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Abstract

We present a new shared-memory parallel imple-
mentation of Alon et al’s color-coding technique
called FASCIA for the problems of approximate
subgraph counting and subgraph enumeration.

« Subgraph counting is used in multiple domains,
inlcuding bioinformatics, chemoinformatics,
social network analysis, among many others

« We present multiple algorithmic improvements
to the baseline color-coding technique for
subgraph counting targeted at improving
runtime, parallelization, and memory usage

» Our method allows real-time count
estimates of subgraphs up to seven
vertices on networks with tens of
millions of edges. Count estimates of
up to twelve vertice subgraphs are
obtained in minutes.

Color-Coding Technique

Color-coding allows an approximation algorithm for
subgraph counting that runs in about O(m - 2~ -
e”-) instead of O(n*) for the exact naive algorithm,
where m is the number of edges in the graph, n is the
number of vertices, and £ is the number of vertices
in the subgraph.

The procedure for the algorithm is as follows:

« Randomly color every vertice in the graph with at
least k£ colors

» Use a dynamic programming scheme to count the
number of colorful subgraph embeddings, where
colorful means each subgraph vertice has a
distinct color

« Scale this count by the probability that any given
embedding will be colorful

« Repeat the first three steps some number of times

« Average all determined counts and output result
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Test Environment

Reported runtimes were retrieved from a single node
of Gordon at the San Diego Supercomputing Center.
The graphs used came from the SNAP database,
Virginia, Tech Network Dynamics and Simulation
Science Laboratory:.
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Figure 1: Templates used in experiments

Algorithmic Optimizations

« Multiple parallelization strategies

« Representation of subgraph colorings as single
integers using a combinatorial indexing system

« Pre-computation of complex operations stored in
cache-resident table

« Template partitioning scheme that allows up to
k—1

*— reduction in total work performed

Memory Optimizations

« omart storage and dynamic programming table
initialization
« Careful template partitioning and organization

« Fast hash table which exploits random graph
coloring to reduce collisions

« These memory optimizations can
demonstrate up to a 90% reduction in
memory usage over the naive approach
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Figure 2: Memory usage of the naive and improved table and

hash table on the (a) Portland and (b) PA road networks

Runtimes and Parallel Scaling

Figure 3 demonstrates how FASCIA can produce
real-time count estimates for templates up to 7 nodes
in size on a large 33 million edge network. Template
up to 12 nodes complete in a matter of minutes.

200 -
100 -
0 - | ——..I

I I I I I I I I I I
U3s-1 U3-2 U5-1 U5-2 U7-1 U7-2 U10-1 U10-2 U12-1 U12-2
Template

[ERN
a1l
o

Single Iteration Execution Time (s)
(6}
(@)

Figure 3: Runtimes on Portland network (n=1.6M, m=33M)

Using a 12 node template on a large network, we
achieve 12x parallel speedup. On a smaller network
we can parallelize multiple simultaneous counts, and
achieve over a 6.0x parallel speedup.
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Figure 4: Parallel scaling of (a) inner loop with U12-2 tem-

vlate on Portland and (b) both inner and outer loop with U7-2
template on Enron email network (n=33K, m=180K)

Error Bounds

Testing demonstrates that for even a modest sized
network, error is very small after few iterations. Er-
ror decreases with increasing network size but in-
crease with increasing template size.
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Figure 5: Error on the Enron email network

Enumeration

Motif Finding

Motit finding is determining frequently occuring sub-
oraphs by comparing counts between networks, and
has found importance within the field of bioinfor-
matics. Below we domonstrate counts for all 11
possible 7 vertice templates on 4 biological networks.
All counts were calculated in a few minutes with un-
der 1% error.
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Figure 6: Motif finding on E. coli, S. cerevisiae, H. pylori, and

C. elegans

Graphlet Degree Distributions

Similar to a regular degree distribution, a graphlet
degree distribution is the number of vertices have
a distinct number of subgraph embeddings. This
distribution can be used to compare networks on
the basis of local structural similatiry.
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Figure 7: Graphlet degree distribution for template U5-2 on the

Enron network and a random G(n,p) graph of the same size

and average degree

Conclusions

= Through algorithmic optimizations, FASCIA
achieves considerable speedup compared to
prior work while reducing memory
consumption and parallel overhead

« FASCIA is especially useful for motif finding
and calculating graphlet degree distributions




