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Welcome to the minisymposium!
Graph Partitioning for Complex Architectures and Applications

Thank you to our speakers today:

Christopher Brisette – Spectral clustering for compressing
physical simulations

Abdurrahman Yasar – Symmetric Rectilinear Matrix
Partitioning for Graph Algorithms

Gerrett Diamond – Diffusive Load Balancing of Particles
for Distributed Unstructured Mesh Particle-In-Cell on
GPUs

Ozan Karsavuran – Medium-Grain Partitioning for Sparse
Tensor Decomposition
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The BIG themes for this minisymposium

Graph Partitioning in General

A long-studied, increasingly-critical preprocessing or
in-situ step for many scientific and data analytic codes

Uses: distributed load balance, graph/mesh ordering and
clustering, many others

Complex Architectures

Increasing reliance of scientific codes on GPUs

Exascale systems: millions of threads, hierarchical
memory/compute/network architectures

Complex Applications

Physics simulations, tensor decompositions, graph and
combinatorial computations
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Graph Partitioning
Reviewing the basic problem

Graph Partitioning (1D): Given a graph G(V,E) and p
processes or tasks, assign each task a p-way disjoint subset of
vertices and their incident edges from G

Balance constraints – (weighted) vertices per part
Quality objectives – minimize (weighted) edge cut,
communication volume, maximal per-part edge cut

Why?
Processing patterns of many distributed scientific
computations (particularly ones on meshes) can be
represented as a graph
Balance computation per rank, minimize inter-rank
communication

Note: This is only a single formulation of the partitioning
problem. Many alternatives exist. See Buluç et al. 2016.
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Partitioning Software

Many existing software tools: METIS, Scotch, KaHIP, Zoltan,
ParMA, PaToH, etc.

Each tool has various tradeoffs
E.g., processing speed, possible constraints/objectives,
output quality, target graph structure or application

This talk: (Xtra)PuLP

Uses diffusive label propagation-based approach
Highly optimized for scalability (1 trillion+ edge graphs)
Targets partitioning problem:

Multiple constraints – some number of vertex weights
Multiple objectives – minimize total communication and
balance communication load per-rank
On irregular very large-scale graph inputs
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Overview
Scalable Partitioning on GPUs

Big Idea: Implement (Xtra)PuLP partitioners for GPUs

Using Kokkos for performance portability

Currently: 1x GPU (G-PuLP); Many GPUs (G-XtraPuLP)

Challenges: Typical for many CPU → GPU ports

Fine-grained parallelization of thread-based processing

Mitigating effects of PuLP’s asynchronous processing

Outcomes: GPU vs. CPU

Can be faster – effective fine-grained parallelization

But worse quality – difficult to mitigate asynchronicity

Ongoing: Exploring “tuning” methods to allow tradeoffs
of quality vs. speed
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GPU Processing

Why GPUs?
Targeting current and next-generation heterogeneous
platforms
Ideally, run partitioning/pre-processing on same hardware
as target applications

AiMOS at RPI’s Center for Computational Innovations
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Considerations for XtraPuLP on GPUs
Modifying XtraPuLP for GPU

1. Fine-grained parallelism
CPU = ∼dozens of cores, GPU = ∼thousands of cores
In particular, this presents a number of thread-based work
imbalance issues for graph problems on irregular datasets

2. Asynchronous processing
XtraPuLP relied on intra-node asynchronous computation
for speed (and quality)
On GPU, this results in an orders-of-magnitude increase
in computations on “stale” data

3. Distributed communication
Similarly, XtraPuLP originally used an asynchronous/
synchronous approach
This worked great for CPUs – on GPUs, the above
problems are greatly exacerbated
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Fine-grained Parallelism

Consider: regular graph vs. highly irregular graph

Regular graph has fixed degree distribution, irregular
graphs can be extremely skewed

Vertex-centric parallelism quickly “breaks down”

There are many proposed techniques in the literature to
overcome this challenge:

Hierarchical parallelism (Hong et al., PPoPP 2011)

Graph structure modification (e.g., “SlimCell” by Besta
et al., IPDPS 2017)

Loop Collapse (Slota et al., IPDPS 2015)

We use a loop collapse method because it is fully parallelizable,
requires no modification to the graph adjacency structure, and
can be used with arbitrary workloads such as queues.
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Loop Collapse for Graph-based GPU Parallelism

Manhattan Collapse: Optimization technique for nested
loops (possibly) first appearing in the literature for Cray XMT
systems1.

Many graph-based algorithms
follow a nested loop structure
– For some set of vertices S
(outer loop), process all of
their adjacencies from the
global adjacency list E(G)
(inner loop)

The Manhattan Collapse
assigns each unit of inner loop
work to a given thread t within
a thread block T
– Regardless of the order of
items in the outer loop!

1Ringenburg and Choi, 2009
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Communication - Chaos of Asynchronicity

When developing XtraPuLP’s original communication strategy:
Observation: wild oscillations in part assignments due to
computations using stale data.

Solution: slow things down, limit number of possible updates by
only giving each rank a weight allocation of possible updates.

Now with G-XtraPuLP:
We similarly limit the amount of updates performed by a given
GPU on a given iteration by tightening the update criteria.

Early iterations: only updates that improve quality by at least x are
allowed.

Later iterations: we loosen this restriction by decrementing x
towards zero.

End result: the number of updates per-iteration decreases, which
makes our asynchronous computations more “similar” to
synchronous computations.
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The tradeoffs on a single node
Single node G-PuLP vs. PuLP

Depending on how much we “limit” updates per GPU per iteration,
there’s a rather large spectrum of quality⇔time for CPU and GPU PuLP.
Below is possibly the best empirical case for quality, with the ratio of
PuLP / G-PuLP for cut (top) and time (bottom). Bigger is better.
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And into distributed memory with G-XtraPuLP
meh

The good: We see speedup for G-XtraPuLP vs. single node.
The bad: Time on average is worse than XtraPuLP.
The ugly: Quality can be much worse than XtraPuLP.
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Discussion and Future Work

We still have a bit of work to “close the gap” in terms of
quality vs. speed.

Further tune the current approach

Investigate other parallelization schemes if current ends
up being too limiting

Other future work:

(reduced) Multi-level methods to improve quality while
retaining speed

Integration into Zoltan2/Trilinos

Hierarchical considerations for GPU/CPU or cache-based
computations
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Conclusions and thanks!

Major takeaways:

We implement (Xtra)PuLP on GPU as G-(Xtra)PuLP.

We can improve speed on GPU relative to CPU or come
close in quality, but not both (yet).

Addressing the above and scaling out to distributed
memory are primary avenues of future work.

Thank you! Contact below with any questions.

Note: Looking for a PhD student to work on these problems.

slotag@rpi.edu www.gmslota.com
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