
Irregular Graph Algorithms on Modern

Multicore, Manycore, and Distributed

Processing Systems
Comprehensive Examination

George M. Slota

Scalable Computing Laboratory
Department of Computer Science and Engineering

The Pennsylvania State University

11 Feb. 2015
1 / 84

Presentation Overview

Motivation

Color-coding – Fascia & FastPath

Graph Connectivity – The Multistep Method

Distributed Graph Layout – PuLP and DGL

Conclusions

2 / 84

Motivation

Graph analysis is key for the study of biological, chemical,
social, and other networks
Real-world graphs are big, irregular, complex

Graph analytics is one of DARPA’s 23 toughest
mathematical challenges
Facebook graph: 800M people, 100B friendships
Web graph: 3.5B sites, 129B links
Brain graph: 100B neurons, 1,000T synaptic connections

Modern computational systems are also big and complex
Multiple levels of parallelism, memory hierarchy,
configurations
Heterogenous – host, GPU, coprocessors (Xeon Phi
MIC)
Optimization – account for socket-level, node-level, and
distributed

3 / 84

Motivation
Goals of Research

How do we design parallel graph algorithms for
computational efficiency under all of the aforementioned
difficulties?

What algorithmic traits are common to various irregular
graph algorithms that we can optimize for?

How do we store/organize graphs efficiently in shared and
distributed memory?

4 / 84

Color-coding and Fascia, FastPath

Part 1: Color-coding – subgraph counting and enumeration,
minimum-weight path finding

5 / 84

Color-coding and Fascia, FastPath
Subgraph Counting

6 / 84

Color-coding and Fascia, FastPath
Subgraph Counting

6 / 84

Color-coding and Fascia, FastPath
Subgraph Counting

6 / 84

Color-coding and Fascia, FastPath
Subgraph Counting

6 / 84

Color-coding and Fascia, FastPath
Subgraph Counting

6 / 84

Color-coding and Fascia, FastPath
Subgraph Enumeration

7 / 84

Color-coding and Fascia, FastPath
Subgraph Enumeration

7 / 84

Color-coding and Fascia, FastPath
Subgraph Enumeration

7 / 84

Color-coding and Fascia, FastPath
Why do we want fast algorithms for subgraph counting, min-weight path finding?

Important to bioinformatics, chemoinformatics, social
network analysis, communication network analysis, etc.

Forms basis of more complex analysis

Motif finding
Graphlet frequency distance (GFD)
Graphlet degree distributions (GDD)
Graphlet degree signatures (GDS)

Counting and enumeration on large networks is very
tough, O(nk) complexity for näıve algorithm

Finding minimum-weight paths – NP-hard problem

8 / 84

Color-coding and Fascia, FastPath
Motif finding, GFD, and GDD, min-weight paths

Motif finding: Look for all subgraphs of a certain size (and structure)

GFD: Numerically compare occurrence frequency to other networks
GDD, GDS: Numerically compare embeddings/vertex distribution
Min-weight paths: often biological significance in PPI nets

●

● ●
●

●

●
●

● ●

●

●

0.1

1.0

1 2 3 4 5 6 7 8 9 10 11
Subgraph

R
el

at
iv

e
F

re
qu

en
cy

●●●●E.coli S.cerevisiae H.pylori C.elegans

9 / 84

Color-coding and Fascia, FastPath
Motif finding, GFD, and GDD, min-weight paths

Motif finding: Look for all subgraphs of a certain size (and structure)
GFD: Numerically compare occurrence frequency to other networks

GDD, GDS: Numerically compare embeddings/vertex distribution
Min-weight paths: often biological significance in PPI nets

9 / 84

Color-coding and Fascia, FastPath
Motif finding, GFD, and GDD, min-weight paths

Motif finding: Look for all subgraphs of a certain size (and structure)
GFD: Numerically compare occurrence frequency to other networks

GDD, GDS: Numerically compare embeddings/vertex distribution
Min-weight paths: often biological significance in PPI nets

9 / 84

Color-coding and Fascia, FastPath
Motif finding, GFD, and GDD, min-weight paths

Motif finding: Look for all subgraphs of a certain size (and structure)
GFD: Numerically compare occurrence frequency to other networks
GDD, GDS: Numerically compare embeddings/vertex distribution

Min-weight paths: often biological significance in PPI nets

9 / 84

Color-coding and Fascia, FastPath
Motif finding, GFD, and GDD, min-weight paths

Motif finding: Look for all subgraphs of a certain size (and structure)

GFD: Numerically compare occurrence frequency to other networks

GDD, GDS: Numerically compare embeddings/vertex distribution

Min-weight paths: often biological significance in PPI nets

9 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Color-coding for Approximate Subgraph Counting

Color-coding [Alon et al., 1995]: approximate count of tree-like non-induced subgraph

cntcolorful = 3, Ctotal = 33, Ccolorful = 3!, P = 3!
33

cntestimate =
cntcolorful

P
= 13.5

Each iteration can run in O(m · 2k · ek)

10 / 84

Color-coding and Fascia, FastPath
Related work for color-coding and subgraph counting

Alon et al.’s Implementation [Alon et al., 2008]

Motif finding on PPI networks

MODA [Omidi et al., 2009]

Uses approximation or exact scheme
Motif finding on small networks

PARSE [Zhao et al., 2010a]

Distributed color-coding algorithm using MPI
Handles large graphs through partitioning

SAHAD [Zhao et al., 2012b]

Distributed color-coding algorithm using Hadoop
(MapReduce)
Handles vertex-labeled graphs, computes graphlet degree
distributions

11 / 84

Color-coding and Fascia, FastPath
Fascia

Fascia: Fast Approximate Subgraph Counting and Enumeration

Count and enumerate subgraphs, supports node labels

Perform motif finding, calculate GDD

Algorithmic Optimizations:

Combinatorial indexing scheme for color mappings
Shared and distributed memory parallelization strategies
Memory reduction via array design, hashing schemes
Speedup via template partitioning and work avoidance

12 / 84

Color-coding and Fascia, FastPath
Algorithmic Overview Description

1: Partition input template T (k vertices) into subtemplates Si using
single edge cuts.

2: Select Niter to be performed
3: for i = 1 to Niter do
4: Randomly assign to each v in G a color between 0 and k − 1.
5: for all v ∈ G do
6: Use a dynamic programming scheme to count colorful
7: non-induced occurrences of T rooted at v .
8: Take average of all Niter counts to be final count.

13 / 84

Color-coding and Fascia, FastPath
Template partitioning

14 / 84

Color-coding and Fascia, FastPath
Fascia Dynamic Programming Step

1: for all sub-templates Si created from partitioning T , in reverse order
they were created during partitioning do

2: for all vertices v ∈ G do
3: if Si consists of a single node then
4: Set table[Si][v][color of v] := 1
5: else
6: Si consists of active child ai and passive child pi

7: for all colorsets C of unique values mapped to S do
8: Set count := 0
9: for all u ∈ N(v), N(v) is the neighborhood of v do

10: for all possible combinations Ca and Cp created by
11: splitting C and mapping onto ai and pi do
12: count += table[ai][v][Ca]·table[pi][u][Cp]

13: Set table[Si][v][C] := count

14: templateCount :=
∑
v

∑
C

table[T][v][C]

15 / 84

Color-coding and Fascia, FastPath
FastPath Dynamic Programming Step

1: Initialize all weights[1][v ∈ V][1 · · · c1]←∞
2: for i = 2 to L + 1 do
3: for all vertices v ∈ G do
4: Si consists of active child ai and passive child pi

5: |ai | = 1, |pi | = i − 1
6: for all colorsets C of unique values mapped to S do
7: Set minw := 0
8: for all u ∈ N(v), N(v) is the neighborhood of v do
9: for all possible combinations Ca and Cp created by

10: splitting C and mapping onto ai and pi do
11: Set wa := EdgeWeight(u, v)
12: Set wp := Weights[i − 1][u][Cp]
13: if wa + wp ≤ minw then
14: Set minw := wa + wp

15: Set Weights[Si][v][C] := minw

16: Return Min(Weights[SL+1][· · ·][· · ·])

16 / 84

Color-coding and Fascia, FastPath
Colorset and count calculation for Fascia

17 / 84

Color-coding and Fascia, FastPath
Combinatorial indexing scheme

Combinatorial number system to represent colorsets: C =
(

c1
1

)
+
(

c2
2

)
+ · · · +

(
ck
k

)
, where

c1 < c2 < · · · < ck

Precompute indexes and ordering in advance, store in table (<2MB for k = 12)

This avoid avoids explicit handling/passing of colors, or computation of colorset indexes during runtime

18 / 84

Color-coding and Fascia, FastPath
Memory optimizations

We implement both a three-level array and hash table

Initialize storage in table on per-vertex basis
Hash table exploits random coloring to uniformly
distribute and calculate keys
Generally: array method more memory efficient for
dense skewed graphs, hash table more efficient for
sparse graphs

CSR representation in distributed setting

For each subtemplate we have a rectangular table
(v × C)
Convert to CSR (compressed sparse row format)
Observe up to 75% reduction in distributed
communication, even for dense graphs

19 / 84

Color-coding and Fascia, FastPath
Template partitioning and work avoidance

Basic partitioning: try to evenly partition template

Observation: algorithm runtime is proportional to
∑

i

(k
Si

)
·
(Si

ai

)
, i.e.

∑
i
|Ci | · |Cai |

This sum can be minimized by a one-at-a-time partitioning approach
On certain templates, this sum can be minimized by exploiting latent symmetry,
HOWEVER ...

20 / 84

Color-coding and Fascia, FastPath
Template partitioning and work avoidance

Basic partitioning: try to evenly partition template

Observation: algorithm runtime is proportional to
∑

i

(k
Si

)
·
(Si

ai

)
, i.e.

∑
i
|Ci | · |Cai |

This sum can be minimized by a one-at-a-time partitioning approach
On certain templates, this sum can be minimized by exploiting latent symmetry,
HOWEVER ...

20 / 84

Color-coding and Fascia, FastPath
Template partitioning and work avoidance

Basic partitioning: try to evenly partition template

Observation: algorithm runtime is proportional to
∑

i

(k
Si

)
·
(Si

ai

)
, i.e.

∑
i
|Ci | · |Cai |

This sum can be minimized by a one-at-a-time partitioning approach

On certain templates, this sum can be minimized by exploiting latent symmetry,
HOWEVER ...

20 / 84

Color-coding and Fascia, FastPath
Template partitioning and work avoidance

Basic partitioning: try to evenly partition template

Observation: algorithm runtime is proportional to
∑

i

(k
Si

)
·
(Si

ai

)
, i.e.

∑
i
|Ci | · |Cai |

This sum can be minimized by a one-at-a-time partitioning approach
On certain templates, this sum can be minimized by exploiting latent symmetry,
HOWEVER ...

20 / 84

Color-coding and Fascia, FastPath
Shared memory parallelization

Inner loop parallelization: forall v ∈ G

Outer loop parallelization: for i = 1 to Niter

Outer loop requires individual dynamic tables for each separate
iteration, storage increases linearly with thread count

Possible to do arbitrary combinations, e.g. a 12 thread machine
with 2 outer loop threads each with 6 inner loop threads

1: Partition input template T
2: Select Niter to be performed
3: for i = 1 to Niter in parallel do
4: Randomly color G
5: for all Si created during partitioning, ai and pi children do
6: for all v ∈ G in parallel do
7:
8: Take average of all Niter counts to be final count.

21 / 84

Color-coding and Fascia, FastPath
Distributed memory parallelization - partitioned counting

1: Partition input template T
2: Select Niter to be performed
3: for i = 1 to Niter in parallel do
4: Randomly color G
5: for all Si created during partitioning, ai and pi children do
6: Init table for Vr (vertex partition on task r)
7: for all v ∈ Vr in parallel do
8:
9: Set 〈N, I ,B〉 := Compress(Tablei,r)

10: All-to-all exchange of 〈N, I ,B〉
11: Update Tablei,r based on information received

12: Set Countr := Countr +
Vr∑
v

CT∑
c
CountT ,c,v

13: Count ← Reduce(Countr)
14: Scale Count based on Niter and colorful embed prob.

22 / 84

Color-coding and Fascia, FastPath
Fascia large network runtimes – shared memory

Parallel (16 cores) results for all unlabeled (left) and labeled (right)
templates on Portland network (n=1.6M, m=31M)

8 possible demographic labels (M/F and kid/youth/adult/senior)

∼200 seconds for up to 12 vertex unlabeled template, less than 1
second for all labeled templates

0

50

100

150

200

U3−1 U3−2 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U12−1 U12−2
Template

S
in

gl
e

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

0.0

0.2

0.4

0.6

L3−1 L3−2 L5−1 L5−2 L7−1 L7−2 L10−1 L10−2 L12−1 L12−2
Labeled Template

S
in

gl
e

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

23 / 84

Color-coding and Fascia, FastPath
Fascia large network runtimes – distributed memory

Parallel (MPI+OpenMP, 16 tasks, 256 total cores) results for sk
web crawl (n=44M, m=1.6B) and Twitter (n=44M, m=2.0B)

Less than 15 minutes required to count 10 vertex templates

sk−2005 Twitter

0

250

500

750

 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2
Template

S
in

gl
e

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

24 / 84

Color-coding and Fascia, FastPath
Fascia approximation Error in template counts

Enron (left) with U3-1 and U5-1 and H. Pylori (right)
across all 11 unique templates of size 7

Error increases with template size and inversely to
network size

●

●

● ●

● ●
●

● ●
●

0.000

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9 10
Iterations

E
rr

or

●● U3−1 U5−1

●

●

●

●
●0.000

0.025

0.050

0.075

1 10 100 1000 10000
Iterations

E
rr

or

25 / 84

Color-coding and Fascia, FastPath
Fascia parallel Scaling – distributed memory

Partitioned counting scaling on Orkut (n=3.1M, m=117M) and sk
(n=44M, m=1.6B)

Total speedups of about 4× for Orkut and 2.5× for sk for 16 tasks

Communication costs increase proportionally to inter-task edges

●
● ●

●
●

●
●

● ●

Orkut sk−2005

0

300

600

900

100

200

1 2 4 8 16 1 2 4 8 16
NodesS

in
gl

e
Ite

ra
tio

n
E

xe
cu

tio
n

T
im

e
(s

)

Part ● Communication Computation Total

26 / 84

Color-coding and Fascia, FastPath
Fascia comparison to previous work

Fascia and [Alon et al., 2008], both running on 16 cores

Network Motifs Subgraphs Alon et al. FASCIA Improv.

S. cerevisiae 7 11 120s 7.5s 16×

Fascia (16 cores) and [Zhao et al., 2010b] (160 cores)

Network Template Näıve PARSE Fascia Speedup

GNP50k U6-1 86s ∼11s 0.24s 46×

Fascia (16 cores) and [Zhao et al., 2012a] (1344 cores)

Network Template Näıve SAHAD Fascia Speedup

GNP100k U7-3 5420s ∼360s 0.3s 1,400×

27 / 84

Color-coding and Fascia, FastPath
FastPath execution time and scaling

Observe close or faster execution time to state-of-the-art Hüffner et
al. code [Hüffner et al., 2008]

Speedup proportional to path length, due to increasing ratio of
parallel to serial work

●

●

●

●

●

●

0

50

100

150

200

4 5 6 7 8 9
Path Length

50
0

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

Program ● HWZ HWZ−Heuristic FastPath FastPath−Parallel

●

●

●

●

●

1

4

8

12

16

1 2 4 8 16
Cores

P
ar

al
le

l S
ca

lin
g

Length ● 4 5 6 7 8 9

28 / 84

Color-coding and Fascia, FastPath
Future Work

Complex template structures, directed edges, edge labels

Color-coding can theoretically be used to count all
bounded tree-width subgraphs, we only consider
tree-width=1 for Fascia

Color-coding can also find simple cycles

Fascia algorithm is computationally intensive, utilize
GPU accelerators

Implement known optimizations for FastPath [Hüffner
et al., 2008, Gabr et al., 2012]

29 / 84

Connectivity Algorithms for Multicore Platforms

Part 2: Multistep – approaches for connected, weakly
connected, and strongly connected components

30 / 84

Connectivity Algorithms for Multicore Platforms
Motivation for parallel connectivity algorithms

Block Triangular Form (BTF): Useful in
shared memory parallel direct and incomplete
factorizations.

Computing the strongly connected
components (SCCs) of a matrix is key for
computing the BTF.

SCCs are also useful in formal verificaton and
analyzing web-graphs.

SCCs algorithms are also a good candidate to
study task-parallel vs data-parallel algorithms
in the existing architectures with the available
runtime systems.

Connectivity algorithms are also useful in
general network analysis

Do not
factor Threads

31 / 84

Connectivity Algorithms for Multicore Platforms
SCC, CC, WCC definitions

CC: sets of vertices linked by undirected paths

WCC: CC for directed graphs, when considering all edges undirected
SCC: maximal strongly connected subgraphs, path from every
vertex to every other vertex

32 / 84

Connectivity Algorithms for Multicore Platforms
SCC, CC, WCC definitions

CC: sets of vertices linked by undirected paths

WCC: CC for directed graphs, when considering all edges undirected
SCC: maximal strongly connected subgraphs, path from every
vertex to every other vertex

32 / 84

Connectivity Algorithms for Multicore Platforms
SCC, CC, WCC definitions

CC: sets of vertices linked by undirected paths
WCC: CC for directed graphs, when considering all edges undirected

SCC: maximal strongly connected subgraphs, path from every
vertex to every other vertex

32 / 84

Connectivity Algorithms for Multicore Platforms
SCC, CC, WCC definitions

CC: sets of vertices linked by undirected paths
WCC: CC for directed graphs, when considering all edges undirected
SCC: maximal strongly connected subgraphs, path from every
vertex to every other vertex

32 / 84

Connectivity Algorithms for Multicore Platforms
Previous Parallel SCC Algorithms

Forward-Backward (FW-BW) and Trimming [Fleischer
et al., 2000, W. McLendon III et al., 2005]

Coloring [Orzan, 2004]

State-of-the-art – FW-BW with low overhead task-parallel
runtime environment and several optimizations [Hong
et al., 2013]

Others [Barnat and Moravec, 2006]

Standard sequential algorithm is Tarjan’s
algorithm [Tarjan, 1972]

DFS-based recursive algorithm.
Not amenable to a scalable parallel algorithm.

33 / 84

Connectivity Algorithms for Multicore Platforms
Multistep Method

1: procedure Multistep(G(V , E))

2: T ← MS-SimpleTrim(G)

3: V ← V \ T

4: Select v ∈ V for which din(v) ∗ dout (v) is maximal

5: D ← BFS(G(V , E(V)), v)

6: S ← D ∩ BFS(G(D, E ′(D)), v)

7: V ← V \ S

8: while NumVerts(V) > ncutoff do

9: C ← MS-Coloring(G(V , E(V)))

10: V ← V \ C

11: Tarjan(G(V , E(V)))

Do simple trimming
Perform single iteration of FW-BW to remove giant SCC
Do coloring until some threshold of remaining vertices is
reached
Finish with serial algorithm
Easily extendable to CC, WCC

34 / 84

Connectivity Algorithms for Multicore Platforms
Trimming algorithm

Used to find trivial SCCs

Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop
(simple trimming)
Repeat iteratively until no more vertices can be removed (complete trimming)

35 / 84

Connectivity Algorithms for Multicore Platforms
Trimming algorithm

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop
(simple trimming)

Repeat iteratively until no more vertices can be removed (complete trimming)

35 / 84

Connectivity Algorithms for Multicore Platforms
Trimming algorithm

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop
(simple trimming)

Repeat iteratively until no more vertices can be removed (complete trimming)

35 / 84

Connectivity Algorithms for Multicore Platforms
Trimming algorithm

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop
(simple trimming)
Repeat iteratively until no more vertices can be removed (complete trimming)

35 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot

Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot

Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))

Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))

Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Forward-Backward (FW-BW) algorithm

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩ D)

36 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors

Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors

Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets

Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets

Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC

Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.

Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Coloring algorithm

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

37 / 84

Connectivity Algorithms for Multicore Platforms
Multistep parallelization and optimization for multicore

Multistep – primary subroutines are BFS and color propagation

Thread-owned queues, combine asynchronously

Avoid all explicit locking when possible for shared data

Boolean vs. bitmap for status marking

Per-socket graph partitioning for multi-socket systems

Direction-optimizing BFS [Beamer et al., 2012]

38 / 84

Connectivity Algorithms for Multicore Platforms
Multistep timing breakdown

The graph structure determines the runtime of different stages
Large number of non-trivial SCCs affects FW-BW (tasking
overhead)
Large diameter or a large SCC affects coloring

0.00

0.25

0.50

0.75

1.00

T
w

itter

ItW
eb

W
ikiL

in
ks

L
iveJou

rn
al

X
yce

R
−

M
A

T
_

2
4

G
N

P
_

1

G
N

P
_

10

Graph

E
xe

cu
ti

on
 T

im
e

P
ro

p
or

ti
on

Step 1−Trim 2−FWBW 3−MS−Coloring 4−Serial

39 / 84

Connectivity Algorithms for Multicore Platforms
Multistep strong scaling

Both Multistep and Hong et al scale well in most graphs.
Lots of small non-trivial SCCs in ItWeb affects the performance of
Hong et all.
Relative to Tarzan’s Algorithm, Multistep results in better speedups.

Twitter ItWeb WikiLinks LiveJournal

Xyce R−MAT_24 GNP_1 GNP_10

5

10

15

20

0

1

2

3

1
2
3
4
5

2.5
5.0
7.5

10.0
12.5

1
2
3
4

2.5

5.0

7.5

10
20
30
40

0.4

0.8

1.2

1.6

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
p

ee
d

u
p

 v
s.

 T
ar

ja
n

's

Algorithm Multistep Hong

40 / 84

Connectivity Algorithms for Multicore Platforms
Strong scaling for CC

Multistep for CC compared to MS-Coloring and Ligra CC
color-based approach

Scaling shown against baseline serial BFS approach

Friendster Orkut Cube Kron_21

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0

20

40

60

0

2

4

6

8

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 S
er

ia
l

Algorithm Multistep Ligra MS−Coloring

41 / 84

Connectivity Algorithms for Multicore Platforms
Future work

Further explore effects of BFS/color propagation
optimizations on various multicore system configurations

Distributed memory implementation of Multistep

Biconnected components, triconnected components, etc.

42 / 84

Distributed Graph Layout

Part 3: Distributed Graph Layout – PuLP Partitioning &
DGL vertex ordering

43 / 84

Distributed Graph Layout
Partitioning

Graph Partitioning: Given a graph G (V ,E) and p
processes or tasks, assign each task a p-way disjoint
subset of vertices and their incident edges from G

Balance constraints – (weighted) vertices per part,
(weighted) edges per part
Quality metrics – edge cut, communication volume,
maximal per-part edge cut

We consider:

Balancing edges and vertices per part
Minimizing edge cut (EC) and maximal per-part edge
cut (ECmax)

44 / 84

Distributed Graph Layout
Partitioning - Objectives and Constraints

Lots of graph algorithms follow a certain iterative model

BFS, SSSP, FASCIA subgraph counting
Computation, synchronization, communication,
synchronization, computation, etc.

Computational load: proportional to vertices and edges
per-part

Communication load: proportional to total edge cut and
max per-part cut

We want to minimize the maximal time among tasks for
each comp/comm stage

45 / 84

Distributed Graph Layout
Partitioning - HPC Approaches

(Par)METIS [Karypis and Kumar],
PT-SCOTCH [Chevalier and Pellegrini, 2008],
Chaco [Hendrickson and Leland, 1995], etc.

Multilevel methods:
Coarsen the input graph in several iterative steps
At coarsest level, partition graph via local methods
following balance constraints and quality objectives
Iteratively uncoarsen graph, refine partitioning

Problem 1: Designed for traditional HPC scientific
problems (e.g. meshes) – limited balance constraints and
quality objectives

Problem 2: Multilevel approach – high memory
requirements, can run slowly and lack scalability

46 / 84

Distributed Graph Layout
Label Propagation

Label propagation: initialize a graph with n labels,
iteratively assign to each vertex the maximal per-label
count over all neighbors to generate clusters [Raghavan
et al., 2007]

Clustering algorithm - dense clusters hold same label
Fast - each iteration in O(n + m)
Näıvelyparallel - only per-vertex label updates
Observation: Possible applications for large-scale
small-world graph partitioning

47 / 84

Distributed Graph Layout
Label Propagation

48 / 84

Distributed Graph Layout
Label Propagation

48 / 84

Distributed Graph Layout
Label Propagation

48 / 84

Distributed Graph Layout
Label Propagation

48 / 84

Distributed Graph Layout
Label Propagation

48 / 84

Distributed Graph Layout
Partitioning - “Big Data” Approaches

Methods designed for small-world graphs (e.g. social
networks and web graphs)

Exploit label propagation/clustering for partitioning:
Multilevel methods - use label propagation to coarsen
graph [Wang et al., 2014, Meyerhenke et al., 2014]
Single level methods - use label propagation to directly
create partitioning [Ugander and Backstrom, 2013,
Vaquero et al., 2013]

Problem 1: Multilevel methods still can lack scalability,
might also require running traditional partitioner at
coarsest level

Problem 2: Single level methods can produce
sub-optimal partition quality

49 / 84

Distributed Graph Layout
PuLP

PuLP : Partitioning Using Label Propagation

Utilize label propagation for:

Vertex balanced partitions, minimize edge cut (PuLP)
Vertex and edge balanced partitions, minimize edge cut
(PuLP-M)
Vertex and edge balanced partitions, minimize edge cut
and maximal per-part edge cut (PuLP-MM)
Any combination of the above - multi objective, multi
constraint

50 / 84

Distributed Graph Layout
PuLP algorithm

Randomly initialize partition labels

Run label propagation to create initial parts
Iteratively balance for vertices, minimize edge cut
Balance for edges, minimize per-part edge cut

51 / 84

Distributed Graph Layout
PuLP algorithm

Randomly initialize partition labels
Run label propagation to create initial parts

Iteratively balance for vertices, minimize edge cut
Balance for edges, minimize per-part edge cut

51 / 84

Distributed Graph Layout
PuLP algorithm

Randomly initialize partition labels
Run label propagation to create initial parts
Iteratively balance for vertices, minimize edge cut

Balance for edges, minimize per-part edge cut

51 / 84

Distributed Graph Layout
PuLP algorithm

Randomly initialize partition labels
Run label propagation to create initial parts
Iteratively balance for vertices, minimize edge cut
Balance for edges, minimize per-part edge cut

51 / 84

Distributed Graph Layout
Vertex Ordering

We consider layout as both partitioning-vertex ordering

Per-part vertex ordering – increase locality of memory
references

RCM commonly used in sparse matrix and graph
applications [Cuthill and McKee, 1969]

DGL ordering – RCM approximation that is both faster
to calculate and can improve computation time for
various algorithms

52 / 84

Distributed Graph Layout
PuLP Running Times - Serial (top), Parallel (bottom)

In serial, PuLP-MM runs 1.7× faster (geometric mean) than next
fastest of METIS and KaFFPa

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

 LiveJournal R−MAT Twitter

0

100

200

300

0

500

1000

1500

5000

10000

15000

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

R
un

ni
ng

 T
im

e

Partitioner ● PULP PULP−M PULP−MM METIS METIS−M KaFFPa−FS

In parallel, PuLP-MM runs 14.5× faster (geometric mean) than
next fastest (ParMETIS times are fastest of 1 to 256 cores)

● ●

 LiveJournal R−MAT Twitter

0

25

50

75

0

500

1000

1500

0

5000

10000

15000

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

R
un

ni
ng

 T
im

e

Partitioner ● PULP PULP−M PULP−MM ParMETIS METIS−M (Serial) PULP−M (Serial)

53 / 84

Distributed Graph Layout
PuLP memory utilization for 128 partitions

PuLP utilizes minimal memory, O(n), 8-39× less than
other partitioners

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×

54 / 84

Distributed Graph Layout
PuLP quality - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs
PuLP-MM produces better max edge cut than METIS-M over most graphs

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

LiveJournal R−MAT Twitter

0.1

0.2

0.3

0.4

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

E
dg

e
C

ut
 R

at
io

Partitioner ● PULP−M PULP−MM METIS−M

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

LiveJournal R−MAT Twitter

0.02

0.04

0.06

0.08

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

M
ax

 P
er

−
P

ar
t R

at
io

Partitioner ● PULP−M PULP−MM METIS−M

55 / 84

Distributed Graph Layout
PuLP– balanced communication

uk-2005 graph from LAW, METIS-M (left) vs. PuLP-MM (right)
Blue: low comm; White: avg comm; Red: High comm
PuLP reduces max inter-part communication requirements and
balances total communication load through all tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Part Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P
ar

t N
um

be
r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Part Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P
ar

t N
um

be
r

56 / 84

Distributed Graph Layout
PuLP balancing computation and communication

16 tasks for Fascia with LiveJournal graph with random (left),
METIS (middle), and PuLP (right) partitionings

Note tradeoff between work balance and communication load, need
to account for both in many irregular graph applications

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

57 / 84

Distributed Graph Layout
DGL ordering – computational speedups

Speedup with DGL ordering vs. random and RCM

With 16 parts for Fascia (top) and 64 parts for SSSP (bottom)

Better speedups on larger graphs, cache performance more
important

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

58 / 84

Future Work

Explore techniques for avoiding local minima, such as
simulated annealing, etc.

Further parallelization in distributed environment for
massive-scale graphs

Explore tradeoff and interactions in various parameters
and iteration counts

59 / 84

Conclusions
Improvements with implemented algorithms

Algorithmic improvements give Fascia and FastPath
orders-of-magnitude speedup over prior art

Memory improvements allow Fascia to perform counts
of non-trivial subgraphs on graphs an order-of-magnitude
larger than has ever previously been attempted

Multistep demonstrates speedups compared to previous
and current state-of-the-art component decomposition
algorithms

Partitioning with PuLP gives considerable reduction in
computation and memory requirements relative to the
current state of the art with minimal to no reduction in
cut quality.

60 / 84

Conclusions
Overall lessons learned

Parallel algorithm design

Minimizing synchronization costs
Keeping memory accesses local
Even work distribution among threads and tasks

Identifying algorithmic traits across graph algorithms

Many graph algorithms follow an iterative nested-loop
structure
Many graph algorithms use common subroutines such as
BFS, etc.

Storing and organizing graphs efficiently in memory

Optimizing layout for specific graph types and
applications
Balance cost tradeoffs for both communication and
computation
Need for parameter tuning and experimental evaluation

61 / 84

Backup Slides

62 / 84

Color-coding and Fascia, FastPath
Template partitioning, work reduction

If |ai | = 1 or |pi | = 1, we can do ∼ 1
k of the original work,

Ca = color(v) or Cp = color(u) is fixed

If table[a][v][] = NULL, we avoid all work for v

Can do the same for all u ∈ N(v)

Order the way in which we process all Si to minimize memory usage

1: for all Si created during partitioning, ai and pi children do
2: for all v ∈ G , where table[ai][v] != NULL do
3: for all C possibly mapped to Si do
4: for all Cp, Ca from C , where Ca,Cp is fixed if
|ai | = 1 or |pi | = 1 do

5: for all u ∈ N(v), where table[pi][u] != NULL do
6: count += table[ai][v][Ca]·table[pi][u][Cp]

7: Set table[Si][v][C] := count

63 / 84

Color-coding and Fascia, FastPath
Networks and templates analyzed

Gordon at SDSC, 2× Xeon E5 @ 2.6GHz (Sandy Bridge), 64 GB
DDR3
Database of Interacting Proteins, SNAP, and Virginia Tech NDSSL

Network n m davg dmax

Portland 1,588,212 31,204,286 39.3 275
PA Road Net 1,090,917 1,541,898 2.8 9

Slashdot 82,168 438,643 10.7 2510
Enron 33,696 180,811 10.7 1383
E. coli 2,546 11,520 9.0 178

S. cerevisiae 5,021 22,119 8.8 289
H. pylori 687 1,352 3.9 54

C. elegans 2,391 3,831 3.2 187

U3-1 U3-2 U5-1 U5-2 U7-1

U7-2 U10-1 U10-2 U12-1 U12-2

64 / 84

Color-coding and Fascia, FastPath
Fascia memory savings – array and table methods

Memory requirements on Portland and PA Road network
for improved array (left) and hash table (right)
Using all UX-1 chain templates
Up to 20%-90% savings versus näıve method

● ●

●

●

●

● ●

●

●

●

● ● ●
●

●

0

5

10

15

20

3 5 7 10 12
Template Size

M
em

or
y

U
sa

ge
 (

G
B

)

●●● ●●● ●●●Naive Improved Improved − Labeled

Portland Network with Improved Array

● ● ●
●

●

● ●
●

●

●

● ●
●

●

●

0

5

10

15

3 5 7 10 12
Template Size

M
em

or
y

U
sa

ge
 (

G
B

)

●●● ●●● ●●●Naive Improved Hash Table

PA Road Network with Hash Table

65 / 84

Color-coding and Fascia, FastPath
Fascia communication savings – CSR representation

Comparison between maximal communication in GB required for
partitioned counting on Portland network

Geometric mean of 35% reduction, maximal of 77% reduction

0.0

2.5

5.0

7.5

10.0

12.5

U7−1 U7−2 U8−1 U8−2 U9−1 U9−2 U10−1 U10−2 U11−1 U11−2 U12−1 U12−2
Template

M
ax

 d
at

a
tr

an
sf

er
 s

iz
e

(G
B

)

Format CSR Table

66 / 84

Color-coding and Fascia, FastPath
Fascia parallel Scaling – shared memory

Inner loop for large graphs (forall v ∈ G)

Outer loop for small graphs (for i = 1 to Niter)

U12-2 Template on Portland (left) and Enron (right), 16 threads

About 12× speedup for inner loop on Portland

About 6× speedup for outer loop on Enron, 3.5× for inner loop

●

●

●

●
● ●

500

1000

1500

2000

2500

1 2 4 8 12 16
Processor Cores

E
xe

cu
tio

n
T

im
e

(s
)

●

●

●

●
●

●

0.1

0.2

0.3

1 2 4 8 12 16
Processor Cores

E
xe

cu
tio

n
T

im
e

(s
)

●● Inner Loop Outer Loop

67 / 84

Our Contributions

A Multistep method for SCC detection:

Data parallel SCC detection with the advantages of
previous methods.
Uses minimal synchronization and fine-grained locking.

Faster and scales better than the previous methods.

Up to 9x faster than state-of-the-art Hong et al’s method.

Easily extendable to computing connected and weakly
connected components

68 / 84

Connectivity Algorithms for Multicore Platforms
Observations on previous algorithms

FW-BW can be efficient at finding large SCCs, but when
there are many small disconnected ones, the remainder
set will dominate, creating a large work imbalance

Using tasks for finding small SCCs has a lot of overhead,
even for efficient tasking implementations

Coloring is very inefficient at finding a large SCC, but is
efficient at finding many small ones

Data parallel, but colors reassigned multiple times in a
large SCC.

Tarjan’s algorithm runs extremely quick for a small
number of vertices. (100K)
Most real-world graphs have one giant SCC and many
many small SCCs
Multistep: combine the best of these methods

69 / 84

Multistep Method

Since we don’t care about (D \ S), (P \ S), R sets, we only need to look for (S = P ∩ D)

Begin as before, select pivot and find all of (D)
For backward search, only consider vertices already marked in (D)
For certain graphs, this can dramatically decrease the search space

70 / 84

Multistep Method

Since we don’t care about (D \ S), (P \ S), R sets, we only need to look for (S = P ∩ D)
Begin as before, select pivot and find all of (D)

For backward search, only consider vertices already marked in (D)
For certain graphs, this can dramatically decrease the search space

70 / 84

Multistep Method

Since we don’t care about (D \ S), (P \ S), R sets, we only need to look for (S = P ∩ D)
Begin as before, select pivot and find all of (D)
For backward search, only consider vertices already marked in (D)

For certain graphs, this can dramatically decrease the search space

70 / 84

Multistep Method

Since we don’t care about (D \ S), (P \ S), R sets, we only need to look for (S = P ∩ D)
Begin as before, select pivot and find all of (D)
For backward search, only consider vertices already marked in (D)

For certain graphs, this can dramatically decrease the search space

70 / 84

Multistep Method

Since we don’t care about (D \ S), (P \ S), R sets, we only need to look for (S = P ∩ D)
Begin as before, select pivot and find all of (D)
For backward search, only consider vertices already marked in (D)
For certain graphs, this can dramatically decrease the search space

70 / 84

Implementation Details
Extending Multistep to CC and WCC

1: procedure Multistep-(W)CC(G(V , E))

2: T ← MS-SimpleTrim(G)

3: V ← V \ T

4: Select v ∈ V for which din(v) ∗ dout (v) is maximal

5: S ← BFS(G(V , E(V) ∪ E ′(V)), v)

6: V ← V \ S

7: while NumVerts(V) > ncutoff do

8: C ← MS-Coloring(G(V , E(V) ∪ E ′(V)))

9: V ← V \ C

10: BFS-(W)CC(G(V , E(V) ∪ E ′(V)))

Simple to extend Multistep idea to CC, WCC

Trim zero degree verts

Run single BFS including both in and out edges for WCC

Perform Coloring with both in and out edges

Run standard serial BFS algorithm for (W)CC with remainder

71 / 84

Implementation Details
Multistep on GPU

GPU description template algorithm, bfs and coloring, etc.

72 / 84

Implementation Details
Multistep on GPU

implementation details, 3 approaches, what to optimize for

73 / 84

Implementation Details
Multistep on GPU

implementation details, delayed

74 / 84

Implementation Details
Multistep on GPU

implementation details, manhattan local

75 / 84

Implementation Details
Multistep on GPU

implementation details, manhattan global

76 / 84

Performance Results
Test Algorithms

Multistep: Simple trimming, parallel BFS, coloring until less than
100k vertices remain, serial Tarjan

FW-BW: Complete trimming, FW-BW algorithm until completion

Coloring: Coloring.

Serial: Serial Tarjan

Hong et al: FW-BW, custom task queue.

Multistep-(W)CC: Multistep for CC and WCC

Ligra: Ligra CC coloring implementation (Shun and Blelloch
PPoPP13)

77 / 84

Performance Results
Test Environment and Graphs

Compton (Intel): Xeon E5-2670 (Sandybridge), dual socket, 16
cores.

deg (S)CCsNetwork n m
avg max

D̃
count max

Twitter 53M 2000M 37 780K 19 12M 41M
ItWeb 41M 1200M 28 10K 830 30M 6.8M

WikiLinks 26M 600M 23 39K 170 6.6M 19M
LiveJournal 4.8M 69M 14 20K 18 970K 3.8M
XyceTest 1.9M 8.3M 4.2 246 93 400K 1.5M

RDF Data 1.9M 130M 70 10K 7 1.9M 1
RDF linkedct 15M 34M 2.3 72K 13 15M 1

R-MAT 20 0.56M 8.4M 15 24K 9 210K 360K
R-MAT 22 2.1M 34M 16 60K 9 790K 1.3M
R-MAT 24 7.7M 130M 17 150K 9 3.0M 4.7M

GNP 1 10M 200M 20 49 7 1 10M
GNP 10 10M 200M 20 49 7 10 5.0M

Friendster 66M 1800M 53 5.2K 34 70 66M
Orkut 3.1M 117M 76 33K 11 1 3.1M
Cube 2.1M 62M 56 69 157 47K 2.1M

Kron 21 1.5M 91M 118 213K 8 94 1.5M

78 / 84

Performance Results - GPU
BFS and colorings

●

●

●

●

●

●
●

●

●●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S

Algorithm ● H MG ML

●
●

●

●

●
●

●

●

●

●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S

Algorithm ● H MG ML

79 / 84

Performance Results - GPU
SCC results

DBpedia Flickr GNP2M Google HV15R IndoChinaLiveJournal RMAT2M uk−2002 uk−2005 WikiLinks XyceTest

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.2

0.4

0
1
2
3
4
5

 K
20X

 K
40M

 K
N

C
 S

N
B

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

SCC Algorithms

B
ill

io
ns

 o
f E

dg
es

 P
ro

ce
ss

ed
 p

er
 S

ec
on

d

80 / 84

Results
Test Environment and Graphs

Test system: Compton
Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64
GB memory.

Test graphs:
LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
Real (one R-MAT), small-world, 60 K–70 M vertices,
275 K–2 B edges

Test Algorithms:
METIS - single constraint single objective
METIS-M - multi constraint single objective
ParMETIS - METIS-M running in parallel
KaFFPa - single constraint single objective
PuLP - single constraint single objective
PuLP-M - multi constraint single objective
PuLP-MM - multi constraint multi objective

Metrics: 2–128 partitions, serial and parallel running times, memory
utilization, edge cut, max per-partition edge cut

81 / 84

Bibliography I

N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S.C. Sahinalp. Biomolecular network motif counting and
discovery by color coding. Bioinformatics, 24(13):i241–i249, 2008.

J. Barnat and P. Moravec. Parallel algorithms for finding SCCs in implicitly given graphs. Formal Methods:
Applications and Technology, 4346:316–330, 2006.

S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. In Proc. Supercomputing
(SC), 2012.

Cédric Chevalier and François Pellegrini. Pt-scotch: A tool for efficient parallel graph ordering. Parallel Computing,
34(6):318–331, 2008.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proc. 1969 24th Nat’l. Conf.,
ACM ’69, pages 157–172, New York, NY, USA, 1969. ACM.

L.K. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected components in parallel. In Parallel
and Distributed Processing, volume 1800 of LNCS, pages 505–511. Springer Berlin Heidelberg, 2000.

Haitham Gabr, Alin Dobra, and Tamer Kahveci. From uncertain protein interaction networks to signaling pathways
through intensive color coding. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
pages 111–122. World Scientific, 2012.

Bruce Hendrickson and Robert W Leland. A multi-level algorithm for partitioning graphs. In Supercomputng, 1995.

S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly connected components (SCC) in
small-world graphs. In Proc. Supercomputing, 2013.

Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding with applications
to signaling pathway detection. Algorithmica, 52(2):114–132, 2008.

82 / 84

Bibliography II

G. Karypis and V. Kumar. MeTis: A software package for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices. version 5.1.0.
http://glaros.dtc.umn.edu/gkhome/metis/metis/download, last accessed July 2014.

Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning complex networks via size-constrained
clustering. CoRR, abs/1402.3281, 2014.

S. Omidi, F. Schreiber, and A. Masoudi-Nejad. MODA: an efficient algorithm for network motif discovery in
biological networks. Genes Genet Syst, 84(5):385–395, 2009.

S. Orzan. On Distributed Verication and Veried Distribution. PhD thesis, Free University of Amsterdam, 2004.

U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community structures in
large-scale networks. Physical Review E, 76(3):036106, 2007.

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing, 1:146–160, 1972.

J. Ugander and L. Backstrom. Balanced label propagation for partitioning massive graphs. In Proc. Web Search
and Data Mining (WSDM), 2013.

Luis Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. xDGP: A dynamic graph processing
system with adaptive partitioning. CoRR, abs/1309.1049, 2013.

W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger. Finding strongly connected components in
distributed graphs. Journal of Parallel and Distributed Computing, 65(8):901–910, 2005.

Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node graph. In Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, pages 568–579. IEEE, 2014.

Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe. Subgraph enumeration in large social contact networks
using parallel color coding and streaming. In Proc. 39th Int’l. Conf. on Parallel Processing (ICPP), pages
594–603, 2010a.

83 / 84

http://glaros.dtc.umn.edu/gkhome/metis/metis/download

Bibliography III

Z Zhao, M Khan, VSA Kumar, and M Marathe. Subgraph enumeration in large social contact networks using
parallel color coding and streaming. In 39th International Conference on Parallel Processing, 2010b.

Z Zhao, G Wang, A R Butt, M Khan, V S Kumar, and M V Marathe. SAHad: Subgraph analysis in massive
networks using hadoop. In IEEE 26th International Parallel and Distributed Processing Symposium, 2012a.

Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M. V. Marathe. SAHAD: Subgraph analysis in
massive networks using Hadoop. In Proc. 26th Int’l. Parallel and Distributed Processing Symp. (IPDPS), pages
390–401, 2012b.

84 / 84

