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Graph Biconnectivity is a stronger version of 
graph connectivity

Biconnected Components of a graph 
remain connected if any single vertex is 
removed.

Articulation Points (or Cut 
Vertices) are vertices that 
disconnect the graph if 
removed.
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Graph Biconnectivity finds all biconnected
components in an input graph



Efficient Distributed Biconnectivity algorithms  
have practical applications
• Biconnectivity algorithms are useful for finding single points of failure 

in power and communications networks, as well as processing social 
networks

• Finding articulation points in meshes can help solvers converge

• We are not aware of any distributed parallel biconnectivity algorithms

• Efficient shared memory biconnectivity algorithms may not lend 
themselves to an efficient distributed memory implementation

• A new approach could lead to a more efficient distributed 
biconnectivity algorithm
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Our previous work implemented a distributed 
algorithm that solved a similar problem
• Determined whether certain parts of an Ice Sheet mesh were 

adequately connected

• During this work we realized we could use this Ice Sheet Connectivity 
algorithm (ICE-CONN) to find biconnected components in a general 
graph

• The distributed biconnectivity algorithm (BCC-ICE) we propose 
leverages the ICE-CONN algorithm
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Degenerate Features are Parts of the Mesh 
That Can Rotate or Translate

Icebergs

Floating Peninsulas
(Floating Hinges)

Blue ice is floating
Brown ice is on the ground

Any part of the mesh that 
can freely rotate or translate
makes the velocity solution 
not unique



Previous Work: Efficiently Detect Degenerate 
Mesh Features

• Ice sheet simulations fail to converge due to features like hinged 
peninsulas and icebergs in meshes

• New algorithm that detects all degenerate features

• Distributed memory implementation provides good strong scaling and 
weak scaling up to 4096 processors

• Detection takes at most 0.4% of a simulation step’s runtime

• 46,000x faster than previously used preprocessing on highest 
resolution meshes
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This work won a Best Paper award, published in Bogle, Devine, Perego, Rajamanickam, and Slota. “A 
Parallel Graph Algorithm for Detecting Mesh Singularities in Distributed Memory Ice Sheet 
Simulations.” Proceedings of the 48th International Conference on Parallel Processing. 2019.



Application Provides a Mesh and Grounding 
Information

Floating

Touching Ground

Legend
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Degenerate Mesh Features Have at Most One 
Connection to the Ground

Vertex that is floating in the water

Vertex that is touching the ground

Only one unique 
connection to 
ground exists, it 
is through this 
vertex.

These are Degenerate Features

These two vertices 
allow for two unique 
connections to ground.

There are no Degenerate Features
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We Identify Parts of the Mesh with No 
Degenerate Features

Degenerate

Not 
Degenerate

Legend
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The ICE-CONN Algorithm Propagates 
Grounding Information Through the Mesh
• The ICE-CONN algorithm has two steps:

• Find Potential Articulation Points

• Propagate Grounding Information

• We exploit mesh boundary information to identify potential 
articulation points

• Propagating grounding information reveals degenerate mesh features

• Note: Examples show quad meshes, but the approach works with 
triangular meshes as well.
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Step 1: Find Potential Articulation Points

Application identifies boundary edges
at interfaces between ice and water
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Step 1: Find Potential Articulation Points

This is the only 
actual Articulation 
Point

Vertices with more than two incident red
edges are Potential Articulation Points
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Start with grounding given from the application
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Initially grounded vertices have one path to ground
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Propagate only from vertices that have changed color
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Stop the propagation at the Potential Articulation Points
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

These two Potential 
Articulation Points 
allow for two paths to 
ground
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P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation 
Point 

Legend

Initially Grounded

Final Result of the ICE-CONN Algorithm

PPP

Keep all vertices with two unique paths to the ground

The yellow vertices 
only have one 
unique path 
through this vertex

These green vertices 
have two unique paths 
through both Potential 
Articulation Points
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The ICE-CONN Algorithm scales well for mesh 
inputs
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# Vertices Our Algorithm (Ranks) Matlab
Preprocessing

52,465 0.0176 s (6) 1.04 s

210,170 0.0217 s (24) 5.65 s

841,346 0.0414 s (96) 34.60 s

3,368,275 0.0407 s (384) 245.00 s

13,479,076 0.0561 s (1536) 2630.00 s

Strong scaling
13 Million vertices

Weak scaling
52k Vertices/Rank

Comparison against Matlab preprocessing in 
Tuminaro, Perego, Tezaur, Salinger, Price. “A matrix 
dependent/algebraic multigrid approach for extruded meshes 
with applications to ice sheet modeling”. SIAM Journal on 
Scientific Computing 38.5 (2016): C504-C532



With slight modifications, the ICE-CONN algorithm 
generalizes to solve graph biconnectivity

• We ground two neighboring vertices – the smallest biconnected
component

• We use a more general heuristic to find potential articulation points

• We use the ICE-CONN to find biconnected components iteratively

• This distributed biconnectivity algorithm will be referred to as BCC-ICE
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We use a novel distributed LCA algorithm to 
find potential articulation points
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Need to find all Articulation Points,
False positives are allowed.

This method is a distributed version of the algorithm presented in 
Chaitanya, Meher, and Kishore Kothapalli. “Efficient multicore 
algorithms for identifying biconnected components.” International 
Journal of Networking and Computing 6.1 (2016): 87-106

First, root a Breadth-First Search tree at 
any vertex



Lowest Common Ancestor(LCA) traversals start 
from non-tree edges and end at the first mutual 
parent
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Lowest Common Ancestor(LCA) traversals start 
from non-tree edges and end at the first mutual 
parent
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Start at these two endpoints of 
a nontree edge

Move the lower BFS level 
endpoint to its parent

This vertex is the first mutual parent, 
or Lowest Common Ancestor



Lowest Common Ancestor(LCA) traversals start 
from non-tree edges and end at the first mutual 
parent
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We use a novel distributed LCA algorithm to 
find potential articulation points
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Start at endpoints of non-tree edgesFollow parent-edges until a mutual 
parent is found
Any endpoints of unvisited tree edges 
are articulation points

Tree edge

Non-Tree edge

Traversal In Progress

Potential Articulation 
Point



We use the ICE-CONN algorithm to find 
Biconnected Components Iteratively
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Initially ground two neighboring verticesUse label propagation to find a BCCRemove yellow labels, green labels are a Biconnected Component

Floating

1 Path to Ground

2 Paths to Ground

Potential 
Articulation Point 

Initially Grounded



We use the ICE-CONN algorithm to find 
Biconnected Components Iteratively
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1

1

1

1Ground one neighbor of each actual 
articulation point found
Propagate wherever possible

Floating

1 Path to Ground

2 Paths to Ground

Potential 
Articulation Point 

Initially Grounded



We use the ICE-CONN algorithm to find 
Biconnected Components Iteratively
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1

1

1

1

3

2

3

4

4

4

Repeat the process until no propagation is 
possible

Floating

1 Path to Ground

2 Paths to Ground

Potential 
Articulation Point 

Initially Grounded



Experimental Setup

• Tests were run on Sandia National Labs’ Blake platform
• 40 nodes equipped  with dual socket Intel Xeon Platinum CPUs.

• We generated synthetic graphs with a known number of biconnected
components to validate our implementations.
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We implemented the shared-memory Tarjan-Vishkin
algorithm in distributed memory as a baseline

• Presented by Tarjan and Vishkin, 1985
• Tarjan, Robert E., and Uzi Vishkin. “An efficient parallel biconnectivity

algorithm.” SIAM Journal on Computing 14.4 (1985): 862-874.

• Optimal in a shared-memory architecture

• Requires a Breadth-First-Search, the computation of preorder labels 
and the number of descendants for each vertex

• Constructs an auxiliary graph 
• # Vtx in auxiliary graph = # edges in original graph
• Filter edges based on values computed for each vertex

• Connected components in auxiliary graph correspond to biconnected
components in the original graph
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Our BCC-ICE approach outperforms our 
distributed implementation of the Tarjan-Vishkin
algorithm
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• 10 Million Vertices
• Avg degree 16

• 10 Biconnected Components

• Our Tarjan-Vishkin
implementation does not scale 
well
• Constructing the auxiliary graph is 

expensive in distributed memory

• Final labeling of the input graph 
requires communication and is 
nontrivial



Our BCC-ICE algorithm’s scaling depends on 
the structure of the input graph

32

10 Biconnected Components 100 Biconnected Components 1000 Biconnected Components

All inputs have 10 Million vertices and 
average degree 16



Conclusions and Future Work

• Our ICE-CONN algorithm efficiently detects degenerate features of 
ice-sheet meshes in distributed memory.

• We generalize ICE-CONN to solve biconnectivity in distributed 
memory

• This direct generalization (BCC-ICE) is more efficient than our 
distributed implementation of the Tarjan-Vishkin shared-memory 
algorithm

• We are currently exploring optimizations to these approaches.

• Contact Me: boglei@rpi.edu
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Conclusions and Future Work

• Our parallel ice-sheet propagation algorithm efficiently detects 
degenerate features of ice-sheet meshes.

• We generalize this algorithm to solve biconnectivity in distributed 
memory

• This direct generalization is more efficient than our distributed 
implementation of the Tarjan-Vishkin shared-memory algorithm

• We are currently exploring optimizations to these approaches.

• Contact Me: boglei@rpi.edu
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