
Community Detection

And 

Community Optimization



Content
• Modularity 


• Modularity Maximation:


• Newman’s FastGreedy Algorithm


• Louvain Algorithm


• Resolution Limit


• Conductance



Demo: Zachary Karate graph and its ground-truth communities

Modularity



• How do we measure modularity?


• Compare the topology of the random network to 
the given network


• how condensed is the graph?


• measures the density of links inside communities 
compared to links between communities


• Basic Hypothesis:


• Random network lacks inherent community 
structure


• Measure how clustered our network is relative to 
what’s randomly expected


• Usually used for optimization or relative comparison

Modularity



Computing Modularity

Modularity




• Where, 


• Modularity


•  , number of Edges


•  vertex pairs in the community


• Adjacency Matrix


• expected # of edges between  and  in a random graph


• Value in between: 

M =
1

2m ∑
∀u,v∈C

(Auv −
d(u)d(v)

2m )

M →

m → |E(G) |

∀u, v ∈ C →

A →

d(u)d(v)
2m

→ u v

[ − 1/2,1]



Modularity Maximization

• Maximize modularity as a community detection algorithm


• Usually: Greedy Agglomerative


• Each observation starts in its cluster, and greedily, pairs of clusters 
are merged as one moves up the hierarchy.


• Newman Algorithm


• Louvain Algorithm



Modularity Maximization

• Greedy Agglomerative Algorithm:


• Initially: all vertices in unique communities


• Iterate while # communities > 1:


• Merge community pair that maximizes modularity


• Pros:


• Encapsulates the hierarchy


• Cons:


• Issues with modularity calculations in practice

Newman’s FastGreedy Algorithm



Modularity Maximization

• Similar to the Newman Algorithm


• But with explicit edge contractions


• Initially, each node in the network is assigned a community


• Edge contraction:


• For each node, compute the difference in modularity if it is 
placed in its neighbors’ community. Move if there is any gain.


• Contract all the nodes within the communities to a “super-
node” 


• Repeat the edge contraction method until modularity does not 
increase

Louvain Algorithm



• It cannot resolve relatively small communities!





• the expected number of edges between nodes  and  in a 
random graph does not adequately scale for detecting smaller 
communities in large networks


• become insensitive to communities smaller than a certain scale

M =
1

2m ∑
∀u,v∈C

(Auv −
d(u)d(v)

2m )

u v

Issues with Modularity
Resolution Limit



Issues with Modularity

• How small?


• Change in modularity by combining communities  and 





• edges between  and 


• sum of degrees of vertives in  or 


• Consider:


A B

ΔM =
lAB

m
−

kAkB

2m2

lAB → A B

kA, kB → A B

lAB

m
=

kAkB

2m2
⟹ lAB =

kAkB

2m

Resolution Limit



• Assuming we gain from merging  and 


 ,  , and  


• Then, 





• Hence, the lower bound on the size of 
the community that modularity 
optimization can find is .

A B

lAB >
kAkB

2m
kA = kB = k lAB = 1

1 >
k2

2m
2m > k2

2m > k

k ≤ 2m
Example: Ring of Cliques

Issues with Modularity
Resolution Limit



Issues with Modularity
Other Issues:

• The expected density of a random network:





• Different types of networks have different degree distribution:


• Dense graphs, skewed, or dense subgraphs


• Takeaways: Our modularity value can be meaningless in skewed or 
dense networks


• Potential Fix: Use the actual attachment probabilities

d(u)d(v)
2m



Conductance

• A measure of how quickly a random walk converges to a stationary 
state


• Lower Conductance  More defined communities


• Defined in terms of edge cut,  and :


• Conductance ( ) = 


• number of edges in cut


• sum of degrees in 

⟹

S S̄

S
cut(S)

min(KS, KS̄)

cut(S) →

KS → S



Conductance

• A measure of how quickly a random walk converges to a stationary 
state


• Lower Conductance  More defined communities


• Defined in terms of edge cut,  and :


• Conductance ( ) = 


• number of edges in cut


• sum of degrees in 

⟹

S S̄

S
cut(S)

min(KS, KS̄)

cut(S) →

KS → S



Review
• Evaluating community detection algorithms using 


• modularity calculation


• Issues with modularity maximization


• Resolution limit


• edge cuts, edge cut ratio, 


• Number of edges between different categories


• Take into account for the size of the community


• conductance


• How quickly a random walk traverses through the graph



Evaluating Community Detection Algorithms 

• **Prior methods only take the topology and Community Detection output 
into consideration


• Ideally => Compare against the ground truth


• Problem:


• Hard to find within Real-world data 


• Big Companies: Google, Facebook


• Solution:


• Generate datasets


• Generate a graph with a known structure


• # of communities


• Size of communities


• Community coherence



Solution
• Generate a graph with a known structure 


• # of communities


• Size of communities


• Community coherence


mixing parameter


ratio of μ =
external edges

total edges





Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

• Gold Standard for evaluating Community Detection 
Algorithm


• Uses power-law distributions for degrees and 
community sizes


• assigns vertices  communities


• Wires vertices together(edge) while maintaining 

→

μ



Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

Normalized Mutual Information

Index Node Community 
Detected

Ground 
Truth

1 A 1 1

2 B 2 2

3 C 3 3

4 D 1 3

5 E 1 4

Community Detected Ground Truth

A

D
E

B

C

A

E B

C

D



Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

Normalized Mutual Information

• Set of  elements:  vertex


• Two Partition:


• Comm. Det.


• Ground Truth


• Contingency Table, 


• Overlapping for all possible  pairs


•

N S = {s1, s2, . . . , sN} →

U = {u1, u2, . . . , ua}→

V = {v1, v2, . . . , vb}→

T

UiVj

Tij = |Ui ∩ Vi |

Index Node Comm. Det. Ground

1 A 1 3

2 B 2 1

3 C 3 3

4 D 1 3

5 E 1 4

1 2 3 4

1 2 1

2 1

3 1

4

Contingency Table ( )T



Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

Normalized Mutual Information

• : random prob. that a node is in  partition 


• : random prob. that a node is in  partition 


• : random prob. that a node are in both  and  partition 

Pu(i) =
|Ui |

N
U

Pv( j) =
|Vj |

N
V

PUV(i, j) =
Tij

N
U V

Index Node Comm. Det. (U) Ground (V)

1 A 1 3

2 B 2 1

3 C 3 3

4 D 1 3

5 E 1 4

1 2 3 4

1 2 1

2 1

3 1

4

Contingency Table ( )T



Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

Normalized Mutual Information

• ,  and 


• Entropy:  


•
 and 


• Mutual Information:





• Normalized Mutual Information:


Pu(i) =
|Ui |

N
Pv( j) =

|Vj |

N
PUV(i, j) =

Tij

N

H(U) =
R

∑
i=1

PU(i)log(PU(i)) H(V ) =
C

∑
j=1

PV( j)log(PV( j))

MI(U, V ) =
R

∑
i=1

C

∑
j=1

PUV(i, j)log( PUV(i, j)
PU(i)PV( j) ) = H(U) − H(U |V )

NMI =
MI

1
2 (H(U) + H(V ))



Lancichinetti–Fortunato–Radicchi (LFR) Benchmark

Normalized Mutual Information


