Al and ML for Predicting COVID-19
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Scales of COVID-19

World ~ 8§ billion

Confirmed Daily Infections
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Scales of COVID-19

USA ~ 330 million

Confirmed Daily Infections
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Scales of COVID-19

NY State ~ 20 million

Confirmed Daily Infections
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Scales of COVID-19

Albany/Troy/Cap Dist ~ 1 million

Confirmed Daily Infections
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Scales of COVID-19

Rensselaer ~ 10 thousand

New Infections Over Previous 14 Days
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Scales of COVID-19

Party at Rensselaer ~ 20

Chances to Get COVID on 14-Feb-2021 (no masks)
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Scales of COVID-19

vaccines, virology, genomics




Two Sides of COVID Modeling

Epidemiological Modeling
Harvard-model, Imperial-model, UW-model, Your-model, My-model, ...




The Race To Predict Ventilator Demand

NYC Capital District
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Infection counts: very noisy dirty data.
Predictions must be local: mobility patterns, density, social distancing, weather, .. ..

@ Smaller regions: more noisy; more sparse.
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.
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Quadratic Fit + Extrapolate
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Linear Fit 4+ Extrapolate

O Observed
== True Quadratic Law
——Linear Fit




Linear Fit 4+ Extrapolate

True “biological” law: quadratic growth.
Quadratic Fit + Extrapolate

A Easier Example
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A Stunning Nugget From The Theory of Learning

When there is noise,

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, My-model, ...

© Creator: M. Magdon-Tsmail, November 12,2020  AI/ML for COVID-19: 6/11 [ et’s Predict —



A Stunning Nugget From The Theory of Learning

When there is noise,

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, Simple-robust—adaptable model, ...

© Creator: M. Magdon-Tsmail, November 12,2020  AI/ML for COVID-19: 6/11 [ et’s Predict —



Let’s Predict For The Capital District
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@ Extrapolation is hard.




Let’s Predict For The Capital District
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Let’s Predict For The Capital District
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Disaster!




Let’s Predict For The Capital District
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@ Extrapolation is hard.
@ Changepoints make it impossible.

Disaster!




Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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@ Robustly determine changepoints.

@ Robustly fit. Gray is uncertainty.
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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@ Robustly determine changepoints.
@ Robustly fit. Gray is uncertainty.

@ State persists across changepoints.




Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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@ Robustly determine changepoints.

© Robustly fit. Gray is uncertainty. How: Even simpler analytic model pre-calibrates.

@ State persists across changepoints.




Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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C OVI D—Wal“— ROOHl https://covidwarroom.idea.rpi.edu

Capital District North Carolina
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fatalities 295 fatalities 295 fatalities 4,615 fatalities 4,615
fatality rate (model) 0.56% fatality rate (model) 0.56% fatality rate (model) 0.2426% fatality rate (model) 0.243%
confirmed infections, Dec 31 13,435 confirmed infections, Dec 31 16,152 confirmed infections, Dec 31 660,205 confirmed infections, Dec 31 788,645
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immunity, Dec 31 8.7402% immunity, Dec 31 10.7985% immunity, Dec 31 32.1512% immunity, Dec 31 38.2743%
fatalities, Dec 31 473 fatalities, Dec 31 611 fatalities, Dec 31 8,843 fatalities, Dec 31 10,680
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Student interactions in residential

Meals per day in campus dining

—_t Who's bringing covid to campus? | COVID-War-Room
Jan 19:

~24 cases,

3 . Ambient county infection rate? ~20% immunity.

Student interactions during a meal
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Student interactions in residential
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Student interactions in residential
life
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COVID-Back-To-School

https://covidspread.idea.rpi.edu

Student interactions in residential
life
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COVID-Back-To-School

https://covidspread.idea.rpi.edu

Student interactions in residential
life
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Infection Growth from Start of Semester

New Infections Over Previous 14 Days
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Rensselaer: 1.5% =~ 60. 18 infections so far.



Tools to Policy

We have tools to model spread at all scales.

In policy making, all scales are relevant. Decisions should take a holistic view.

@ The spread of COVID is just one factor that influences these decisions.

I really enjoyed giving this talk ¢) ]




