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Research Motivation

Graph analysis is key for the study of biolog-
ical, chemical, social, and other networks.

• Real-world graphs are big, irregular, complex

– Graph analytics is one of DARPA’s 23
toughest mathematical challenges

– Web graph: 50B sites, 1T+ links; Brain
graph: 100B neurons, 1,000T synaptic
connections

• Modern computational systems are also big
and complex

– Multiple levels of parallelism, memory hi-
erarchy, configurations

– Heterogenous – host, GPU, coprocessors
(Xeon Phi MIC)

– Optimization – account for socket-level,
node-level, and system-level

How can we design graph algorithms to be
performant on large modern systems?

Summary of Contributions
• Multistep connectivity algorithms; on aver-

age 2× faster than state-of-the-art

• FASCIA subgraph counting program; orders-
of-magnitude execution time improvement
over prior art

• PuLP multi-objective multi-constraint parti-
tioner; order of magnitude faster, order of
magnitude less memory, comparable or better
partition quality than state-of-the-art utilities

• Methodology for in-memory distributed
graph layout; 1.5−5× performance improve-
ments over naive methods

• Using techniques derived from above ac-
complishments, provided first-ever complex
analysis of largest publicly available web
crawl (3.5B vertices and 129B edges)
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Algorithm Design for Graph Analytics

Graph Connectivity, Strong Connectivity, and Weak Connectivity

• Multistep approach to graph
connectivity (Slota et al. 2014)

• On average 2× faster than prior
state-of-the-art for SCC

• Key optimizations: thread-
local queues, minimize global
atomics and synchronization, di-
rection optimizing BFS
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Cross-platform comparison of optimized

manycore code.
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Algorithm  Multistep  Hong

Multistep performance scaling relative to the
state-of-the-art Hong et al. 2013 SCC code.

• Optimized SCC code for high per-
formance on manycore processors
such as GPUS (Slota et al. 2015)

• 3.25× performance improvement
over optimized CPU code on most
irregular test graphs

• Key optimizations: loop ma-
nipulation for higher parallelism,
shared-memory and other locality
considerations, warp and team-
based atomics and operations
(team scan)

Fast Approximate Subgraph Counting using Color-coding

• Implemented the Alon et al. 1995
color-coding approach for count-
ing tree-structured subgraphs

• Shared and distributed memory
implementations (FASCIA) give
real-time count estimates of up to
7 vertex subgraphs on billion edge
networks (order-of-magnitude im-
provement over prior art) (Slota
and Madduri 2013, 2014, 2015)

Graphlet frequency distance between various

biological and other networks. Red indicates
high inter-network similarity while yellow and

white indicate lower similarity.
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Time to count subgraphs of varying sizes on
several networks in shared (top) and

distributed (bottom) memory.

• Fast counts allow similarity com-
parison between large networks

• Subgraph frequency analysis al-
lows for detection of recurring mo-
tifs on large networks

• Key optimizations: restructure
algorithm to exploit simpler in-
dexing methods, use of efficient
communication and computation
avoidance strategies

Partitioning and In-memory Layout for Large Irregular Graphs

• Developed the PuLP partitioner for real-world irregular graphs (Slota et
al. 2014)

• Exploits the label propagation community detection algorithm

• Order-of-magnitude faster execution times and memory consumption than
state-of-the-art with comparable partition quality

• Allows for concurrent multiple constrain and multiple objective partitioning

• Minimize edge cut and max per-part edge cut (communication) while bal-
ancing vertices and edges per-part (computation and memory)
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Impact of partitioning quality (left) and intra-task vertex orderings (right) on execution times

of graph analytics.
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Execution times for PuLP relative to METIS and ParMETIS (top) and partition quality in

terms of edge cut for PuLP and METIS (bottom).

• Analyzed distributed graph layout in terms of partitioning objectives and
intra-part vertex ordering

• Partition quality and objectives can have up to a 5× speedup on execution
times; vertex orderings on larger networks is also considerable, with up to
1.5× speedup against naive methods


