
Direct Graph Ordering Optimization

for Cache-Efficient Graph Analysis

Michael Mandulak1 Ruochen Hu1 George M. Slota1

1Rensselaer Polytechnic Institute

SIAM Annual Meeting - Graph and Matrix Ordering and
Coarsening

15 July 2022

Graph Ordering Problem
Motivation

Goal: Improve Analysis Measures using Refinement

▶ Analysis Runtime

▶ Analysis Cache Efficiency

Why?

▶ Faster graph analysis – growing network sizes.

▶ Memory access pattern concerns on HPC systems.
Focus:

▶ Improve vertex locality for improved memory access

patterns.

▶ NP-hard – heuristic and approximation solutions.

▶ Experimental study – is optimization viable?

Graph Ordering Problem
Background

Problem:

▶ Undirected graph G = (V[0, n), E ⊆ V × V), find

permutation

π : V→N to minimize a metric.

Metrics:

▶ Linear Gap Arrangement (LinGap) problem:

𝐿𝑖𝑛Gap 𝐺, π = ෍
𝑢∈𝑁

෍
𝑣𝑖∈sN u

|π 𝑢 − π 𝑣 | .

▶ Log Gap Arrangement (LogGap) problem:

𝐿𝑜𝑔𝐺𝑎𝑝 𝐺, π =෍
𝑢∈𝑁

෍
𝑣𝑖∈sN u

log(π 𝑢 − π 𝑣) .

Experimental Study

Considerations:

▶ What analysis algorithms can we test with?

▶ What ordering methods can we compare with?

▶ How do our metrics relate to analysis measures?

▶ How should we refine?

Analysis Algorithms
Memory Access

Focus: Vertex-centric approaches with CPU-based shared

memory parallelism.

PageRank

▶ Sparse matrix-vector multiplication.

▶ Compressed Sparse Row locality.

Louvain

▶ Coarsening through edge density.

▶ Ordering dependent within neighborhoods.
Multistep

▶ Traversal and propagation connectivity.

▶ BFS-based vertex access.

Ordering Methods

Natural Ordering

Rabbit

▶ Community generation and mapping to cache-hierarchies.

▶ Optimizes for cache efficiency.

Layered Label Propagation (LLP)

▶ Community detection through label propagation.

▶ Considers global distribution of labels.

▶ Optimizes for compression.
Shingle

▶ Order by neighborhood commonalities.

▶ Optimizes for compression.

Metric Correlation
LinGap (Top) & LogGap (Bottom)

Refinement Method
Algorithm

Results Collection

Considerations:

▶ What graphs to test on?

▶ How much refinement should we conduct?

▶ What observations can be drawn from results?

▶ How are these results to be used?

Experimentation

Data: Diverse classes and sizes

▶ SNAP, DIMACS, WebGraph

Collection:

▶ Ten runs per analysis algorithm per initial ordering per

refinement method.

Architecture:

▶ AMD system – 2TB DDR4 RAM.

▶ Cache per core: 4MiB L1, 64 MiB L2, 256MiB shared L3 per

socket.

Refinement Percent
LiveJournal

Results
PageRank

Results
Louvain

Results
Multistep

Results Summary

Observations:

▶ High impact from an initial Rabbit ordering.

▶ Refinement with a Rabbit ordering promising.

▶ Improvement trends upon algorithm-generated orderings with

refinement.

Contributions

▶ Experimental study into the explicit refinement of

vertex orderings.

▶ LinGap and LogGap metrics show promising

correlations with PageRank analysis measures.

▶ Metrics improve in spikes throughout refinement.

▶ Refinement is most effective on an initial Rabbit

ordering.

▶ Optimization shows promising improvements to

heuristic methods.

Future Works

Refinement Testing

▶ Further testing of degree-based refinement – more graph

classes and sizes.

▶ More diverse analysis algorithms – not TLAV.

Improved Refinement

▶ Explicit refinement on subgraphs.

▶ Alternate partitioning methods for refinement.

▶ Apply spectral and multi-level methods to the refinement
process.

Future Works
Cont.

Optimization

▶ Apply linear and non-linear programming models to

adjacency lists for our metrics.

▶ Address runtime growth concerns with such optimization

models.

▶ Apply to subgraphs for easily distributed computing?

Metrics

▶ Single metric that is memory access pattern-agnostic?

▶ Further experimentation with current metrics – determine

properties of each for a new metric?

▶ Spectral considerations in metrics?

Acknowledgement & Contact

Acknowledgement

▶ This work is supported by the National Science

Foundation under Grant No. 2047821.

Contact

▶ Michael Mandulak: mandum@rpi.edu

▶ George Slota: slotag@rpi.edu

