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Abstract—In this paper we develop a robot localization
technique that incorporates discrete context measurements, in
addition to standard continuous state measurements. Context
measurements provide binary information about detected events
in the robot’s environment, e.g., a building is recognized using
image processing or a known radio station is received. Such
measurements can only be detected from certain positions and
can, therefore, be correlated with the robot’s state. We investigate
two specific examples where context measurements are especially
useful — an urban localization scenario where GPS measurements
are not reliable as well as the capture of the RQ-170 Sentinel
drone in Iran, where GPS measurements were spoofed. By
focusing on a specific class of probability of context detection
functions, we derive a closed-form Gaussian mixture filter that
is precise, captures context, and has the theoretical properties of
the Kalman filter. Finally, we provide simulations of the urban
localization scenario with an unmanned ground vehicle and show
that the proposed context-aware filter is more robust and more
accurate than the conventional extended Kalman filter, which
only uses continuous measurements.

I. INTRODUCTION

Precise localization, i.e., the problem of estimating a robot’s
position and orientation relative to a given map, is an essential
task for any autonomous robot. It is a necessary condition
for the accomplishment of many goals, including navigation,
mapping and human-robot interaction. Consequently, as part of
the Simultaneous Localization and Mapping (SLAM) problem,
it has received a lot of attention in the academic community.

Localization is made challenging by several factors. In
particular, available sensors are often insufficiently precise
for achieving the required level of localization accuracy [13].
In addition, accurate motion models are difficult to derive
and even when they exist, they may be highly nonlinear and
discontinuous, thus making it only possible to develop approx-
imate and suboptimal algorithms [9]. Finally, data association,
i.e., determining the correspondence between objects on the
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map and received sensor measurements, introduces additional
uncertainty when moving through space [15].

In this paper, we address the first and (part of) third
problems by incorporating context measurements. We define
context in a robot’s environment as additional information
that is not encoded in the robot’s state but may be correlated
with it. Examples of context measurements include recognition
of nearby known buildings (e.g., using image processing),
detection of radio signals, detection of sensor faults, etc. What
these measurements have in common is that they are all binary,
i.e., either O or 1, and they have a known probability (or one
that can be learned) of occurring given the system state.

More specifically, we focus on two applications that are used
as motivating and running examples. Localization and lane
following in urban environments with high-rise buildings is
known to be a difficult problem [13] due to the imprecision of
GPS [12]. Thus, we propose to include context measurements
of recognized nearby buildings (with known location on the
map) as a way of improving current localization techniques.

The second example is the RQ-170 Sentinel drone that was
captured in Iran [20, 23]. While the details of the capture are
not publicly available, it is widely believed that, through jam-
ming the GPS signal, hijackers were able to mislead the drone
into believing it is landing on friendly territory. At the same
time, however, the drone was in a position to receive Iranian
frequency modulation (FM) radio signals; incorporating that
context measurement in its localization algorithm may have
avoided the drastic mislocalization.

While it is common to use contextual cues for object local-
ization [4], such information is used less frequently to improve
robot localization. Previous works in context-aware filtering
in robotics use scene categorization [6, 18, 21] and appear-
ance [5, 27] as well as object class information [1, 2, 3, 7, 22]
to improve localization and mapping. One of the first systems
that uses both spatial and context representations was proposed
by Galindo et al. [6]. A spatial hierarchy contains camera
images, local metric maps, and the environment topology,
while a semantic hierarchy represents concepts and relations
which allow room categories to be inferred based on object
detections. Paletta et al. [19] utilize visual context in images
to improve localization performance in the presence of occlu-
sions. Yi et al. [28, 29] use semantic descriptions of distance
and bearing in a contextual map for active localization.

Most existing algorithms cannot handle both continuous
and discrete measurements as they result in nonlinearities and



discontinuities that make precise analysis challenging. One
way of addressing this problem is by incorporating discrete
(object class) observations in the metric localization via a
set-based particle filter that handles missed detections, false
alarms, and data association [2]. Its drawback compared to our
approach is that it uses particles to represent the uncertainty in
the robot’s location and may have particle depletion problems
in high-dimensional spaces. In contrast, Gaussian distributions
are better at representing high dimensional states, yet existing
techniques for Guassian filtering and smoothing cannot handle
discrete observations. For example, SLAM++ [22] takes ad-
vantage of the Guassian distribution of spatial variables (e.g.,
object poses) but does not include object detections (e.g.,
discrete class information) in the optimization. Alternatively,
Bao et al. [3] develop a detailed motion model incorporating
camera parameters, object geometry, and object classes, which
however results in large and expensive Monte Carlo opti-
mization. Finally, context-aware filtering is similar to target
tracking in that measurements arrive at irregular intervals
and from different objects [14]; while general models exist
in this setting, they lead to very computationally expensive
calculations and distributions that cannot be computed in
closed form.

Instead, our filter uses Gaussian Mixtures to represent high-
dimensional states and is derived in closed form (without
any approximation for linear models), hence it is precise
and fast. More specifically, we focus on filtering with a
class of probability of detection functions that capture the
underlying physical properties of context measurements in the
applications described above. These functions are defined as
scaled Gaussian probability density functions, which means
that the probability of getting a detection (e.g., of a radio
signal) is high when the robot is close to the object (e.g.,
beacon) and decreases quickly when the robot moves away.

Using these probability functions, we utilize a Bayesian
filter and show that the resulting probability distribution of
the robot’s state is a Gaussian Mixture, i.e., thus resembling
a conventional Kalman filter. Returning to the motivating
application, we show that our filter performs well at the
problem of localization in an urban environment. Through
simulation of a ground vehicle equipped with a GPS and a
camera, we show that the context-aware filter performs much
better than the extended Kalman filter (EKF) in the presence
of big variance and bias in GPS measurements.

The contributions of this work are: (1) formalizing context
measurements and their incorporation in robot observation
models; (2) developing a closed-form context-aware filter
with Gaussian Mixtures that is fast and precise and has the
theoretical properties of the Kalman filter; (3) illustrating the
advantages of the context-aware filter over the EKF through
simulation of the urban environment localization scenario.

This paper is organized as follows. Section II formulates
the problem considered in this paper, and Section III presents
our solution. In Section IV we provide the case study, while
Section V contains a discussion on generalizing our approach
to other domains. Finally, Section VI concludes the work.

II. PROBLEM FORMULATION

Consider a robot with known nonlinear discrete-time dy-
namics of the form

Tpy1 = (@, ur) + wi, e8]

where z;, € R" is the state (e.g., position, orientation,
velocity and acceleration), u; € RP is the applied input, and
wg, ~ N (0, Q) is Gaussian process noise. The model can also
be specified in terms of the probability density function (pdf)
of the state 1, conditioned on the previous state and input:

Pf(Tpgr | Th, up). 2

The system has two kinds of sensors available to it: state and
context. State sensors measure (subsets of) the state directly
(e.g., an odometer measures speed). We assume that there is
a known observation model for the state sensors of the form

yr = h(zk) + vg, 3)

where we denote state sensors’ measurements by y; € R™
and vy, ~ N(0, R) is Gaussian measurement noise.

Context sensors, on the other hand, do not measure the
robot’s state but rather provide binary information about
its context. Context can be represented as a finite set
C={ci1,...,cn}, where each ¢; is a context element that
can be detected by a context sensor from certain system
states; example context elements include a building that can
be detected through image processing or an FM radio signal
that can only be detected within a certain radius of a beacon.
For each 7, a measurement b?C is received that is equal to 1 if
c; is detected and 0 otherwise.! We do not assume knowledge
about a context element, other than the probability of detection
given a state, denoted by py(c; | zx), i.e.,

|

where py is a function of the robot state. Thus, the set of
context measurements is by € {0,1}". We assume that,
conditioned on the state, context measurements are mutually
independent and are independent from state measurements.

1 wp. pale | zk) @
0 wp. 1—pue| k),

Problem. Given the robot model defined in (1)-(4) and a

prior pdf pyi(z) := p(zr | vo:k—1, Yok, bo:k), the goal is to
compute the posterior pdf

Pk+1|k+1($) = p(Trt1 | Uo:ks Yo:ks15 bosk41)

describing the robot’s state given all available measurements
and inputs.

! As part of future work, we will also consider the case when by 11 provides
a class measurement, i.e., it can take on values in a finite set of possible
classes, e.g., building types.



III. APPROACH

The robot model described in Section II naturally lends itself
to a Bayesian approach, i.e., one that can be divided into a
predict and update stage of the form

Predict: pjqx(z) = /pf(l“ | 2, ug )Pk (2)dz,
Update: p1j541(%) = M 100 (Yk+15 Oks1 | )Py (),

where po(Yk+1,bk+1 | Tx4+1) 18 the joint pdf of all available
measurements (state and context) given the state and 741 iS
a normalization constant [26].

Computing the densities in the Bayesian filter exactly,
however, is not possible in general, with the notable exception
being the linear Gaussian case, which leads to the Kalman
filter. This difficulty is usually overcome with an EKF or
other linear regression Kalman filters [9] by computing linear
Taylor series approximations, and using the approximation in
the ordinary Kalman filter. It is important to highlight that an
EKF cannot be directly applied to the problem considered in
this work because the context measurement observation model
is discontinuous and cannot be differentiated.

In this paper, rather than using a method to approximate
any observation model, we focus on a particular class of
probability of detection functions (i.e., pg(c; | ) in (4)).

Assumption. We consider inverse-exponential functions that
are defined as scaled Gaussian pdf’s of the form
LGz —0,)T VNG —0;

palci | ay) = e 2(Gmm 0TV (Gimmb0), 5)

which are parameterized by 0; € RY and V; € RY*9, the

analogues of a mean and a covariance in a multivariate

Gaussian pdf, and G; € RI*™, which can be thought of as

a selection matrix when q < n. This probability is 1 when
Gizi, = 0; and approaches 0 when G;xj, — 6; gets large.”

We argue that this class of detection probabilities captures
a lot of different scenarios observed in reality. To return to
our running examples, the probability of detecting a building
decreases quickly as the distance from the camera to the
building is increased [2]. In addition, it may be easier to detect
a building from some angles than it is from others, and this
may also be captured by the above formulation. Similarly, the
probability of detecting a radio FM signal also decreases as
the receiver gets farther away from the transmitter [8].

Having fixed (5) as the form of the probability of context
detection, with §; and V; known (or potentially learned from
data) for each c¢;, we now show how to derive a closed-form
localization filter. Note that the result below holds for linear
systems; for nonlinear systems such as the one considered in
this paper, linearization techniques can be applied such as a

2Note that the function in the exponent in (5) does not need
to be linear in xp. If it is nlot linear, i.e., it has the form
palc | zg) = exp{—%(gi(:ck))TVi_ (gi(zk))}, it can be linearized by
computing the Jacobian matrix of g; and expressed in the same form as (5).

linear regression Kalman filter or an EKF as follows:

~ Of(zk, ur)
= = — ©
_ Of(wr, ug)
Bk =", —_— @
1, = ) ®)
Ik Trk—1

After incorporating the binary measurements, we can show
that the posterior distribution is a Gaussian Mixture (GM),
assuming the prior is also a GM. A GM is a distribution whose
pdf is a weighted sum of Gaussian pdf’s of the form

M
g(@) = wid(w; i, i), ©)
i=1

where ¢(x; i, ;) is the pdf of a Gaussian distribution with
mean u; and covariance matrix X;, and w; are weights such
that Zf\il w; = 1. GM’s have been shown to have interesting
properties: due to their linear relation to Gaussian pdf’s, they
can be propagated with a bank of Kalman filters but they
can be also used to approximate any pdf with finitely many
discontinuities [9].

Proposition 1. Consider a system with a linear motion model
Tr+1 = Frap + Brug + wy,
linear state observation model
Yk = Hpx, + vg,

and context observation pq(c; | xy) expressed as in (5). As-
suming that the state prior py;, is a Gaussian Mixture, then the
predicted and updated pdf’s, py, 1| and py1|x41 respectively,
are also Gaussian Mixtures without any approximation.’

Proof: Note that, unlike the conventional EKF that has
a predict and an update stage, the proposed filter has three
steps: prediction, continuous update and discrete update. There
is also an optional mixture reduction step discussed at the end
of the section.

A. Predict

For the predict stage, we note that

M
Pr1jk(x) = Zwi/¢($; Frz + Bruk, Q)¢(z; pi, Xi)dz
i=1

M
=Y wid(w; Fipi + Brug, FRZiF + Q)
i=1

o

~
Il
—

wz(b(xv Mf7 Zf)u

which is the usual form of the Kalman filter predict equations
(e.g., see [11]). The resulting distribution is again a GM.

3Note that if the original system is nonlinear and a linear approximation
is used such as in (6)-(8), then the filter derived in this section is an
approximation as well.



B. Continuous Update

As described above, we perform the update separately
for state (continuous) and context (discrete) sensors. Upon
receiving a measurement y1, the continuous update is:

P(Yrt1 | )ppy1ji(2)
fp Yk+1 | Z)pk+1|k( z)dz
¢(Yr+1; Hew, R) Zl L wid(@s pf, XF)
[ é(yrs1; Hiz, R) Z] L wi(z; b, S dz
(wm ) O(yr1; Hyw, R)P(x; 17, 5F)
a¢ ) [ d(Yet1; Hiz, R)(z; il , X8 )dz

Phsijes () =

M=M= 3

s
I
—

wi (s p, X7),

where

M
c . c
a: E Wi
i=1

%= [ Sl Huz, oG i, )ds
= (ynr1; Hoptl), HW X[ Hy, + R)

pj o= pf + K5 (yrr1 — Hepl)

2= (I — K$Hy,) 5"

K§ = SPH (HSPHE + R)™!

Note that the posterior distribution is also a GM with the
same number of elements but with possibly rescaled weights.

C. Discrete Update

For the discrete update, to simplify notation we assume
that there is only one context element, with corresponding
parameters 6, V' and G, such that by1 € {0, 1}, though the
approach can be straightforwardly modified to include multiple
binary measurements through repeated updates.

First note that the posterior distribution depends on whether
bir+1 is 0 or 1 as the probabilities of getting either one are
different. Consider first the case when b1 = 1:

plbes1 =1 x)PZ+1|k+1(f)
S (b1 =11 Z)pZ+1|k+1( z)dz
066G, V)M wge(a; i, 55
" Jeteics VYl )

a J & 9;G27V)¢(2;u$,25)d2

Z (w " ) (s i, ),

Pk+1\k+1($) =

where o, 'y]”.l, ,u?, Z? and K ;.i are defined similar to their
continuous analogues.

Finally, when by41 = 0, the update becomes
(L= p(bks1 =1[2)) Pf 1541 (2)
Ja- <bk+1 = T2 P 1o (D)2
—Z — plbres = 1| 2)) g i, 55)
= it w§ [ (s = 1] 2)¢ (= 6, Tf)dz
- Z — Z

Pk+1|k+1($) =

————— (i, BF) +

C/BJ
_wz iBi d sd
+——=u @i, E5)
1-— ZJA/il ’w;’ﬂ]
where 3 := ’y}i (2m)a det(V). [ |

Thus, we have inductively shown that for the probability
of detection function considered in this paper, the localization
filter can be computed in closed form and results in a GM
distribution of the posterior. Note that the number of elements
in the GM doubles every time by, = 0, thus an additional step
may be necessary in order to bound the number of elements.

D. Mixture Reduction

In the proof of Proposition 1 we derived an exact form
for the posterior distribution of the state but it results in
a potentially exponential number of elements in the GM.
There are many ways of reducing these elements available
in the literature (e.g., see [24]) ranging from simply choosing
the elements with highest weights to merging or discarding
elements based on distances between them. These techniques
cannot be directly applied to the GM in this paper because they
assume all weights are positive, whereas the GM we developed
can have negative weights as well.

In such cases, another pruning method that has been devel-
oped in the literature is the Gibbs Sampler [25]. The Gibbs
Sampler draws random samples from the distribution and
approximates it with a GM with a desired number of elements.
In order to sample from a distribution with negative weights
such as the one developed in this paper, accept-reject sampling
may be utilized [16].

IV. SIMULATIONS

This section presents simulations of the urban localization
scenario using the context-aware filter developed in Section III.
In particular, the experimental platform is the LandShark
robot; it is a differential drive vehicle that is equipped with a
GPS and a camera. The LandShark is usually used in critical
missions on enemy territory, such as carrying injured people,
hence precise localization is crucial during its operation.

The simulated scenario is as follows. The LandShark is
moving through an urban environment and trying to reach
different waypoints as part of its mission. The city’s map
is available, in addition to the coordinates of various known
buildings. The localization problem is made difficult because
GPS measurements have a large variance and a large bias
to the North. Therefore, the LandShark is also using its
camera and trying to recognize nearby buildings through
image processing.



Trajectory for vehicle moving in an urban environment
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Fig. 1: Entire LandShark trajectory.

The actual LandShark trajectory, including the map, is
shown in Figure 1. The robot makes several tours around
the city streets, in between the buildings, while visiting its
waypoints. Note that the differential drive means that any turn
causes the motion model to be nonlinear.

To perform localization, we use the proposed context-
aware filter with both GPS and context measurements (i.e.,
recognized buildings). Since the posterior distribution of the
state is a Gaussian Mixture, the mean of the distribution may
not be the best estimate of the state as it may not even
correspond to a peak in the pdf. Thus, we use the mode, i.e.,
the highest peak, as the estimate of the state. The utilized
pruning technique is to keep the elements with highest weights
since that was sufficient in this application. We will investigate
other techniques (e.g., Gibbs Sampler) in future work.

To evaluate the performance of the filter, we compare it
with an EKF using only GPS for localization. The resulting
estimates for each filter are shown on Figure 2. Only the
estimates for the first part of the path are shown to avoid
clutter on the graph. As can be seen from the Figure, the
EKF’s estimates are greatly affected by the GPS bias to the
North and also tend to vary sharply due to the large variance of
GPS. The context-aware filter, on the other hand, is generally
much closer to the actual path and is much less sensitive to
the bias and variance of GPS.

For further comparison, Figure 3 presents the position errors
incurred by each filter for the whole trajectory. This Figure
also supports the fact that the context-aware filter is much
closer to the ground truth and does not vary greatly from one
round to the next. Therefore, we conclude that context-aware
localization is robust to severe sensor errors and is a promising
direction for future research and incorporation into other
robotics applications where current sensing infrastructures are
insufficient.

V. DISCUSSION

Note that the approach developed in this paper can be
extended to many other applications and domains. In general,
it applies to any state estimation problem in which discrete
observations exist that are correlated with the system’s state.
A notable example is the medical domain because there are

60

Fig. 2: Estimated trajectories.

80 100 120

Fig. 3: Position errors by each filter.

multiple alarms (which can be considered as detection events)
occurring constantly in modern operating rooms. These alarms
can vary from thersholding alarms to more sophisticated
techniques that target specific events [10].

These two types of alarms can be modeled with different
classes of probability of detection functions. Specifically, the
former can be modeled with thresholding functions (e.g., what
is the probability that a patient’s blood oxygen saturation is
below 90% given the current state) whereas the latter are
harder to model directly, hence a higher-level class of functions
may prove better suited (e.g., what is the probability a glucose-
based meal detector will raise an alarm given the current
patient state).

The probability function considered in this paper is of the
second type — it does not specify a probability model of
how the used image processing algorithm would detect a
certain object; similarly, it does not model how FM signals are
detected by a radio receiver. Instead, it stipulates that both of
these detections are more likely from certain positions and not
so likely from others. This class of functions is in some sense
more general because it does not require expert knowledge of
the underlying process but only of how it manifests during the
robot’s operation.

As future work, we will also incorporate the first class of
functions in our filtering model. These probability functions
model the fact that a certain signal (e.g., blood oxygen satu-
ration, speed) exceeds a specified threshold. Such functions
may work better in certain scenarios because they model
the underlying physical process directly, whereas the one
developed in this paper focuses on input-output relationships
between a state and probability of detection. Possible forms of
these functions include sigmoids and more general logit/probit
functions [17] that have known integration formulas and can
be included in the filtering algorithm.

VI. CONCLUSION

In this paper, we considered the problem of localization
in the presence of large sensor imprecisions. We focused on
two specific applications in which localization suffers greatly
from wrong GPS measurements. We noted that, in addition to
continuous sensors, modern robots also have access to discrete



observations of their surrounding context that can improve the
localization algorithms. By fixing a specific class of probability
of detection of these context events, we derived a closed-
form context-aware filter. We showed that this filter performs
much better than current EKF techniques for the applications
considered in this work. As part of future work, we intend
to consider a larger class of probability of detection functions
and extend the filter to other domains.
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