
MaintainingConnectivity inParallelGraphPartitioning
Christopher I. Jones
jonesc10@rpi.edu

Ian Bogle
boglei@rpi.edu

George M. Slota
slotag@rpi.edu

Motivation

Partitioning graphs is an important pre-
processing task in parallel scientific computing
and graph analysis applications to balance work
per-rank and minimize global communication.
In many application, it is desirable for conver-
gence and solution stability that each part within
a partition remain fully connected. This work
focuses on developing partitioning methods that
ensure such connectivity.

Applications

General applications we consider:

• Scientific computing on fine meshes,
which desires connectivity and multi-
weight vertices

• Problem solving in biology, power grids,
image processing, and many more [3]

• Redistricting, which requires connectiv-
ity, and can reduce gerrymandering issues
in U.S. politics [2]

Background
Graph partitioning typically is the process of

creating vertex-disjoint sets on a graph that min-
imize edge cut and constrain weight per-part.
This project focuses on adding an additional con-
straint: connectivity. It is common for parti-
tioning algorithms to not guarantee connected
partitions, but it can be a highly desired fea-
ture. The work done in this project is built on
an existing algorithm: Partitioning using La-
bel Propagation (PuLP) [1].

Methods Explored for Maintaining Connectivity

We are building upon an existing PuLP [1]
algorithm, adding features and functional-

ity to aid connectivity. The original algo-

rithm has 2 inner iterations:

• Balance focuses on balanc-
ing the vertices between parts.
Each vertex considers the gain
to being in part P :

gain(P ) = nP · wP

nP is the number of neighbors in P .
wP is how underweight P is.

• Refine works on minimizing
the edge cut relative to each
vertex.

Merge Small Components

Ideally, each part has one compo-
nent. Every some number of itera-
tions, merge all components that are
not the largest in their part into a
neighboring component.

Restrict Vertex Movement

Calculate BFS trees on each com-
ponent, and only allow the leaves
to move. Or, every so many vertex
movements, calculate bi-connectivity,
and prevent articulation points
from moving.

Additional Metrics

Add a new metric to the gain equa-
tion by 2 methods:

(1) gain(P ) = (nP + aPaPaP ) · wP

(2) gain(P ) = nP · wP /aPaPaP

aP =
∑

u∈N(v)
u∈P

children(u)

d(u)

Where N(v) is the neighborhood of v,

children(u) is the number of children u has

in the component’s BFS tree, and d(u) is
the degree of u.

Results

Merge Small Components

Social Network Metrics During Merge Iterations

Merging Method: Here, we iteratively parti-
tion → merge disconnected components → par-
tition. This merging procedure works well for
regular graphs and meshes, while sacrificing some
part balance and edge cut. But for more complex
graphs, like a social network, part imbalance can
be considerable.

Restrict Vertex Movement

Vertex Edge Small Comp.

C Imbalance Cut Count

0 1.5-2.5 >1,000K 0

1 1.1-1.2 800K 4,000

2 ≤ 1.1 650K 5,000
∞ <1.1 150K 5,500

Leaves Only Method: We consider a BFS on
each part from a central vertex. We then only
allow vertices with C or less children to change
parts.

R 10K 2.5K 1,250 320 80

Comp. Count 2,000 1,500 1,400 1,275 1,200

Articulation Point Method: Running on a
road network, part biconnectivity is recalculated
every R vertex updates. We restrict the move-
ment of articulation/cut vertices for each part.

Additional Metrics

Vertex Edge Small Comps

Imb. Cut Count Size

Normal alg. 1.039 125.4K 6,100 22.17
Method (1) 1.040 125.5K 5,800 22.53

Method (2) 1.057 434.4K 14,400 13.94

Add Merging as a Final Step:

Normal alg. 1.182 94.5K 0 N/A

Method (1) 1.174 95.3K 0 N/A
Method (2) 1.081 356K 0 N/A

Using an Additional Metric: These numbers
are from a web-crawl graph when adding the Av-
erage Number of Children metric, aP when using
the above gain equations of (1) and (2). Method
(2) produces many components that are relatively
small, allowing those components to be easily
merged.

Application: Political Redistricting

Gerrymandering is the issue
of politicians manipulating dis-
tricts based on where voters
live. Translating the redistrict-
ing problem to graph partition-
ing, census blocks are vertices,
districts are parts, and edges
represent shared borders. Pre-
vious work includes PEAR [2],
which is an evolutionary algo-
rithm. We’ve applied PuLP
to counties in North Carolina,
using population demographics
as vertex weights and border
lengths as edge weights.

Gerrymandering: North Carolina
districts from 2013-2016.

PuLP: A redistricting using PuLP

with small component merging.

Redistricting introduces new
metrics that can be taken into
consideration, such as compact-
ness and competitiveness, as
defined in [2]. Compactness
is related to how well connected
a district is and is defined as
the area divided by perimeter
squared. Competitiveness
takes the numbers of voters in
opposing parties to measure how
evenly they’re distributed in the
districts. Other demographic
data can also be considered.

References
[1] G. Slota, K. Madduri, S. Rajamanickam PULP: Scal-

able Multi-Objective Multi-Constraint Partitioning
for Small-World Networks In Proc. IEEE BigData
Conf., 2014.

[2] Y. Y. Liu, W. K. T. Cho, S. Wang PEAR: a massively
parallel evolutionary computation approach for polit-
ical redistricting optimization and analysis. In Swarm
and Evolutionary Computation, 30, 78-92, 2016.

[3] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, C.
Schulz Recent Advances in Graph Partitioning In
Algorithm Engineering, 2016.

Acknowledgements
This work was supported in part by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing
Research, Scientific Discovery through Advanced Computing (Sci-
DAC) program through the FASTMath Institute under Contract
No. DE-AC02-05CH11231 at Rensselaer Polytechnic Institute and
Sandia National Laboratories. Sandia National Laboratories is a
multimission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.


