

Scalable Community Detection Benchmark Generation

Jonathan Berry¹ Cynthia Phillips¹ Siva Rajamanickam¹ **George M. Slota**²

¹Sandia National Labs, ²Rensselaer Polytechnic Institute jberry@sandia.gov, caphill@sandia.gov, srajama@sandia.gov, slotag@rpi.edu

SIAM CSC 6 June 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA000325

Motivation

Better evaluate community detection algorithms processing O(Billion)-sized graphs on HPC resources

- Small-scale state-of-the-art: "LFR"
 - Lancichinetti, Fortunato, Radicchi, 2008
 - With >1600 citations, this is a de facto standard
 - Generates ground truth to test against
 - Has a tunable parameter for community coherence: μ
 - Limited scalability: best implementation takes ~17hrs to generate O(1B) edges (Hamann et al., 2017)
- Large-scale state-of-the-art
 - Without a reliable ground truth, parallel algorithms test with modularity or similar measures
 - This approach is flawed in several ways
- Goal: evaluate at HPC scale against ground truth

Overview

Primary results of this work:

- We develop a novel method for generating large-scale graphs with a tunable ground truth community structure
- We utilize the scalable BTER generator (Kolda et al., 2014) as a core step
- Our approach generates large-scale community benchmarking graphs at a rate of 1B edge/minute on KNL
 - Orders-of-magnitude faster than state-of-the-art

Step 0: Input degree (n_d) and clustering coefficient (c_d) distributions

- Step 0: Input degree (n_d) and clustering coefficient (c_d) distributions
 Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks

3

- Step 0: Input degree (n_d) and clustering coefficient (c_d) distributions
 Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks

- Step 0: Input degree (n_d) and clustering coefficient (c_d) distributions Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks
- Step 2: Use Erdös-Rényi probability $p_d = \sqrt[3]{c_d}$ to create intra-block edges via G(n, p) process

- Step 0: Input degree (n_d) and clustering coefficient (c_d) distributions Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks
- Step 2: Use Erdös-Rényi probability $p_d = \sqrt[3]{c_d}$ to create intra-block edges via G(n, p) process
- Step 3: Create inter-block edges via Chung-Lu process

Our Implementation - For Community Detection **WBTER** - wrapped **BTER**

How we wrap the baseline BTER process for generating graphs for community detection benchmarking:

- Treat affinity blocks as ground truth communities
- We have a native μ_n, based on ratio of inter- to intra-block edges generated from the original distributions
- Can shift μ_n to some target goal μ_g via a Linear Program solve (to be described) – we use Pyomo and CBC
- Our BTER implementation: fully-parallelized in shared-memory with OpenMP/C++

Linear Program Shifting the native μ of a graph's CC distribution

Minimally shift the input clustering coefficient (CC) distribution such that the output graph has a desired goal μ_q considering both definitions:

$$\begin{split} \mu_g &= \frac{1}{N} \sum_d \frac{d_{inter}}{d} \quad \mu_g = \frac{1}{2M} \sum_d n_d d_{inter} \\ \text{minimize} \quad \sum_d & |\hat{p}_d - p_d| \\ \text{subject to} \quad \sum_d^d & n_d \hat{p}_d = N(1 - \mu_g) \\ & \sum_d^d & dn_d \hat{p}_d = 2M(1 - \mu_g) \\ & 0 \leq \hat{p}_d \leq 1 \\ \text{output} \quad \hat{c}_d &= \hat{p}_d^3 \end{split}$$

- p_d is G(n,p) probabilities per degree from CC distribution c_d , $p_d = \sqrt[3]{c_d}$
- \hat{p}_d is output probabilities to get new CC distribution \hat{c}_d , $\hat{c}_d = \hat{p}_d^3$
- $\hfill\blacksquare$ n_d is degree distribution, n vertices of d degree
- d_{inter} is expected number of inter-community edges for vertex of degree d
- N is number of vertices in graph, M is number of edges

6/13

Experimental Setup Test system and test graphs

Test System: *Bowman* at Sandia Labs – each node has a KNL with 68 cores, 96 GB DDR, and 16 GB MCDRAM

Test Graphs:

Network	n	m	davg	dmax	Ũ
LJ-fp	4.2 M	27 M	18	20 K	18
uk-2002	18 M	261 M	28	195 K	28
Wikilinks	26 M	332 M	23	39 K	170
RMAT_26	67 M	1.1 B	16	6.7 K	8
Friendster	66 M	1.8 B	27	5.2 K	34

Graphs are from the SNAP, Koblenz, and LAW databases. LiveJournal-fp is a parsed version of LiveJournal from SNAP.

Shifting Distribution How the CC distribution shifts for varying μ

- Only every 5th value plotted for better visualization
- lacksim Generally, distribution is most "accurate" near *native* μ
- Better *smoothing* of distribution via LP constraints is future work

8/13

Native
 0.05
 0.3
 0.5
 0.7

Hitting Target Mu Accuracy of LP for generating desired μ

- Generation accuracy is comparable to LFR
- Less than 5% error in most instances
- Error is greatest at lower μ targets

→ LJ-fp → uk-2002 + WikiLinks + RMAT_26 - Friendster

9/13

Generation time vs. target μ (Left) Time vs. μ – (Right) Time vs. graph scale

- Strong scaling generally good up to 2 threads/core
- Time decreases with increasing μ, due to coupon collectors edge generation scaling - higher CC requires more attempts for each edge
- Generation time a function of scale and complexity (max degree)
- Average ~2 minutes for 1.8B unique edges
 - Original BTER code: ~4 min. for 1.2B edges on 32 node Hadoop cluster
 - Fastest LFR implementation: 17 hours for 1B edges in shared-memory

A Note on BTER Assortativity

- An issue with our approach so far is the degree homogeneity of communities
- We propose the following addition:
 - Consider intra-comm edge count of each vertex
 - Permute community assignments of all vertices with same count
 - Observation: won't affect µ, de-homogenizes communities in terms of degree
- This approach might also be applied to baseline BTER generation

Timing Breakdown Full wBTER approach with community permutation, $\mu = 0.5$

- Time costs of major wBTER steps with community assignment permutation
- Work Complexity:

$$d = D_{max}, n = |V|, m = |E|$$

- LP: expected to scale as O(d log d)
- EdgeGen: $O(m \log d)$
- Finalize: O(n+m)
- CSR: O(n+m)
- Swap: $O(n \log n + m)$

LP: linear program EdgeGen: primary BTER phase Finalize: remove 0-degree vertices & cleanup CSR: create graph representation Swap: community degree permutation

- \blacksquare We shift a graph's CCD to fit a μ generated by BTER
- Our approach can output graphs for community detection order-of-magnitudes faster than commonly-used generators, e.g., LFR
- Our approach can output graphs with more realistic degree and CC distributions than commonly-used generators
- Future Work:
 - Better develop LP to reduce noise in output CC distribution
 - Shift graph scale i.e., output equivalent distributions for a graph with $2\times, \frac{1}{2}\times$ original scale
 - Develop generation methods for hierarchical communities

www.gmslota.com, slotag@rpi.edu

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの