
Distributed Biconnectivity

Ian Bogle12 George Slota1 Sivasankaran Rajamanickam2 Karen Devine2

1Rensselaer Polytechnic Institute
Troy, NY

2Sandia National Laboratories
Albuquerque, NM

1

Graph Biconnectivity is a stronger version of
graph connectivity

Biconnected Components of a graph
remain connected if any single vertex is
removed.

Articulation Points (or Cut
Vertices) are vertices that
disconnect the graph if
removed.

2

Graph Biconnectivity finds all biconnected
components in an input graph

Efficient Distributed Biconnectivity algorithms
have practical applications
• Biconnectivity algorithms are useful for finding single points of failure

in power and communications networks, as well as processing social
networks

• Finding articulation points in meshes can help solvers converge

• We are not aware of any distributed parallel biconnectivity algorithms

• Efficient shared memory biconnectivity algorithms may not lend
themselves to an efficient distributed memory implementation

• A new approach could lead to a more efficient distributed
biconnectivity algorithm

3

Our previous work implemented a distributed
algorithm that solved a similar problem
• Determined whether certain parts of an Ice Sheet mesh were

adequately connected

• During this work we realized we could use this Ice Sheet Connectivity
algorithm (ICE-CONN) to find biconnected components in a general
graph

• The distributed biconnectivity algorithm (BCC-ICE) we propose
leverages the ICE-CONN algorithm

4

Degenerate Features are Parts of the Mesh
That Can Rotate or Translate

Icebergs

Floating Peninsulas
(Floating Hinges)

Blue ice is floating
Brown ice is on the ground

Any part of the mesh that
can freely rotate or translate
makes the velocity solution
not unique

Previous Work: Efficiently Detect Degenerate
Mesh Features

• Ice sheet simulations fail to converge due to features like hinged
peninsulas and icebergs in meshes

• New algorithm that detects all degenerate features

• Distributed memory implementation provides good strong scaling and
weak scaling up to 4096 processors

• Detection takes at most 0.4% of a simulation step’s runtime

• 46,000x faster than previously used preprocessing on highest
resolution meshes

6

This work won a Best Paper award, published in Bogle, Devine, Perego, Rajamanickam, and Slota. “A
Parallel Graph Algorithm for Detecting Mesh Singularities in Distributed Memory Ice Sheet
Simulations.” Proceedings of the 48th International Conference on Parallel Processing. 2019.

Application Provides a Mesh and Grounding
Information

Floating

Touching Ground

Legend

7

Degenerate Mesh Features Have at Most One
Connection to the Ground

Vertex that is floating in the water

Vertex that is touching the ground

Only one unique
connection to
ground exists, it
is through this
vertex.

These are Degenerate Features

These two vertices
allow for two unique
connections to ground.

There are no Degenerate Features

8

We Identify Parts of the Mesh with No
Degenerate Features

Degenerate

Not
Degenerate

Legend

9

The ICE-CONN Algorithm Propagates
Grounding Information Through the Mesh
• The ICE-CONN algorithm has two steps:

• Find Potential Articulation Points

• Propagate Grounding Information

• We exploit mesh boundary information to identify potential
articulation points

• Propagating grounding information reveals degenerate mesh features

• Note: Examples show quad meshes, but the approach works with
triangular meshes as well.

10

Step 1: Find Potential Articulation Points

Application identifies boundary edges
at interfaces between ice and water

11

Step 1: Find Potential Articulation Points

This is the only
actual Articulation
Point

Vertices with more than two incident red
edges are Potential Articulation Points

12

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Start with grounding given from the application

13

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Initially grounded vertices have one path to ground

14

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Propagate only from vertices that have changed color

15

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

Stop the propagation at the Potential Articulation Points

16

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Step 2: Propagate Grounding Information

PPP

These two Potential
Articulation Points
allow for two paths to
ground

17

P

Floating

1 Path to Ground

2 Paths to Ground

Potential Articulation
Point

Legend

Initially Grounded

Final Result of the ICE-CONN Algorithm

PPP

Keep all vertices with two unique paths to the ground

The yellow vertices
only have one
unique path
through this vertex

These green vertices
have two unique paths
through both Potential
Articulation Points

18

The ICE-CONN Algorithm scales well for mesh
inputs

19

Vertices Our Algorithm (Ranks) Matlab
Preprocessing

52,465 0.0176 s (6) 1.04 s

210,170 0.0217 s (24) 5.65 s

841,346 0.0414 s (96) 34.60 s

3,368,275 0.0407 s (384) 245.00 s

13,479,076 0.0561 s (1536) 2630.00 s

Strong scaling
13 Million vertices

Weak scaling
52k Vertices/Rank

Comparison against Matlab preprocessing in
Tuminaro, Perego, Tezaur, Salinger, Price. “A matrix
dependent/algebraic multigrid approach for extruded meshes
with applications to ice sheet modeling”. SIAM Journal on
Scientific Computing 38.5 (2016): C504-C532

With slight modifications, the ICE-CONN algorithm
generalizes to solve graph biconnectivity

• We ground two neighboring vertices – the smallest biconnected
component

• We use a more general heuristic to find potential articulation points

• We use the ICE-CONN to find biconnected components iteratively

• This distributed biconnectivity algorithm will be referred to as BCC-ICE

20

We use a novel distributed LCA algorithm to
find potential articulation points

21

Need to find all Articulation Points,
False positives are allowed.

This method is a distributed version of the algorithm presented in
Chaitanya, Meher, and Kishore Kothapalli. “Efficient multicore
algorithms for identifying biconnected components.” International
Journal of Networking and Computing 6.1 (2016): 87-106

First, root a Breadth-First Search tree at
any vertex

Lowest Common Ancestor(LCA) traversals start
from non-tree edges and end at the first mutual
parent

22

Lowest Common Ancestor(LCA) traversals start
from non-tree edges and end at the first mutual
parent

23

Start at these two endpoints of
a nontree edge

Move the lower BFS level
endpoint to its parent

This vertex is the first mutual parent,
or Lowest Common Ancestor

Lowest Common Ancestor(LCA) traversals start
from non-tree edges and end at the first mutual
parent

24

We use a novel distributed LCA algorithm to
find potential articulation points

25

Start at endpoints of non-tree edgesFollow parent-edges until a mutual
parent is found
Any endpoints of unvisited tree edges
are articulation points

Tree edge

Non-Tree edge

Traversal In Progress

Potential Articulation
Point

We use the ICE-CONN algorithm to find
Biconnected Components Iteratively

26

Initially ground two neighboring verticesUse label propagation to find a BCCRemove yellow labels, green labels are a Biconnected Component

Floating

1 Path to Ground

2 Paths to Ground

Potential
Articulation Point

Initially Grounded

We use the ICE-CONN algorithm to find
Biconnected Components Iteratively

27

1

1

1

1Ground one neighbor of each actual
articulation point found
Propagate wherever possible

Floating

1 Path to Ground

2 Paths to Ground

Potential
Articulation Point

Initially Grounded

We use the ICE-CONN algorithm to find
Biconnected Components Iteratively

28

1

1

1

1

3

2

3

4

4

4

Repeat the process until no propagation is
possible

Floating

1 Path to Ground

2 Paths to Ground

Potential
Articulation Point

Initially Grounded

Experimental Setup

• Tests were run on Sandia National Labs’ Blake platform
• 40 nodes equipped with dual socket Intel Xeon Platinum CPUs.

• We generated synthetic graphs with a known number of biconnected
components to validate our implementations.

29

We implemented the shared-memory Tarjan-Vishkin
algorithm in distributed memory as a baseline

• Presented by Tarjan and Vishkin, 1985
• Tarjan, Robert E., and Uzi Vishkin. “An efficient parallel biconnectivity

algorithm.” SIAM Journal on Computing 14.4 (1985): 862-874.

• Optimal in a shared-memory architecture

• Requires a Breadth-First-Search, the computation of preorder labels
and the number of descendants for each vertex

• Constructs an auxiliary graph
• # Vtx in auxiliary graph = # edges in original graph
• Filter edges based on values computed for each vertex

• Connected components in auxiliary graph correspond to biconnected
components in the original graph

30

Our BCC-ICE approach outperforms our
distributed implementation of the Tarjan-Vishkin
algorithm

31

• 10 Million Vertices
• Avg degree 16

• 10 Biconnected Components

• Our Tarjan-Vishkin
implementation does not scale
well
• Constructing the auxiliary graph is

expensive in distributed memory

• Final labeling of the input graph
requires communication and is
nontrivial

Our BCC-ICE algorithm’s scaling depends on
the structure of the input graph

32

10 Biconnected Components 100 Biconnected Components 1000 Biconnected Components

All inputs have 10 Million vertices and
average degree 16

Conclusions and Future Work

• Our ICE-CONN algorithm efficiently detects degenerate features of
ice-sheet meshes in distributed memory.

• We generalize ICE-CONN to solve biconnectivity in distributed
memory

• This direct generalization (BCC-ICE) is more efficient than our
distributed implementation of the Tarjan-Vishkin shared-memory
algorithm

• We are currently exploring optimizations to these approaches.

• Contact Me: boglei@rpi.edu

33

This work was supported in part by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program through the
FASTMath Institute under Contract No. DE-AC02-05CH11231 at Rensselaer
Polytechnic Institute and Sandia National Laboratories and through the
SciDAC ProSPect project at Sandia National Laboratories. Sandia National
Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

34

Conclusions and Future Work

• Our parallel ice-sheet propagation algorithm efficiently detects
degenerate features of ice-sheet meshes.

• We generalize this algorithm to solve biconnectivity in distributed
memory

• This direct generalization is more efficient than our distributed
implementation of the Tarjan-Vishkin shared-memory algorithm

• We are currently exploring optimizations to these approaches.

• Contact Me: boglei@rpi.edu

35

