
FASCIA: Fast Approximate Subgraph Counting and Enumeration
George M. Slota and Kamesh Madduri

Department of Computer Science and Engineering
The Pennsylvania State University

Abstract

We present a new shared-memory parallel imple-
mentation of Alon et al.’s color-coding technique
called Fascia for the problems of approximate
subgraph counting and subgraph enumeration.

•Subgraph counting is used in multiple domains,
inlcuding bioinformatics, chemoinformatics,
social network analysis, among many others

•We present multiple algorithmic improvements
to the baseline color-coding technique for
subgraph counting targeted at improving
runtime, parallelization, and memory usage

• Our method allows real-time count
estimates of subgraphs up to seven
vertices on networks with tens of
millions of edges. Count estimates of
up to twelve vertice subgraphs are
obtained in minutes.

Color-Coding Technique

Color-coding allows an approximation algorithm for
subgraph counting that runs in about O(m · 2k ·
ek·) instead of O(nk) for the exact naïve algorithm,
wherem is the number of edges in the graph, n is the
number of vertices, and k is the number of vertices
in the subgraph.
The procedure for the algorithm is as follows:
•Randomly color every vertice in the graph with at
least k colors

•Use a dynamic programming scheme to count the
number of colorful subgraph embeddings, where
colorful means each subgraph vertice has a
distinct color

•Scale this count by the probability that any given
embedding will be colorful

•Repeat the first three steps some number of times
•Average all determined counts and output result

Acknowledgements

Special thanks to the NSF, XSEDE, SDSC, PSU RCC

Test Environment

Reported runtimes were retrieved from a single node
of Gordon at the San Diego Supercomputing Center.
The graphs used came from the SNAP database,
Virginia Tech Network Dynamics and Simulation
Science Laboratory.

U3-1 U3-2 U5-1 U5-2 U7-1

U7-2 U10-1 U10-2 U12-1 U12-2

Figure 1: Templates used in experiments

Algorithmic Optimizations

•Multiple parallelization strategies
•Representation of subgraph colorings as single
integers using a combinatorial indexing system

•Pre-computation of complex operations stored in
cache-resident table

•Template partitioning scheme that allows up to
k−1
k reduction in total work performed

Memory Optimizations

•Smart storage and dynamic programming table
initialization

•Careful template partitioning and organization
•Fast hash table which exploits random graph
coloring to reduce collisions

• These memory optimizations can
demonstrate up to a 90% reduction in
memory usage over the naïve approach

● ●

●

●

●

● ●

●

●

●

● ● ●
●

●

0

5

10

15

20

3 5 7 10 12

Template Size

M
em

or
y 

U
sa

ge
 (

G
B

)

●●● ●●● ●●●Naive Improved Labeled

● ● ●

●
●

● ●
●

●

●

● ●
●

●

●

0

5

10

15

3 5 7 10 12

Template Size

M
em

or
y 

U
sa

ge
 (

G
B

)

●●● ●●● ●●●Naive Improved Hash Table

Figure 2: Memory usage of the naïve and improved table and
hash table on the (a) Portland and (b) PA road networks

Template Partitioning

• It is necessary
•Exploiting rooted symmetry within a template
can reduce memory usage and improve runtimes
(template U7-2) is obvious example

•One-at-a-time partitioning can greatly reduce
runtimes. Only a single colorset exists for a single
node subtemplate: the color of the vertex in the
graph

Runtimes and Parallel Scaling

Figure 3 demonstrates how Fascia can produce
real-time count estimates for templates up to 7 nodes
in size on a large 33 million edge network. Template
up to 12 nodes complete in a matter of minutes.

0

50

100

150

200

U3−1 U3−2 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U12−1 U12−2
Template

S
in

gl
e 

Ite
ra

tio
n 

E
xe

cu
tio

n 
T

im
e 

(s
)

Figure 3: Runtimes on Portland network (n=1.6M, m=33M)

Using a 12 node template on a large network, we
achieve 12× parallel speedup. On a smaller network
we can parallelize multiple simultaneous counts, and
achieve over a 6.5× parallel speedup.

●

●

●

●

●
●

500

1000

1500

2000

2500

1 2 4 8 12 16

Processor Cores

E
xe

cu
tio

n 
T

im
e 

(s
)

●

●

●

● ● ●

●

●

●

● ● ●

●

● ●

●

●

●

0.2

0.4

0.6

0.8

1 2 4 8 12 16

Processor Cores

E
xe

cu
tio

n 
T

im
e 

(s
)

●●● ●●● ●●●Inner Loop Outer Loop Outer Loop (Total)

Figure 4: Parallel scaling of (a) inner loop with U12-2 tem-
plate on Portland and (b) both inner and outer loop with U7-2
template on Enron email network (n=33K, m=180K)

Error Bounds

Testing demonstrates that for even a modest sized
network, error is very small after few iterations. Er-
ror decreases with increasing network size but in-
crease with increasing template size.

●

●

● ●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

0.000

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9 10
Iterations

E
rr

or

●● ●●U3−1 U5−1

Figure 5: Error on the Enron email network

Motif Finding

Motif finding is determining frequently occuring sub-
graphs by comparing counts between networks, and
has found importance within the field of bioinfor-
matics. Below we domonstrate counts for all 11
possible 7 vertice templates on 4 biological networks.
All counts were calculated in a few minutes with un-
der 1% error.

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

0.1

1.0

1 2 3 4 5 6 7 8 9 10 11
Subgraph

R
el

at
iv

e 
F

re
qu

en
cy

●●●● ●●●● ●●●● ●●●●E.coli S.cere H.pylo C.eleg

Figure 6: Motif finding on E. coli, S. cerevisiae, H. pylori, and
C. elegans

Graphlet Degree Distributions

Similar to a regular degree distribution, a graphlet
degree distribution is the number of vertices have
a distinct number of subgraph embeddings. This
distribution can be used to compare networks on
the basis of local structural similatiry.

Figure 7: Graphlet degree distribution for template U5-2 on the
Enron network and a random G(n, p) graph of the same size
and average degree

Conclusions
•Through algorithmic optimizations, Fascia
achieves considerable speedup compared to
prior work while reducing memory
consumption and parallel overhead

• Fascia is especially useful for motif finding
and calculating graphlet degree distributions


