Ccommunity Detection
And
Ccommunity Optimization




content

- Modularity

- Modularity Maximation:
- Newman's FastGreedy Algorithm
. Louvain Algorithm

- Resolution Limit

- Conductance



Modularity

Demo: Zachary Karate graph and its ground-truth communities
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Modularity

- How do we measure modularity?

- Compare the topology of the random network to
the given network

- how condensed is the graph?

- measures the density of links inside communities
compared to links between communities

- Basic Hypothesis:

- Random network lacks inherent community
structure

« Measure how clustered our network is relative to
what's randomly expected

- Usually used for optimization or relative comparison

Graph with 34 nodes and 78 edges




Modularity

Computing Modularity

e

Yu,veC

- Where,
- M — Modularity
- m — |E(G)|, number of Edges
- Yu,v € C — vertex pairs in the community

. A — Adjacency Matrix

d(u)d(v)

2m

> expected # of edges between u and v in a random graph

. Value in between: [— 1/2,1]



Modularity Maximization

- Maximize modularity as a community detection algorithm
- Usually: Greedy Agglomerative

- Each observation starts in its cluster, and greedily, pairs of clusters
are merged as one moves up the hierarchy.

- Newman Algorithm

- Louvain Algorithm



Modularity Maximization

Newmans FastGreedy Algorithm

- Greedy Agglomerative Algorithm:
- |nitially: all vertices in unigue communities
- Iterate while # communities > 1:
- Merge community pair that maximizes modularity
- Pros:
- Encapsulates the hierarchy
- Cons:

. |ssues with modularity calculations in practice



Modularity Maximization

Louvain Algorithm

.« Similar to the Newman Algorithm

- But with explicit edge contractions
- Initially, each node in the network is assigned a community
- Edge contraction:

- For each node, compute the difference in modularity if it is
olaced in its neighbors’ community. Move if there is any gain.

- Contract all the nodes within the communities to a “super-
node”

- Repeat the edge contraction method until modularity does not
INncrease



[ssues with Modularity

Resolution Limit

- |t cannot resolve relatively small communities!

w3 (a, - dwdo

2m 2m
Yu,veC

- the expected number of edges between nodes u and v in o

random graph does not adequately scale for detecting smaller
communities in large networks

« become insensitive to communities smaller than a certain scale



[ssues with Modularity

Resolution Limit

« How small?

- Change in modularity by combining communities A and B

AM = 28 _ Kb
m  2m?

+ lyp = edges between A and B

+ ky, kg = sum of degrees of vertivesin A or B

« Consider:




[ssues with Modularity

Resolution Limit

.« Assuming we gain from merging A and B

zAB>£‘—nf, ky=ky=k and Lz =1

« Then,

k2
I > —
2m

2m > k?

\/2m >k

« Hence, the lower bound on the size of
the community that modularity

optimization can find is k < +/2m.

@ ¢

Example: Ring of Cliques



[ssues with Modularity

Other Issues:

- The expected density of a random network:

d(u)d(v)

2m

- Different types of networks have different degree distribution:
- Dense graphs, skewed, or dense subgraphs

- Takeaways: Our modularity value can be meaningless in skewed or
dense networks

- Potential Fix: Use the actual attachment probabilities



Conductance

- A measure of how quickly a random walk converges to a stationary
state

. Lower Conductance = More defined communities

. Defined in terms of edge cut, S and S:

cut(S)
min(Ks, K5)

_ Conductance ($) =

. cut(S) = number of edges in cut

+ K¢ — sum of degreesin §



Conductance

- A measure of how quickly a random walk converges to a stationary
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Review

- Evaluating community detection algorithms using
« modularity calculation
. |ssues with modularity maximization
. Resolution limit
- edge cuts, edge cut ratio,
- Number of edges between different categories
. Take into account for the size of the community
e conductance

- How quickly a random walk traverses through the graph



Evaluating Community Detection Algorithms

- **Prior methods only take the topology and Community Detection output
into consideration

. |deally => Compare against the ground truth
 Problem:
- Hard to find within Real-world data
- Big Companies: Google, Facebook
- Solution:
- Generate datasets
- Generate a graph with a known structure
 # of communities
. Size of communities

- Community coherence



Solution

- Generate a graph with a known structure
. # of communities
Size of communities

- Community coherence

o MIXINg parameter

external edges

° ratio of U =
total edges






Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

- Gold Standard for evaluating Community Detection
Algorithm

- Uses power-law distributions for degrees and
community sizes

e QSsIgns vertices — communities

- Wires vertices together(edge) while maintaining u



Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

Normalized Mutual Information

Community Detected Ground Truth
| e[S Srome i
1 A 1 1
2 B 2 2 (
3 C 3 3
4 D 1 3 B
5 E 1 4




Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

Normalized Mutual Information

. Setof Nelements: S = {54, 5,,...,8y} —>vertex

Index

Node

Ground

« [Two Partition:

]

- U= {u,u,,...,u,}—Comm. Det.

62 I BN S B CS I B\

m| O | O |W

O[] =

» V={v,vy,...,v,}—=Cround Truth
- Contingency Table, T’

. Overlapping for all possible Ul-V]- DAIrS

1
2
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Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

Normalized Mutual Information
1 2 3 4
Index Node Comm. Det. (U) Ground (V)
1 A 1 3 1 2 1
2 B 2 1 2 1
3 C 3 3 3 1
4 D 1 3 4
5 - 1 4 Contingency Table (1)
- Ul o -
. P(1) = v : random prob. that a node is in U partition
| V|

. P()) = : random prob. that a node is in V partition

T.

. Pyy(i,j) = Wl]: random prob. that a node are in both U and V partition



Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

Normalized Mutual Information

. P.(i) Uil P(j) = i d Pyy(i, ) = i
l—— — an l —_—
N N v\l ] N

- Entropy:

R C

L H(U) = ) Py(i)log(Py(i)) and H(V) = )" Py(j)log(Py()))
i=1 j=1

- Mutual Information:

MI(U,V) = zR:ZC:P (i, Hlog Pyvti.)) = H(U) - HU|V)
e A Py(i)Py())

« Normalized Mutual Information:
MI

e %(H(U) + H(V))




Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

Normalized Mutual Information
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