Foundations of Computer Science Lecture 18

Random Variables

Measurable Outcomes Probability Distribution Function Bernoulli, Uniform, Binomial and Exponential Random Variables

ApeNotMonkey.com

©2014 Jeffrey Weston

Independence.

▶ Using independence to estimate complex probabilities.

Coincidence.

- ► FOCS-twins.
- ▶ The birthday paradox.
- Application to hashing.
- S Random walks and gambler's ruin.

What is a random variable?

2 Probability distribution function (PDF) and Cumulative distribution function (CDF).

Joint probability distribution and independent random variables

Important random variables

- Bernoulli: indicator random variables.
- Uniform: simple and powerful. An equalizing force.
- Binomial: sum of independent indicator random variables.
- Exponential: the waiting time to the first success.

A Random Variable is a "Measurable Property"

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads(HTT) = 1; all-tosses-match(HTT) = 0.

	Sample Space Ω												
ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT					
$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$					
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads				
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses				
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{c} \text{H: double your money} \\ \text{T: halve your money} \end{array}$				

Can use random variables to define events:

$$\{\mathbf{X} = 2\} = \{\text{HHT}, \text{HTH}, \text{THH}\} \qquad \mathbb{P}[\mathbf{X} = 2] = \frac{3}{8}$$
$$\{\mathbf{X} \ge 2\} = \{\text{HHH}, \text{HHT}, \text{HTH}, \text{THH}\} \qquad \mathbb{P}[\mathbf{X} \ge 2] = \frac{1}{2}$$
$$\{\mathbf{Y} = 1\} = \{\text{HHH}, \text{TTT}\} \qquad \mathbb{P}[\mathbf{Y} = 1] = \frac{1}{4}$$
$$\{\mathbf{X} \ge 2 \text{ AND } \mathbf{Y} = 1\} = \{\text{HHH}\} \qquad \mathbb{P}[\mathbf{X} \ge 2 \text{ AND } \mathbf{Y} = 1] = \frac{1}{8}$$

 $\begin{array}{ccc} \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \} & \stackrel{\mathbf{X}}{\longrightarrow} & \{3, 2, 1, 0\} \\ \Omega & & \mathbf{X}(\Omega) \end{array}$

Each *possible* value x of the random variable \mathbf{X} corresponds to an event,

 $\begin{array}{c|ccccc} x & 0 & 1 & 2 & 3 \\ \hline \text{Event} & \{\text{TTT}\} & \{\text{HTT}, \text{THT}, \text{TTH}\} & \{\text{HHT}, \text{HTH}, \text{THH}\} & \{\text{HHH}\} \end{array}$

For each $x \in \mathbf{X}(\Omega)$, compute $\mathbb{P}[\mathbf{X} = x]$ by adding the outcome-probabilities,

Probability Distribution Function (PDF). The probability distribution function $P_{\mathbf{X}}(x)$ is the probability for the random variable \mathbf{X} to take value x, $P_{\mathbf{X}}(x) = \mathbb{P}[\mathbf{X} = x].$

= 9 has four outcomes,

$$\mathbb{P}[\mathbf{X} = 9] = 4 \times \frac{1}{36} = \frac{1}{9}.$$

Possible sums are $\mathbf{X} \in \{2, 3, \dots, 12\}$ and the PDF is $x \mid 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12$ $P_{\mathbf{X}}(x) \mid \frac{1}{36} \quad \frac{1}{18} \quad \frac{1}{12} \quad \frac{1}{9} \quad \frac{5}{36} \quad \frac{1}{6} \quad \frac{5}{36} \quad \frac{1}{9} \quad \frac{1}{12} \quad \frac{1}{18} \quad \frac{1}{36}$

Х

Independent Random Variables measure unrelated quantities. The joint-PDF is *always* the product of the marginals. $P_{\mathbf{XY}}(x, y) = P_{\mathbf{X}}(x)P_{\mathbf{Y}}(y)$ for all $(x, y) \in \mathbf{X}(\Omega) \times \mathbf{Y}(\Omega)$.

Our \mathbf{X} and \mathbf{Y} are *not* independent,

Practice: Exercise 18.4, Pop Quizzes 18.5, 18.6.

Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF). The cumulative distribution function $F_{\mathbf{X}}(x)$ is the probability for the random variable \mathbf{X} to be at most x, $F_{\mathbf{X}}(x) = \mathbb{P}[\mathbf{X} \leq x].$

Bernoulli Random Variable: Binary Measurable (0, 1)

Two outcomes: coin toss, drunk steps left or right, etc. \mathbf{X} indicates which outcome,

$$\mathbf{X} = \begin{cases} 1 & \text{with probability } p; \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Can add Bernoullis. Toss n independent coins. X is the number of H.

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n.$$

 \mathbf{X} is a sum of Bernoullis, each \mathbf{X}_i is an independent Bernoulli.

Drunk makes n steps. Let **R** be the number of right steps

$$\mathbf{R} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n.$$

R is a sum of Bernoullis. $\mathbf{L} = n - \mathbf{R}$ and the final position **X** is:

$$\mathbf{X} = \mathbf{R} - \mathbf{L} = 2\mathbf{R} - n = 2(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n) - n.$$

Uniform Random Variable: Every Value Equally Likely

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n.$

Roll of a 6-sided *fair* die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)

Example: Matching game (uniform is an equalizer in games of strategy).GR will pick a path to relieve you of your lunch money.If you pick your path uniformly, you win half the time.

HOME

Example 18.2: Guessing Larger or Smaller I pick two numbers from $\{1, \ldots, 5\}$, as I please. I *randomly* show you one of the two, x. You must guess if x is the larger or smaller of my two numbers.

You always say smaller: you win $\frac{1}{2}$ the time. You say smaller if $x \leq 3$ and larger if x > 3. I pick numbers 1,2: you win $\frac{1}{2}$ the time.

You have a strategy which wins *more* than $\frac{1}{2}$ the time, and I *cannot* prevent it!

Binomial Random Variable: Sum of Bernoullis

 $\mathbf{X} =$ number of heads in *n* independent coin tosses with probability *p* of heads,

$$\mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_n.$$

 $n=5, \mathbf{X}=3: \qquad \begin{array}{ccc} \text{HHHTT} & \text{HHTTH} & \text{HTTHH} & \text{HTTHH} & \text{TTHHH} & \text{HHTHT} \\ \text{HTHTH} & \text{THTHH} & \text{HTHHT} & \text{THHTH} & \text{THHHT} \\ \end{array}$ $\mathbb{P}[\mathbf{X}=3 \mid n=5] = 10p^3(1-p)^5$

In general, $\binom{n}{k}$ sequences with k heads. Each has probability $p^k(1-p)^{n-k}$, so

$$\mathbb{P}[\mathbf{X} = k \mid n] = \binom{n}{k} p^k (1-p)^{n-k}$$

 $\leftarrow \begin{array}{l} \text{sum of } n \text{ independent Bernoullis,} \\ \mathbf{X}_i \sim \text{Bernoulli}(p) \end{array}$

$$\leftarrow \begin{array}{l} \text{each has probability } p^3(1-p)^2 \\ \text{(independence)} \end{array}$$

 $\leftarrow \text{ add outcome probabilities}$

Binomial Distribution. X is the number of successes in *n* independent trials with success probability *p* on each trial: $\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_i \sim \text{Bernoulli}(p)$. $P_{\mathbf{X}}(k) = B(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$.

Example: guessing correctly on the multiple choice quiz: $n = 15$ questions, 5 choices $(p = \frac{1}{5})$.																	
	number correct, k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	probability	0.035	0.132	0.231	0.250	0.188	0.103	0.043	0.014	0.003	7×10^{-4}	10^{-4}	10^{-5}	10^{-6}	~ 0	~ 0	~ 0
		chances of passing are $\approx 0.4\%$															

Exponential Random Variable: Waiting Time to Success

Let p be the probability to succeed on a trial.

Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting. Try every timestep \rightarrow no one succeeds. Everyone tries $\frac{1}{3}$ the time (randomly). Success probability for *someone* is $\frac{4}{9}$. Success probability for *you* is $\frac{4}{27}$.

wait, t	1	2	3	4	5	6	7	8	9	10	11	
$\mathbb{P}[\text{someone succeeds}]$	0.444	0.247	0.137	0.076	0.042	0.024	0.013	0.007	0.004	0.002	0.001	•••
$\mathbb{P}[\text{you succeed}]$	0.148	0.126	0.108	0.092	0.078	0.066	0.057	0.048	0.051	0.035	0.030	• • •