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RESEARCH MOTIVATION

Graph analysis is key for the study of biolog-
ical, chemical, social, and other networks.

e Real-world graphs are big, irregular, complex

— Graph analytics is one of DARPA’s 23
toughest mathematical challenges

— Web graph: 50B sites, 1T+ links; Brain
oraph: 100B neurons, 1,000T synaptic
connections

e Modern computational systems are also big
and complex

— Multiple levels of parallelism, memory hi-
erarchy, configurations

— Heterogenous — host, GPU, coprocessors
(Xeon Phi MIC)

— Optimization — account for socket-level,
node-level, and system-level

How can we design graph algorithms to be
performant on large modern systems?

SUMMARY OF CONTRIBUTIONS

e Multistep connectivity algorithms; on aver-
age 2Xx faster than state-of-the-art

e FASCIA subgraph counting program; orders-
of-magnitude execution time improvement
over prior art

¢ PuLP multi-objective multi-constraint parti-
tioner; order of magnitude faster, order of
magnitude less memory, comparable or better
partition quality than state-of-the-art utilities

e Methodology for in-memory distributed
graph layout; 1.5—5X% performance improve-
ments over naive methods

e Using techniques derived from above ac-
complishments, provided first-ever complex

analysis of largest publicly available web
crawl (3.5B vertices and 129B edges)
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ALGORITHM DESIGN FOR GRAPH ANALYTICS

Graph Connectivity, Strong Connectivity, and Weak Connectivity

e Multistep approach to graph
connectivity (Slota et al. 2014)

e On average 2x faster than prior
state-of-the-art for SCC

e Key optimizations: thread-
local queues, minimize global
atomics and synchronization, di-
rection optimizing BF'S
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Cross-platform comparison of optimized
manycore code.
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Multistep performance scaling relative to the
state-of-the-art Hong et al. 2018 SCC' code.

e Optimized SCC code for high per-
formance on manycore processors

such as GPUS (Slota et al. 2015)

o 3.25x performance improvement
over optimized CPU code on most
irregular test graphs

e Key optimizations: loop ma-
nipulation for higher parallelism,
shared-memory and other locality
considerations, warp and team-
based atomics and operations
(team scan)

Fast Approximate Subgraph Counting using Color-coding

e Implemented the Alon et al. 1995
color-coding approach for count-
ing tree-structured subgraphs

e Shared and distributed memory
implementations (FASCIA) give
real-time count estimates of up to
7 vertex subgraphs on billion edge
networks (order-of-magnitude im-

provement over prior art) (Slota
and Madduri 2013, 2014, 2015)
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Graphlet frequency distance between various
biological and other networks. Red indicates
high inter-network similarity while yellow and
white indicate lower simalarity.
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PARTITIONING AND IN-MEMORY LAYOUT FOR LARGE IRREGULAR (GRAPHS

e Developed the PuLP partitioner for real-world irregular graphs (Slota et

al. 2014)

e Lixploits the label propagation community detection algorithm

e Order-of-magnitude faster execution times and memory consumption than
state-of-the-art with comparable partition quality

e Allows for concurrent multiple constrain and multiple objective partitioning

e Minimize edge cut and max per-part edge cut (communication) while bal-
ancing vertices and edges per-part (computation and memory)
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Ordering

Impact of partitioning quality (left) and intra-task vertex orderings (right) on execution times
of graph analytics.
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Time to count subgraphs of varying sizes on

several networks in shared (top) and
distributed (bottom) memory.

e Fast counts allow similarity com-
parison between large networks

e Subgraph frequency analysis al-
lows for detection of recurring mo-
tifs on large networks

e Key optimizations: restructure
algorithm to exploit simpler in-
dexing methods, use of efficient
communication and computation
avoidance strategies
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ParMETIS (top) and partition quality in

terms of edge cut for PuLP and METIS (bottom).

e Analyzed distributed graph layout in
intra-part vertex ordering

terms of partitioning objectives and

e Partition quality and objectives can have up to a 5x speedup on execution
times; vertex orderings on larger networks is also considerable, with up to

1.5x speedup against naive methods



