1, every trace eventually gets to Pub
- *Teach* is a transient state
 - You cannot go back to it



Workday Example, revisited

ullet Suppose I add a new transition from Pub to Teach



Stationary Distribution for Revisited Workday Example

- Stationary distribution is hard to derive by simply looking at the graph anymore
- Two ways of finding μ
 - Can either find left eigenvalues and eigenvectors of P
 - Which eigenvalue does μ correspond to?

1

- Might need to normalize eigenvector
- Or just compute P^t for a big t and then compute $\eta_0 P^t$
 - Recall $oldsymbol{\mu}$ is the same for any initial $oldsymbol{\eta}_0$
- For the revisited example

$$\mu = [0.067 \quad 0.086 \quad 0.054 \quad 0.13 \quad 0.66]$$

• Still spending most time in Pub, but other states are also visited infinitely often