QUIZ 2: 60 Minutes

Last Name:	Solutions
First Name:	
Email@rpi.edu:	
RIN:	
Section:	

Answer ALL questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.

10 points for each correct answer

You **MUST** show **CORRECT** work to get credit.

When in doubt, TINKER.

Total

200

$$28, |G \rightarrow (4) \times |4) = 6 \times 4 = 24$$

$$26, |B \rightarrow (4) \times (4) = 4 \times 6 = 24$$

$$148$$

E None of the above.

2. How many subsets of $\{a, b, c, d, e\}$ contain a or b?

D 56.

$$a \to 2^{4}$$
 | Inclusion - Exclusion: $2^{4}+2^{4}-2^{3}$
 $a \to 2^{4}$ | Inclusion - Exclusion: $2^{4}+2^{4}-2^{3}$
 $a \to 2^{4}$ | $a \to 2^{3}$ | $a \to 2^{3}$ | $a \to 2^{4}$ | $a \to 2^{4}$

E None of the above.

3. You have 100 boys. 80 are young, 60 are fast. How many are neither young nor fast?

1. You have boys A, B, C, D and girls w, x, y, z. How many teams of 3 kids have both sexes.

E None of the above, or we don't have enough information.

4. You have 100 boys. 80 are young, 60 are fast, 50 are young and fast. How many are neither young nor fast?

$$\frac{7}{\sqrt{N}} = \frac{90}{100} - \frac{90}{100}$$

E None of the above, or we don't have enough information.

5. Randomly pick a number from $\{1, 2, \dots, 100\}$ (each number has the same probability). What are the chances to pick a number divisible by 2 or 5?

$$\frac{\text{div} 2 \Rightarrow \frac{100}{2} = 50}{\text{div} 5 \Rightarrow \frac{100}{5} = 20}$$

$$\frac{\text{div} 5 \Rightarrow \frac{100}{5} = 20}{\text{div} 10 \Rightarrow \frac{100}{5} = 10} = \frac{60}{100} = \frac{10 \cdot 6}{100}$$

$$\frac{10 \times = 1}{10.}$$

6. A 4-sided die is not fair. It rolls $\{1,2,3,4\}$ with probabilities $\{x,2x,3x,4x\}$. What is x?

$$P[4|2] = P[4 \cap 3^{2}] = \frac{4/16}{2+3+4} = \frac{4/16}{2+3+4} = \frac{4/16}{19}$$

$$E[X] = \sum_{x} P(x) = \frac{1 \cdot \frac{1}{1} + 2 \cdot \frac{2}{10} + 3 \cdot \frac{3}{10} + 4 \cdot \frac{4}{10}}{10}$$

$$= \frac{1^{2} + 2^{2} + 3^{2} + 4^{2}}{10} = \frac{1 + 4 + 9 + 16}{10}$$

$$= \frac{30}{10} = \boxed{3}.$$

10. In Problem 9, I was not late. What are the chances it was raining?

$$\boxed{A}$$
 1/2.

P[Ram | not late] = P[Ram | not late] P[Not late]=
$$\frac{52}{100}$$

$$= \frac{4/100}{52/100} = \frac{1}{52} = \frac{1}{13}$$

 $\begin{array}{c} 7^{2} \xrightarrow{\text{Boys}} : & \text{GBB} \\ \text{BBG} \\ \end{array} \begin{array}{c} 4 \times 1 \\ 8 \end{array} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{4}{8} \end{array}$

Plat least 1 boy] = 1- 7[666] = 7

 $P[P2B|>18] = P[P2B 1>18] = \frac{4/8}{7/8} = \sqrt{\frac{4}{7}}$

6

A

12. What is the probability the couple in Problem 11 has at least 2 boys if you know they have at least 1 boy?

13. What is the probability the couple in Problem 11 has at least 2 boys if you know they have at least 1 girl?

\$[> 16] = 1-P[BBB] = 7/8

P[281216] = P[688,868,886] = 3/8.
P[281216] = 16] = 3/8 = 3/7

linearity, 3ED) + 4E[Y] = 3.2+4.3 = 6+ 12=[18]

14. A box has 6 fair, 2 two-headed, and 2 two-tailed coins. Flip a random coin. Compute $\mathbb{P}[H]$?

15. X and Y are random variables, with
$$\mathbb{E}[X] = 2$$
 and $\mathbb{E}[Y] = 3$. What is $\mathbb{E}[3X + 4Y]$?

A 5.

$$= \frac{1}{5} \frac{1}{16} \left[\frac{5}{5}\right] \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{3}$$

$$= \frac{1}{10} \times \frac{4^{3}}{5^{5}} \times \frac{4^$$

16. A random dart hits the bulls-eye 20% of the time. How likely is exactly 2 bulls-eyes in 5 random darts?

E None of the above.

D $640/5^5$

17. In problem 16, what's the expected number of bulls-eyes in 5 random darts?

B 1.5.

E[k] = np= 5x = =]

C 2.

D 2.5.

E None of the above.

18. Bob has kids till a boy. Joe has kids till a girl. Girls are 3-times as likely as boys. What is the expected number of kids Bob and Joe have in total?

$$\boxed{A} \ 2\frac{1}{2}.$$

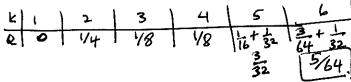
 $D 7\frac{1}{5}$

P(30y) = 1/4 P[Giv]] = 3/4

14ds = KidsB + KidsJ

E None of the above.

19. [Hard]. You flip a fair coin until two heads in a row, HH. What is the probability you make 6 flips?


A 4/64. A 4/64 A 6/4 A 6/4

Q(1)=0 Q(2)=1/4

D 7/64.

E None of the above.

k ≽3

20. You flip a fair coin until two heads in a row, HH. What is the expected number of flips?

A 4.

E None of the above.

E[K] = E[K|HH]. + E[K|HT]. + E[K|T]. - + E[K|T]. - + (1+E[K]). +

 $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{\epsilon(k)}{3} \cdot \frac{3}{4}$ $\Rightarrow \frac{\epsilon(k)}{4} = \frac{3}{2} \Rightarrow \frac{\epsilon(k)}{6} = \frac{6}{3}$

SCRATCH