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Motivation

Graph analysis is key for the study of biological, chemical,
social, and other networks
Real-world graphs are big, irregular, complex

Graph analytics is one of DARPA’s 23 toughest
mathematical challenges
Facebook graph: 1.6B people, 500B friendships
Brain graph: 100B neurons, 1,000T synaptic connections
Skewed degree distributions, small-world nature make
parallelization difficult

Modern computational systems are also big and complex
Multiple levels of parallelism, memory hierarchy,
configurations
Heterogeneous – host, GPU, coprocessors (Xeon Phi)
Optimization – account for socket-level, node-level, and
distributed
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Motivation
Goals of Research

How do we design parallel graph algorithms for
computational efficiency under all of the aforementioned
difficulties?

What algorithmic traits are common to various irregular
graph algorithms that we can optimize for?

How do we store/organize and access graphs and
associated data efficiently in shared and distributed
memory?
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Research Summaries

Summaries of Research: Color-coding, Connectivity,
Partitioning, In-memory Layout
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Topic 1: Summary of Color-coding
Fascia subgraph enumeration and FastPath min-weight path finding
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Overview:
Subgraph Counting: Find and count the number of
occurrences of some input template in a larger graph
(∼NP-complete)

Minimum Weight Path Finding: In an edge-weighted
network, find the k length simple path with the least sum of
weights (NP-hard)

Applications: Motif/anti-motif finding, network
classification/clustering, network alignment, signaling
pathways detection

Contributions:
Highly optimized implementation of the color-coding
technique [Alon et al., 2008] for tree-structured subgraph
counting; up to five orders-of-magnitude faster than prior
work

Extended baseline code for minimum weight path finding

Software:
Fascia: Fast Approximate Subgraph Counting

FastPath: Fast Minimum Weight Path Finding
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Topic 2: Summary of Graph Connectivity Research
Multistep and BiCC Algorithms

Overview:
Connectivity and Weak Connectivity: Find maximal
components of a graph where a path exists between all
vertices (ignore directivity of edges for weak)

Strong Connectivity: Find maximal components of a
directed graph where each vertex in a component has a path
to every other vertex in the component

Biconnectivity: Find maximal components of an undirected
graph where the removal of any single vertex would not
disconnect the component

Applications: Social network analysis, scientific computing,
network resilience analysis

Contributions:
New parallel algorithms for connected (CC), weakly
connected (WCC), strongly connected (SCC), and
biconnected components (BiCC)

Identified several shared-memory optimizations (multi-level
queues, minimize synchronizations, efficient algorithm
design)

Demonstrated over 2-7x average speedup to state-of-the-art

Software:
Multistep: Parallel methods for CC, WCC, and SCC

BiCC: Open-source implementations available
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Topic 3: Summary of Graph Partitioning Research
PuLP: Partitioning Using Label Propagation

Overview:
Graph Partitioning: Separate a graph into k balanced parts
with minimal inter-part edges (edge cut) for distributed
computations (NP-complete problem)

Label Propagation: Efficient (linear work) and scalable
(näıvelyparallel) community detection and clustering
algorithm [Raghavan et al., 2007]

Contributions:
Parallel (OpenMP and soon MPI) multi-constraint
multi-objective graph partitioning method for small-world
networks that exploits Label Propagation community
detection algorithm

On suite of test graphs, 14.5× faster and 38× less
memory on average relative to (Par)METIS with
comparable or better cut quality

Distributed version scales to hundred billion edge networks

Software:
PuLP: Interface now available in Zoltan2 package of
Trilinos
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Topic 4: Summary of Distributed Layout Research
DGL: Distributed Graph Layout
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Overview:
Graph Layout: How to store a graph in distributed memory
in terms of graph partitioning and intra-node vertex ordering

Contributions:
Methodology for distributed in-memory layout for graphs

Uses PuLP for partitioning and novel BFS-based ordering
scheme

Speedups for distributed computation (up to 4x) and
communication (up to 12x) relative to naive methods for
running PageRank with PuLP and DGL ordering

Both PuLP and DGL ordering are faster to compute than
other methods

Software:
DGL: Distributed Graph Layout with PuLP and DGL
ordering
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Graph Algorithms for Manycore

Part 1: Manycore graph algorithms – abstraction for wide
parallelism
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Motivating questions for this work

Q: What are some common abstractions that we can
use to develop parallel graph algorithms for manycores?

Q: What key optimization strategies can we identify
to design new parallel graph algorithms for manycores?

Q: Is it possible to develop performance-portable
implementations of graph algorithms using advanced
libraries and frameworks using the above optimizations
and abstractions?

11 / 53



Contributions

Q: Common abstractions for manycores?
We use array-based data structures, express computation
in the form of nested loops.

Q: Key optimization strategies
We improve load balance by manual loop collapse,
coalesce memory access, and use collective operations
when possible.

Q: Performance-portable implementations of graph
algorithms using advanced libraries and frameworks?

We use Kokkos [Carter Edwards et al., 2014].

We compare high-level implementations using new
framework to hand-optimized code + vary graph
computations + vary graph inputs + vary manycore
platform.
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Background
GPU and Xeon Phi microarchitecture

GPU
Multiprocessors (up to about 15/GPU)
Multiple groups of stream processors per MP (12×16)
Warps of threads all execute SIMT on single group of
stream processors (32 threads/warp, two cycles per
instruction)
Irregular computation (high degree verts, if/else, etc.)
can result in most threads in warp doing NOOPs

Xeon Phi (MIC)
Many simple (Pentium 4) cores, 57-61
4 threads per core, need at least 2 threads/core for OPs
on each cycle
Highly vectorized (512 bit width) - difficult for irregular
computations to exploit
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Background
Kokkos and GPU microarchitecture

Kokkos

Developed as back-end for portable scientific computing
Polymorphic multi-dimensional arrays for varying access
patterns
Thread parallel execution for fine-grained parallelism

Kokkos model - performance portable programming to
multi/manycores

Thread team - multiple warps on same multiprocessor,
but all still SIMT for GPU
Thread league - multiple thread teams, over all teams all
work is performed
Work statically partitioned to teams before parallel code
is called
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Graph Algorithms for Manycore
Abstracting graph algorithms for large sparse graph analysis

Observation: many (synchronous) graph algorithms
follow a tri-nested loop structure

Optimize for this general algorithmic template
Transform structure for more parallelism
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Graph Algorithms for Manycore
Parallelization strategies

Baseline parallelization

Hierarchical expansion (e.g. [Hong et al., 2011])
‘Manhattan collapse - local’ (e.g. [Merrill et al., 2012])
‘Manhattan collapse - global’ (e.g. [Davidson et al., 2014])
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Graph Algorithms for Manycore
Locality and SIMD Parallelism Optimizations

Implementation

Develop with Kokkos for cross-platform compatibility
Implement Multistep SCC algorithm for testing

Memory access optimizations

Explicit shared memory utilization on GPU
Coalescing memory access (locality)
Minimize access to global/higher-level memory

Collective operation optimizations

Warp and team-based operations (team scan, team
reduce)
Minimize global atomics (team-based atomics)
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Graph computations
Implemented algorithms

Breadth-first search

Color propagation

Trimming

The Multistep algorithm [Slota et al., 2014] for
Strongly Connected Components (SCC) decomposition

18 / 53



Graph computations
Breadth-first search

Useful subroutine in other graph computations
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Graph computations
Breadth-first search

Useful subroutine in other graph computations
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Graph computations
Color propagation

Basic algorithm for connectivity

General approach applies to other algorithms (e.g., label
propagation)
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Graph computations
Color propagation

Basic algorithm for connectivity

General approach applies to other algorithms (e.g., label
propagation)
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Graph computations
Trimming

Routine for accelerating connectivity decomposition
Iteratively trim 0-degree vertices
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Graph computations
Trimming

Routine for accelerating connectivity decomposition
Iteratively trim 0-degree vertices
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Graph computations
Multistep SCC decomposition [Slota et al., 2014]

Combination of trimming, BFS, and color propagation

1: T ← Trim(G )
2: V ← V \ T
3: Select v ∈ V for which din(v) ∗ dout(v) is maximal
4: D ← BFS(G (V ,E (V )), v)
5: S ← D ∩ BFS(G (D,E ′(D)), v)
6: V ← V \ S
7: while NumVerts(V ) > 0 do
8: C ← ColorProp(G (V ,E (V )))
9: V ← V \ C
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Performance Results

23 / 53



Experimental Setup

Test systems: One node of Shannon and Compton at Sandia and

Blue Waters at the NCSA

Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores,
64-128 GB memory
NVIDIA Tesla K40M GPU, 2880 cores, 12 GB memory
NVIDIA Tesla K20X GPU, 2688 cores, 6 GB memory
Intel Xeon Phi (KNC, ∼3120A), 228 cores, 6 GB memory

Test graphs:

Various real and synthetic small-world graphs, 5.1 M to
936 M edges
Social networks, circuit, mesh, RDF graph, web crawls,
R-MAT and G (n, p) random graphs, Wikipedia article links
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BFS and Coloring versus Loop Strategies
Tesla K40M

Performance in GTEPS (109 trav. edges per second) for
BFS (left) and color propagation (right) on Tesla K40M.

Graphs ordered by increasing density from left to right

Gray Bar: Baseline, H: Hierarchical, ML: Local collapse,
MG: Global collapse,
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BFS - Cumulative Impact of Optimizations
Tesla K40M

Gray Bar: baseline, M: local collapse, C: coalescing
memory access, S: shared memory use, L: local
team-based primitives
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SCC Cross-platform Performance Comparison
Sandy bridge (SB), MIC Knight’s Corner (KNC), K40M, K20M

B: Baseline, MG: Manhattan Global, ML: Manhattan
Local, OMP: Optimized OpenMP code
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Conclusions

We express several graph computations in the Kokkos
programming model using an algorithm design
abstraction that allows portability across both multicore
platforms and accelerators.

The SCC code on GPUs (using the Local Manhattan
Collapse strategy) demonstrates up to a 3.25× speedup
relative to a state-of-the-art parallel CPU implementation
running on a dual-socket compute node.

Future work: Expressing other computations using this
framework; Heterogeneous CPU-GPU processing; Newer
architectures.
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Large Graph Analysis – Full-scale Optimization

Part 2: Large Graph Analysis – Techniques for multi-billion
vertex scale graph analysis
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Large Graph Analysis – Full-scale Optimization

Current state-of-the-art:

Many frameworks exist for large graph analysis

Single-node parallel frameworks demonstrate good performance,
but are limited by shared-memory (Ligra, Green-Marl, etc.)

Disk-based frameworks are slow at all scales (MapReduce-like)

Most distributed-memory frameworks often run slower than serial C
code without massive parallelism, also fail for large graphs (GraphX,
GraphLab and its variants, most others)

Some can scale to large graphs, but only give reasonable relative
performance at that scale (Giraph)

Some are performant, but require specialized hardware (FlashGraph)
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Motivating questions for this work

Q: What is needed to analyze the largest publicly-
available graph instances on modern distributed HPC
systems ?

Q: What optimizations strategies and abstractions
can we identify to simplify implementation efforts ?

Q: Is it possible to be both highly performant while
keeping the implementation effort as simple as possible ?
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Contributions

Q: Needed to analyze large graphs on HPC ?

We develop optimized MPI+OpenMP code that uses
256 nodes of the Blue Waters supercomputer to analyze
the 3.5B page and 130B link 2012 Web Data Commons
web crawl.

Q: Optimizations strategies and abstractions ?

We recognize three classes of communication patterns
common to many graph algorithms and develop
optimizations for them.

Q: Highly performant and simple ?

Yes. Each algorithm can be implemented in only a
couple hundred lines of C++ code while outperforming
state-of-the-art frameworks by orders-of-magnitude.
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Research Goals

Goals of this research:

Develop methodology for analyzing the largest publicly
available graph instances on HPC systems

Identify optimization strategies and abstractions that
can simplify implementation efforts

Strive for ease of implementation while retaining high
performance, identify and evaluate potential
performance and scalability tradeoffs

Use these implementations to gain novel insight into
graph structure
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Design Tradeoffs and Considerations

Tradeoffs (ease of implementation vs. scalability):

1D (vertex-based) vs. 2D (edge-based) partitioning and
graph layout
Bulk-synchronous vs. asynchronous communication
Programming language and parallel programming model

High-level language vs. C/C++
High-level model vs. MPI only vs. MPI+OpenMP

Other considerations:
In-memory graph representation

Compressed vs. uncompressed, efficiency in accessing
structural information

Partitioning strategy (with 1D layout)
Vertex block vs. Edge block vs. Random

Generalizability for many graph algorithms
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Communication in Distributed Graph Algorithms

Observation: many iterative graph algorithms have similar
communication patterns

BFS-like: build and exchange global queue of vertices on
each iteration

PageRank-like: exchange all per-vertex values on each
iteration

ColorProp-like: exchange subset of per-vertex values on
each iteration

Takeaway: develop optimized outlines for each of these
patterns, fill in algorithm-specific details
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BFS-like Algorithms

Build and exchange global queue (Q) of vertices on each
iteration

1: Q ← vroot
2: Data[Vlocal ∪ Vghost ]← InitData()
3: while Q 6= ∅ do
4: for all v ∈ Q do
5: Data[v ]← PerformWork(v ,Data)
6: for all 〈v , u〉 ∈ E do
7: Data[u]← PerformWork(u,Data)
8: if CriteraSatisfied() then
9: Qn ← u

10: Q ← Exchange(Qn)
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PageRank-like Algorithms

Exchange all per-vertex Data with neighbors on each
iteration

1: Data[Vlocal ∪ Vghost ]← InitData()
2: for iter = 1 · · ·NumIter do
3: for all v ∈ Vlocal do
4: Data[v ]← PerformWork(v ,Data)
5: for all 〈v , u〉 ∈ E do
6: Data[v ]← PerformWork(u,Data)

7: QData ← Data[v ]

8: Data[Vghost ]← Exchange(QData)
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ColorProp-like Algorithms

Exchange subset of per-vertex Data on each iteration

1: Q ← Vlocal

2: Data[Vlocal ∪ Vghost ]← InitData()
3: for iter = 1 · · ·NumIter or Q 6= ∅ do
4: for all v ∈ Q do
5: Data[v ]← PerformWork(v ,Data)
6: for all 〈v , u〉 ∈ E do
7: Data[v ]← PerformWork(u,Data)

8: if CriteraSatisfied() then
9: Qn ← v

10: QData ← Data[v ]

11: Q ← Exchange(Qn)
12: Data[Vghost ]← Exchange(QData)
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Distributed Graph Processing

Large-scale graph analysis on HPC systems

Optimized parallel graph I/O and pre-processing

Fully parallel – almost no serial work (tasks & threads)

Implemented algorithms:

BFS-like: Multistep SCC (1st stage), Multistep
WCC (1st stage), K-core, Harmonic Centrality
PageRank-like: PageRank, Label Propagation (this
implementation)
ColorProp-like: Multistep WCC (2nd stage), PuLP

Compact and efficient: ∼2,000 total lines of code
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Performance Results
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Experimental Setup
Test systems and test networks

Test systems: and Compton at Sandia and Blue Waters at NCSA
Intel Xeon E5-2670, dual-socket, 16 cores, 64 GB memory
AMD Interlagos 6276, dual-socket, 16 cores, 64 GB memory

Graph n m Davg Source

Web Crawl 3.5 B 129 B 36 Meusel et al. [2015]
R-MAT 3.5 B 129 B 36 Chakrabarti et al. [2004]
G (n, p) 3.5 B 129 B 36

R-MAT 225-232 229-236 16 Chakrabarti et al. [2004]
G (n, p) 225-232 229-236 16

Host 89 M 2.0 B 22 Meusel et al. [2015]
Pay 39 M 623 M 16 Meusel et al. [2015]

Twitter 53 M 2.0 B 38 Cha et al. [2010]
LiveJournal 4.8 M 69 M 14 Leskovec et al. [2009]

Google 875 K 5.1M 5.8 Leskovec et al. [2009]
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End-to-end Analysis
256 nodes of Blue Waters

Ran all six analytics on the web crawl (with three partitioning
strategies) and the G (n, p) and R-MAT graphs

With n
p partitioning strategy, end-to-end times are about 20

minutes (3 minutes for I/O+PP), expect up to 50% further
reduction possible with PuLP

Analytic WC-np WC-mp WC-rand R-MAT G(n, p)

PageRank 87 111 227 125 121
Label Propagation 400 435 367 993 992

WCC 88 63 112 68 77
Harmonic Centrality 54 46 101 252 84

K-core 445 363 583 579 481
SCC 184 108 184 89 83
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Weak Scaling
Blue Waters from 8 to 1024 nodes

Harmonic Centrality and PageRank on R-MAT and
G (n, p) graphs with vertex block partitioning

222 vertices per node and 226 edges per node
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Strong Scaling
Blue Waters from 256 to 4096 nodes

Label propagation – shows strong scaling from 256 to
4096 nodes
PageRank-like and ColorProp-like strong scale nicely;
BFS-like more dependent on graph structure (high
number of synchronizations and low computation per
iteration)
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Ongoing work: PuLP in distributed memory

Tentative distributed version of PuLP
20 iterations of PageRank on the web crawl with various
partitioning strategies ( n

p , m
p , random, PuLP)

Using PuLP cuts best-case execution time in half
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Comparison to popular frameworks

Compared SRM-16 (Slota-Rajamanickam-Madduri) to GraphX (GX),
PowerGraph (PG), and PowerLyra (PL) on 16 nodes of Compton; compared
SRM-1 to FlashGraph (FG) and FlashGraph standalone (FG-SA) on a single
node
About 38× faster on average for PageRank (top), 201× faster for WCC
(bottom) against distributed memory frameworks
About 2.4× and 2.6× faster in shared-memory than FlashGraph
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Community Detection in Web Crawl

Used label propagation to study community structure of
the web crawl

Largest communities discovered after 30 iterations in
table below

Community frequencies from label propagation appear to
follow a heavy-tailed power law

Largest Communities (numbers in millions)

Pages In-Links Out-Links Rep. Page

112 2126 32 YouTube
18 548 277 Tumblr

9 516 84 Creative Commons
8 186 85 WordPress
7 57 83 Amazon
6 41 21 Flickr
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Centrality Measurements of Web Crawl

Determined the top 10 web pages according to different
centrality indices

Similar to results found in prior work using smaller
host-level graph [Meusel et al., 2014]

Note that out-degree demonstrates very little importance
as a centrality index

Out-degree In-degree PageRank Harmonic Centrality

photoshare.ru/.. youtube.com youtube.com wordpress.org
dvderotik.com/.. wordpress.org youtube.com/t/.. twitter.com
zoover.be/.. youtube.com/t/.. youtube.com/testtube twitter.com/privacy
cran.r-project.org/.. youtube.com/.. youtube.com/t/.. twitter.com/about
cran.rakanu.com/.. youtube.com/t/.. youtube.com/t/.. twitter.com/tos
linkagogo.com/.. youtube.com/.. tumblr.com twitter.com/account/..
cran.r-project.org/.. youtube.com/t/.. google.com/intl/en/.. twitter.com/account/..
fussballdaten.de/.. gmpg.org/xfn/11 wordpress.org twitter.com/about/resources
fussballdaten.de/.. google.com google.com/intl/.. twitter.com/login
fussballdaten.de/.. google.com/intl/.. google.com twitter.com/about/contact
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K-core Decomposition of Web Crawl

Performed k-core decomposition using our approximation
algorithm (gives upper-bound power-of-two)
Plotted below is number of total pages in k-core versus
k-core values
K-cores appear quite large; ∼300M pages in 128 k-core
and ∼20M pages in 1024 k-core
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Future work

Complete implementation of PuLP and DGL for
communication and computation acceleration

Continue to develop general purpose engine for many
more graph analytics

Use techniques to perform more in-depth studies of large
and complex networks
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Conclusions
Overall lessons learned

Parallel algorithm design
Minimizing synchronization costs
Keeping memory accesses local
Even work distribution among threads and tasks

Identifying algorithmic traits across graph algorithms
Many graph algorithms follow an iterative nested-loop
structure
Many graph algorithms use common subroutines such as
BFS, etc.

Storing and organizing graphs efficiently in memory
Optimizing layout for specific graph types and
applications
Balance cost tradeoffs for both communication and
computation
Need for parameter tuning and experimental evaluation
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Thank you! Questions?
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