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Welcome to the minisymposium!

Graph Partitioning for Complex Architectures and Applications

Thank you to our speakers today:

m Christopher Brisette — Spectral clustering for compressing
physical simulations

m Abdurrahman Yasar — Symmetric Rectilinear Matrix
Partitioning for Graph Algorithms

m Gerrett Diamond — Diffusive Load Balancing of Particles
for Distributed Unstructured Mesh Particle-In-Cell on
GPUs

m Ozan Karsavuran — Medium-Grain Partitioning for Sparse
Tensor Decomposition

2/15



The BIG themes for this minisymposium

Graph Partitioning in General

m A long-studied, increasingly-critical preprocessing or
in-situ step for many scientific and data analytic codes

m Uses: distributed load balance, graph/mesh ordering and
clustering, many others

Complex Architectures
m Increasing reliance of scientific codes on GPUs

m Exascale systems: millions of threads, hierarchical
memory/compute/network architectures

Complex Applications

m Physics simulations, tensor decompositions, graph and
combinatorial computations
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Graph Partitioning

Reviewing the basic problem

Graph Partitioning (1D): Given a graph G(V, E) and p
processes or tasks, assign each task a p-way disjoint subset of
vertices and their incident edges from G

m Balance constraints — (weighted) vertices per part

m Quality objectives — minimize (weighted) edge cut,
communication volume, maximal per-part edge cut

Why?

m Processing patterns of many distributed scientific
computations (particularly ones on meshes) can be
represented as a graph

m Balance computation per rank, minimize inter-rank
communication

Note: This is only a single formulation of the partitioning
problem. Many alternatives exist. See Bulug et al. 2016.
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Partitioning Software

Many existing software tools: METIS, Scotch, KaHIP, Zoltan,
ParMA, PaToH, etc.
m Each tool has various tradeoffs
m E.g., processing speed, possible constraints/objectives,
output quality, target graph structure or application

This talk: (Xtra)PuLP
m Uses diffusive label propagation-based approach
m Highly optimized for scalability (1 trillion+ edge graphs)
m Targets partitioning problem:
m Multiple constraints — some number of vertex weights
m Multiple objectives — minimize total communication and
balance communication load per-rank

m On irregular very large-scale graph inputs
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Overview

Scalable Partitioning on GPUs

Big Idea: Implement (Xtra)PuLP partitioners for GPUs
m Using Kokkos for performance portability
m Currently: 1x GPU (G-PuLP); Many GPUs (G-XtraPulLP)

Challenges: Typical for many CPU — GPU ports
m Fine-grained parallelization of thread-based processing

m Mitigating effects of PuLP’s asynchronous processing

Outcomes: GPU vs. CPU
m Can be faster — effective fine-grained parallelization
m But worse quality — difficult to mitigate asynchronicity

m Ongoing: Exploring “tuning” methods to allow tradeoffs
of quality vs. speed
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GPU Processing

Why GPUs?
m Targeting current and next-generation heterogeneous
platforms
m Ideally, run partitioning/pre-processing on same hardware
as target applications

AIMOS at RPI's Center for Computational Innovations /15



Considerations for XtraPuLP on GPUs

Modifying XtraPuLP for GPU

1. Fine-grained parallelism
m CPU = ~dozens of cores, GPU = ~thousands of cores
m In particular, this presents a number of thread-based work
imbalance issues for graph problems on irregular datasets
2. Asynchronous processing
m XtraPuLP relied on intra-node asynchronous computation
for speed (and quality)
m On GPU, this results in an orders-of-magnitude increase
in computations on “stale” data
3. Distributed communication
m Similarly, XtraPuLP originally used an asynchronous/
synchronous approach
m This worked great for CPUs — on GPUs, the above

problems are greatly exacerbated o1



Fine-grained Parallelism

Consider: regular graph vs. highly irregular graph
m Regular graph has fixed degree distribution, irregular
graphs can be extremely skewed
m Vertex-centric parallelism quickly “breaks down”
There are many proposed techniques in the literature to
overcome this challenge:
m Hierarchical parallelism (Hong et al., PPoPP 2011)

m Graph structure modification (e.g., “SlimCell” by Besta
et al., IPDPS 2017)
m Loop Collapse (Slota et al., IPDPS 2015)
We use a loop collapse method because it is fully parallelizable,
requires no modification to the graph adjacency structure, and

can be used with arbitrary workloads such as queues.
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Loop Collapse for Graph-based GPU Parallelism

Manhattan Collapse: Optimization technique for nested
loops (possibly) first appearing in the literature for Cray XMT
systems!.

m Many graph-based algorithms
follow a nested loop structure
— For some set of vertices S
(outer loop), process all of
their adjacencies from the
global adjacency list E(G)
(inner loop)

m The Manhattan Collapse
assigns each unit of inner loop

L EEEIE I work to a given thread ¢ within
a thread block T'

— Regardless of the order of

items in the outer loop!

1Ringenburg and Choi, 2009
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Communication - Chaos of Asynchronicity

When developing XtraPuLP's original communication strategy:

m Observation: wild oscillations in part assignments due to
computations using stale data.

m Solution: slow things down, limit number of possible updates by
only giving each rank a weight allocation of possible updates.

Now with G-XtraPuLP:

m We similarly limit the amount of updates performed by a given
GPU on a given iteration by tightening the update criteria.

m Early iterations: only updates that improve quality by at least x are
allowed.

m Later iterations: we loosen this restriction by decrementing z
towards zero.

m End result: the number of updates per-iteration decreases, which
makes our asynchronous computations more “similar” to
synchronous computations.
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The tradeoffs on a single node

Single node G-PuLP vs. PuLP

Depending on how much we “limit” updates per GPU per iteration,
there's a rather large spectrum of quality< time for CPU and GPU PuLP.
Below is possibly the best empirical case for quality, with the ratio of
PuLP / G-PuLP for cut (top) and time (bottom). Bigger is better.
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And into distributed memory with G-XtraPulLP

meh

The good: We see speedup for G-XtraPuLP vs. single node.
The bad: Time on average is worse than XtraPuLP.
The ugly: Quality can be much worse than XtraPulLP.
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Discussion and Future Work

We still have a bit of work to “close the gap” in terms of
quality vs. speed.

m Further tune the current approach
m Investigate other parallelization schemes if current ends
up being too limiting
Other future work:

m (reduced) Multi-level methods to improve quality while
retaining speed
m Integration into Zoltan2/Trilinos

m Hierarchical considerations for GPU/CPU or cache-based
computations
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Conclusions and thanks!

Major takeaways:
m We implement (Xtra)PuLP on GPU as G-(Xtra)PuLP.

m We can improve speed on GPU relative to CPU or come
close in quality, but not both (yet).

m Addressing the above and scaling out to distributed
memory are primary avenues of future work.

Thank you! Contact below with any questions.

Note: Looking for a PhD student to work on these problems.

slotag@rpi.edu  www.gmslota.com
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