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What is coarsening

Graph Coarsening: Find a representation of a graph G = (V ,E )
with |V | = n, with a reduced dimension Gc = (Vc ,Ec) with
|Vc | = nc < n.

There are many methods to perform this task.

Method Abbreviation Objective
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}
Greedy Fiedler [3] GFSC —

METIS [5] METIS —



What is coarsening

There are many applications for graph coarsening.

▶ Reduced order modeling.

▶ Expediting partitioning.

▶ Multigrid methods for NLA.

▶ Even accelerating GNN training!



History
Started on this problem a couple years ago working on a project at
Sandia with the goal of finding compact models for semiconductor
devices.



History
This was originally approached with function approximation in
mind.
▶ Intuitively, we desired a partitioning of a mesh which would

best approximate it when each partition had its own
piece-wise constant value.

▶ Then from this, ”learning” could happen to fill in the
functions along partition boundaries.

▶ We adopted spectral methods for this.



NDC

1. Compute the nodal domains of k eigenvectors on G ,
{xi}i∈[1..k].

2. For each node u ∈ V , assign a vector of signs
ϕu = [sign(x0(u)), sign(x1(u)), · · · , sign(xk(u))]

3. Perform merges according to any chosen additional criteria
between nodes u, v ∈ V such that ϕu = ϕv .



NDC

Intuitively, the nodal domain coarsening method has some
theoretical benefits.

▶ Any merged nodes have a similar spectral embeddings.

▶ Can be tacked onto any chosen coarsening method or metric
to add global information into our coarsening.



Results

We now compare several coarsening methods, and their spec-
tral approximation properties on two suites of graphs. First, the
irregular dataset, consisting of a mix of social networks, col-
laboration networks, road networks, email networks, and voting
networks. Secondly the mesh dataset consisting of several mesh
graphs.

Graph Nodes Edges Type

CA-GrQc 5242 14496 Collaboration
CA-HepTh 9877 25998 Collaboration

email-Eu-core 986 332334 Email
facebook combined 4039 88234 Social
lastfm asia edges 7624 27806 Social

Wiki-Vote 7115 103689 Voting
euroroad 1174 1417 Road

arenas-jazz 198 2277 Social
alligator 3208 9188 Mesh

cheburashka 6669 20001 Mesh
teapot 2259 6250 Mesh
woody 694 1960 Mesh

rocker-arm 10044 30132 Mesh



Eigenvector approximation

We first examine the eigenvector approximation properties of
these methods. We do this by examining the inner product of
their vector spaces.

Intuitively, this captures the similarity in Vc and V by measuring
the orthognality of their vectors. If orthognality is preserved, the
inner product should resemble a diagonal matrix, and this norm
should be small.



nc
n = 0.5 coarsening eigenvector comparisons



nc
n = 0.2 coarsening eigenvector comparisons



nc
n = 0.1 coarsening eigenvector comparisons



Eigenvector norm comparisons for irregular dataset.



Eigenvector norm comparisons for mesh dataset.



Eigenvalue approximation

We now look at the eigenvalue approximation properties by
examining the average difference in spectra between the

coarsened graph and original graph.

φk(Gc) =
1

k

(
k∑

i=0

|λi (G )− λi (Gc)|

)
Intuitively this is measuring how “good” the spectral cuts of the
coarse graph are in comparison to the spectral cuts of the original
graph. Here we only condsider the k smallest eigenvalues because
these control cut values. k is taken to be 10 for these experiments.



nc
n = 0.5 coarsening eigenvalue comparisons



nc
n = 0.2 coarsening eigenvalue comparisons



nc
n = 0.1 coarsening eigenvalue comparisons



Eigenvalue comparisons for irregular dataset.



Eigenvalue comparisons for mesh dataset.



Vector versus value approximations for nc
n = 0.5.



Vector versus value approximations for nc
n = 0.2.



Vector versus value approximations for nc
n = 0.1.



What about scalability

Nodal domain coarsening is an expensive operation.

▶ To explicitly compute the spectral pairs of a matrix is O(n3).

▶ Since we only need some vectors, it can be made faster with
things like Krylov methods / power iteration.

▶ Can be made faster yet with approximation algorithms based
on random walks / the heat equation / the wave equation.

For a sparse graph we can find the nodal domains in
O(mT + T 2log(T )) highly parallelizable work using the wave

equation + a per-node Fourier transform in parallel.



What about scalability

For a sparse graph we can find the nodal domains in
O(mT + T 2log(T )) highly parallelizable work using the wave

equation + a per-node Fourier transform in parallel.

▶ Pros: It’s fast. We are really only limited by how quickly
we can perform SpMV.

▶ Cons: Incredibly memory intensive, and T relies on the
mixing time of the graph. (Means the method lacks
scalability)



Throw it all on a GPU

Timing results (seconds) for parallel agglomerative coarsening on
a single nVidia A100 40GB GPU on 4092 threads.

graphs nodes edges SHWC ASC ADC NDC
CA-road 2.0e6 2.8e6 0.66 0.71 0.69 1.57
FLA-road 1.0e6 1.3e6 0.56 0.51 0.52 1.03
DBLP-collab 6.5e5 1.0e6 0.42 0.43 0.39 0.65
trimesh-mesh 1.9e6 9.4e6 0.66 0.77 0.75 1.61
Goog-web 8.7e5 5.1e6 0.47 1.6 0.51 0.92
BerkStan-comm 6.9e5 7.6e6 0.55 37.99 0.54 0.96



Next Steps

▶ There is much to still pursue relating to this research.

▶ The effect of matching versus agglommerative coarsening on
spectral approximation properties.

▶ Explore alternative eigenvector approximation techniques for
nodal domain coarsening.

▶ How does the quality of spectral approximation affect
multigrid methods.

Thank you!

Contact: brissc@rpi.edu
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Summary and Thanks

▶ Showed that coarsening methods have drastically varying
spectral approximation properties.

▶ Presented a coarsening method using nodal domains of
eigenvectors of the graph Laplacian to restrict potential
merges.

▶ We showed that this method does an excellent job preserving
the eigenvalues of the matrix which are related to the optimal
bisection.

▶ We further presented that this method, while running slower
than competing coarsening methods, is still fast enough to
find potential uses.

Thank you!

Contact: brissc@rpi.edu
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