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Motivation

Better evaluate community detection algorithms
processing O(Billion)-sized graphs on HPC resources

Small-scale state-of-the-art: “LFR”
Lancichinetti, Fortunato, Radicchi, 2008
With >1600 citations, this is a de facto standard
Generates ground truth to test against
Has a tunable parameter for community coherence: µ
Limited scalability: best implementation takes ∼17hrs to
generate O(1B) edges (Hamann et al., 2017)

Large-scale state-of-the-art
Without a reliable ground truth, parallel algorithms test
with modularity or similar measures
This approach is flawed in several ways

Goal: evaluate at HPC scale against ground truth
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Overview

Primary results of this work:

We develop a novel method for generating large-scale
graphs with a tunable ground truth community structure

We utilize the scalable BTER generator (Kolda et al.,
2014) as a core step

Our approach generates large-scale community
benchmarking graphs at a rate of 1B edge/minute on
KNL
– Orders-of-magnitude faster than state-of-the-art
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BTER
Block Two-level Erdös-Réyni Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions

Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks
Step 2: Use Erdös-Rényi probability pd = 3√cd to create intra-block edges via G(n, p) process
Step 3: Create inter-block edges via Chung-Lu process
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Our Implementation - For Community Detection
wBTER – wrapped BTER

How we wrap the baseline BTER process for generating
graphs for community detection benchmarking:

Treat affinity blocks as ground truth communities

We have a native µn, based on ratio of inter- to
intra-block edges generated from the original distributions

Can shift µn to some target goal µg via a Linear Program
solve (to be described) – we use Pyomo and CBC

Our BTER implementation: fully-parallelized in
shared-memory with OpenMP/C++
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Linear Program
Shifting the native µ of a graph’s CC distribution

Minimally shift the input clustering coefficient (CC) distribution such
that the output graph has a desired goal µg considering both definitions:

µg =
1

N

∑
d

dinter
d

µg =
1

2M

∑
d

nddinter

minimize
∑
d

|p̂d − pd|

subject to
∑
d

ndp̂d = N(1− µg)∑
d

dndp̂d = 2M(1− µg)

0 ≤ p̂d ≤ 1
output ĉd = p̂3d

pd is G(n, p) probabilities per degree from CC distribution cd, pd = 3
√
cd

p̂d is output probabilities to get new CC distribution ĉd, ĉd = p̂3d
nd is degree distribution, n vertices of d degree
dinter is expected number of inter-community edges for vertex of degree d
N is number of vertices in graph, M is number of edges
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Experimental Setup
Test system and test graphs

Test System: Bowman at Sandia Labs – each node has a
KNL with 68 cores, 96 GB DDR, and 16 GB MCDRAM

Test Graphs:

Network n m davg dmax D̃

LJ-fp 4.2 M 27 M 18 20 K 18
uk-2002 18 M 261 M 28 195 K 28
Wikilinks 26 M 332 M 23 39 K 170
RMAT 26 67 M 1.1 B 16 6.7 K 8
Friendster 66 M 1.8 B 27 5.2 K 34

Graphs are from the SNAP, Koblenz, and LAW databases.
LiveJournal-fp is a parsed version of LiveJournal from SNAP.
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Shifting Distribution
How the CC distribution shifts for varying µ

Only every 5th value plotted for better visualization
Generally, distribution is most “accurate” near native µ
Better smoothing of distribution via LP constraints is future work
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Hitting Target Mu
Accuracy of LP for generating desired µ

Generation accuracy is comparable to LFR
Less than 5% error in most instances
Error is greatest at lower µ targets
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Generation time vs. target µ
(Left) Time vs. µ – (Right) Time vs. graph scale

Strong scaling generally good up to 2 threads/core
Time decreases with increasing µ, due to coupon collectors edge
generation scaling - higher CC requires more attempts for each edge
Generation time a function of scale and complexity (max degree)

Average ∼2 minutes for 1.8B unique edges
Original BTER code: ∼4 min. for 1.2B edges on 32 node Hadoop cluster

Fastest LFR implementation: 17 hours for 1B edges in shared-memory
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A Note on BTER Assortativity

An issue with our approach so far is the degree
homogeneity of communities

We propose the following addition:

Consider intra-comm edge count of each vertex
Permute community assignments of all vertices with
same count
Observation: won’t affect µ, de-homogenizes
communities in terms of degree

This approach might also be applied to baseline BTER
generation
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Timing Breakdown
Full wBTER approach with community permutation, µ = 0.5

Time costs of major
wBTER steps with
community assignment
permutation

Work Complexity:
d = Dmax, n = |V |,m = |E|

LP: expected to scale
as O(d log d)
EdgeGen: O(m log d)
Finalize: O(n+m)
CSR: O(n+m)
Swap: O(n log n+m)
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Conclusions
and future work

We shift a graph’s CCD to fit a µ generated by BTER

Our approach can output graphs for community detection
order-of-magnitudes faster than commonly-used
generators, e.g., LFR

Our approach can output graphs with more realistic
degree and CC distributions than commonly-used
generators

Future Work:
Better develop LP to reduce noise in output CC distribution
Shift graph scale – i.e., output equivalent distributions for a
graph with 2×, 12× original scale
Develop generation methods for hierarchical communities

www.gmslota.com, slotag@rpi.edu
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