Indexing notes
Index on \(R(B) \) \\

\[\downarrow \]

Select \(B \)
From \(R \)
Order By \(B \)

\[\downarrow \]

\(B \) value \(\rightarrow \)
Pointer to tuple

Relation \(R(A,B,C,D) \)

- Page 1
- Page 2
- Page 3
- Page \(k-1 \)
- Page \(k \)
\textbf{Index on } R(B) \\
\textbf{Relation } R(A,B,C,D) \\
\textbf{select}\ast \textbf{from } R \\\n\textbf{where } B = 5 \textbf{;} \\
\lt \textbf{assume } B \textbf{ is unique } \lt \\
\textbf{index page 1} \\
\textbf{index page 2} \\
\ldots \\
\textbf{index page } M \textbf{;} \\
M < K \textbf{;}
Index on R(B) sorted B

Second Level of Index

Relation R(A, B, C, D)

Root Level of Index
Index on \(R(A, B) \)

- \(A = 2 \) and \(B = 4 \)
- \(A = 2 \) and \(A \leq 4 \)
- \(A \geq 2 \) and \(A \leq 4 \) and \(B = 4 \)
- \(B = 4 \)

Scan between \((2, 4) - (4, 4)\)
Insert 16
Insert 29
Insert 30

Delete 42
Delete 52

Diagram with insertion and deletion operations on a data structure.
\[n = 4 \]

- Leaf: 4 tuples (key value + pointer to tuple)
- 1 sibling index node pointer
- Internal: 4 key values
- 5 index nodes

Index on \(R(X, Y) \)

Half full:
- Leaf: 2 tuples min (4 tuples max)
- Interval: 2 nodes indexed min (5 max)

Search:

\[X = A \]
(Select \(B \) from \(R \) where \(X = A \))

\[Y = 45 \]
(Select \(Z \) from \(R \) where \(Y = 45 \))

\[Y > 45 \]
Insertion Example
Insertion Example 1

Insert B80
Insert F99
Deletion Example
Deletion Example

Delete B81
Delete A5
Delete C52
Delete D98
Deletion Example

Delete c5
Deletion Example

2
Indexing duplicate values
A diagram showing points labeled as (x, y), $(4, x)$, P_1, P_2, P_3, P_4, P_5, P_6, and P_7, with a curved line separating the points.
R-trees
QUADRESES (unbalanced)
Hesling $\rightarrow h(t) \rightarrow h(t,A) \rightarrow h^t$

Search

SELECT *
FROM P
WHERE A = 25

$h(25) \rightarrow \cdots \rightarrow 10$
Hashing

P1

P2

P3

P4