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2016
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I Staff at Sandia National Labs

Future:

I Assistant Professor at Rensselaer
Polytechnic Institute

Hi
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What?
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Graph Analytics and HPC

Or, given modern extreme-scale graph-structured datasets
(web crawls, brain graphs, human interaction networks) and
modern high performance computing systems (Blue Waters),
how can we develop a generalized approach to efficiently study
such datasets on such systems?
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Why?
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Why do want to study these large graphs?

Human Interaction Graphs:

I Finding hidden communities, individuals, malicious actors

I Observe how information and knowledge propagates

Brain Graphs:

I Study the topological properties of neural connections

I Finding latent computational substructures, similarities to
other information processing systems

Web Crawls:

I Identifying trustworthy/important sites

I Spam networks, untrustworthy sites
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Prior Approaches
Can we use them to analyze large graphs on HPC?

I Some limited by shared-memory and/or specialized hardware
I Some run in distributed memory but graph scale is still limited
I Others, graph scale isn’t limiting factor but performance can be
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Graph analytics on HPC
So why do we want to run graph analytics on HPC?

I Scalability for analytic performance and graph size
I Efficient implementations should be limited only by

distributed memory capacity
I Graph500.org - demonstration of performance achievable

for irregular computations through breadth-first search
(BFS)

I Relative availability of access in academic/research
communities

I Private clusters of various scales, shared supercomputers
I Access for domain experts, those using analytics on

real-world graphs

Can we create an approach that is as simple to use as
the aforementioned frameworks but runs on common
cluster hardware and gives state-of-the-art
performance?
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Challenges
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Scale

I This work considers “extreme-scale” graphs – billion+
vertices and up to trillion+ edges

I Processing these graphs requires at least hundreds to
thousands of compute nodes or tens of thousands of cores

I Graph analytic algorithms are generally memory-bound
instead of compute-bound; in the distributed space, this
results in a ratio of communication versus computation
that increases with core/node count
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Complexity

I Real-world extreme-scale graphs have similar
characteristics: small-world nature with skewed degree
distributions

I Small-world graphs are difficult to partition for distributed
computation or to optimize in terms of cache due to “too
much locality”

I Skewed degree distributions make efficient parallelization
and load balance difficult to achieve

I Multiple levels of cache/memory and increasing reliance
on wide parallelism for modern HPC systems compounds
the above challenges
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Approach
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Identifying Communication Patterns

Observation: many iterative graph algorithms have similar
communication patterns

I (Vanilla) BFS-like: frontier expansion, information pushed
from vertices to adjacencies, volume of data exchanged is
variable or fixed across iterations

I (Vanilla) PageRank-like: information pulled from
incoming arcs, either fixed or variable communication
pattern in every iteration

We develop optimized skeleton code for these two (or four)
patterns, and can use it to fill in analytic-specific details
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Analytics Fitting these Patterns
Some examples

BFS-like:

I SCC: Strongly connected components

I WCC: Weakly connected components

I K-Core: Iterative approach to find approximate vertex
coreness

I Harmonic Centrality: Routine for calculating harmonic
centrality value of any given vertex

PageRank-like:

I PageRank: Well-known centrality algorithm

I Label Propagation: Community detection algorithm

I Color Propagation: Connectivity algorithm for CC,
WCC, SCC
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Implementation Considerations
Choices, choices, choices ...

Tradeoffs (ease of implementation vs. scalability):
I 1D (vertex-based) vs. 2D (edge-based) partitioning and

graph layout
I Bulk-synchronous vs. asynchronous communication
I Programming language and parallel programming model

I High-level language (e.g., Scala) vs. C/C++
I High-level model (e.g., Spark) vs. MPI-only vs.

MPI+OpenMP

Other considerations:
I In-memory graph representation

I Vanilla CRS-like vs. compressed (e.g., with RLE)
adjacencies

I Partitioning strategy (with 1D layout)
I Vertex-balanced, Edge-balanced, Random vs.

Explicit partitioning
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Performance Results
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Experimental Setup
Test systems, Graphs

I Blue Waters: dual-socket AMD Interlagos 6276, 16 cores, 64 GB
memory

I Compton cluster: dual-socket Intel Xeon E5-2670, 16 cores, 64 GB
memory

Graph n m Davg Source

Web Crawl (WC) 3.6 B 129 B 36 [?]
R-MAT 3.6 B 129 B 36 [?]
Rand-ER 3.6 B 129 B 36 Erdös-Rényi

R-MAT 225-236 229-240 16-64 [?]
Rand-ER 225-236 229-240 16-64 Erdös-Rényi

Pay 39 M 623 M 16 [?]
LiveJournal 4.8 M 69 M 14 [?]
Google 875 K 5.1M 5.8 [?]
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Comparison to Distributed Graph Frameworks
Our approach vs. GraphX, PowerGraph, PowerLyra

I Compared GraphX (GX), PowerGraph (PG), and PowerLyra (PL) on 16 nodes
of Compton to our code (SRM)

I About 38× faster on average for PageRank (top), 201× faster for WCC
(bottom) against distributed memory frameworks
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Weak and Strong Scaling
Label propagation-based analytics

I Strong scaling on Blue Waters for label propagation community
detection with WC and random graphs

I Weak scaling on Blue Waters for label propagation-based algorithm
on random graphs and meshes
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Performance on WC with 256 node of Blue Waters
How can we improve?

I Perf. units are similar to GTEPS (Giga Traversed Edges
Per Second): m∗niter

t×109

Analytic Time (s) Perf. Our evaluation

PageRank 87 29.6

Label Propagation 367 3.5

WCC 63 2.0

Harmonic Centrality 46 2.8

K-core 363 9.6

Largest SCC 108 2.4

Overall 1034 7.6

Graph500 (estimate) 119.2

20 / 23



Possible Future Extensions

I Processing quadrillion-edge (petascale) graphs?

I 10x performance improvement by next year? Direction
optimization, asynchronous communication, graph
compression, other partitioning strategies

I Identify and implement additional analytics that fit
push/pull/fixed/variable communication patterns

I Open-source code
I Contact gslota@psu.edu for current version
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Conclusions and Thanks!

I Graphs are ubiquitous, massive, and complex: scalability
and efficiency are important considerations for real-world
analytics

I We identified and optimized several distinct
communication patterns that fit large classes of graph
algorithms

I Implemented several algorithms fitting these patterns and
demonstrated scalability up to 131k cores of Blue Waters

I Demonstrated 26-1573× speedup vs. GraphX on 256
cores of Compton

Thank you! Questions? gslota@psu.edu, www.gmslota.com
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