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sequence when compared with näıve Chung Lu. However, different methods
perform better on differing degree sequences. . . . . . . . . . . . . . . . . . . . 23

2.7 Average proportional errors of degree sequences. The proportional (left) and
log2-binned proportional (right) errors are compared over all test graphs for
each optimization method as well as näıve Chung-Lu. Both the proportional
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ABSTRACT

Graphs are general structures which may be used to describe any system or dataset with

related elements. Because of the prevalence of such data, efficient and accurate algorithms

for analyzing graphs are of extreme importance in numerical algorithms and general data

science tasks. The size of graph structured datasets has only increased in the past decades

and promises to continue doing so. As companies like Google and Meta wrestle with peta

and exa-scale graph analysis problems: computational scientists face many of the same issues

as simulations require ever-larger meshes. Because of this, acceleration and preprocessing

techniques are important to ensure graph algorithms run efficiently and accurately. We

investigate several preprocessing and acceleration techniques for performing tasks on graph

structured data.

We develop a methodology for generating graph null-models with a desired degree

distribution. This is a problem which has been of interest to network scientists for decades.

Despite this, parallelizable, fast subroutines used in algorithms for generating such graphs

tend to yield inaccurate distributions. We suggest a novel analysis technique for the popular

Chung-Lu random graph generator, and show that this analysis technique provides a method

for automatically generating parameters for Chung-Lu-like null models as a pre-processing

step. We provide several methods for generating these null-models, and show that in all cases

we significantly out-perform standard Chung-Lu generation. We also suggest that such null

models may be used to improve the accuracy of Modularity maximization.

Additionally, we examine the task of coarsening graphs while preserving the spectrum

of the graph Laplacian. Coarsening is an important preprocessing step for many large scale

graph problems which aim to solve relatively small sub-problems and reconstruct an ap-

proximate solution on the original graph. Coarsening is used in clustering, partitioning, and

multigrid methods for solving linear systems of equations. The graph Laplacian is an impor-

tant operator for describing graph structured data. It relates the heat transfer in a graph

to its topology. As such, its eigenvectors and eigenvalues hold important information about

edge cuts and clustering. We present a heuristic for preserving the spectrum of the graph

Laplacian during coarsening, and present a parallel algorithm for utilising this heuristic.

This is in contrast to prior publications on the subject which focus on serial and k-means

methods for spectrum consistent coarsening. We further analyze the inverse problem, and

xiii



find that the original graph may be reconstructed to within some edge-weight error given

a coarse representation which approximates its spectrum. This presents a novel develop-

ment in graph coarsening literature and suggests that preserving a graphs spectrum during

coarsening may be sufficient to preserve all structure.

Finally we investigate a technique for accelerating the training of graph neural networks

using Koopman operator theory. Graph neural networks provide a powerful method for

performing classification and prediction tasks on graphs. This is in contrast to traditional

neural networks which struggle with the unordered nature of nodes and edges. Because of

this, a great deal of effort has been put into accelerating graph neural networks through

techniques such as graph pooling. Despite this, they are still often slow to train and have

significant memory overheads. We suggest a method for accelerating training by interweaving

standard backpropagation steps with prediction steps that make use of simple matrix-vector

multiplication. We apply our method to the task of node classification and find that it

is prone to instability, but can achieve multiple times speed-ups over Adam for well-chosen

parameters. This work represents the first time Koopman training has been applied to graph

neural networks, and the first time it has been applied on GPU.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis concerns itself with studying techniques for preprocessing graph data, and per-

forming learning tasks on graphs with the intent of improving algorithmic metrics such as

accuracy and run-time. Graphs allow for a remarkably general description for many prob-

lems, and have been applied in settings such as quantum mechanics [1], social science [2],

[3], and numerical PDE [4]. Beyond this, they are of fundamental importance to computer

science and the study of algorithms [5]. Graphs present a framework for studying objects

based on their relational properties. In the language of graph theory, these objects are rep-

resented as vertices, sometimes called nodes, and their relationships are referred to as edges.

A graph is then a collection of nodes and edges G = (V,E), where V represents the set of

nodes, and E is the set of edges

More specifically, this thesis focuses on three distinct graph problems, null graph gen-

eration, graph coarsening, and node classification. While not explicitly related, each of these

problems are closely tied to graph clustering in ways that will be made clear within the later

text. Broadly speaking, graph clustering is the task of grouping the vertices of a graph with

respect to some metric. Most often this means approximately minimizing the number of

edges between clusters.

1.2 Null graph generation

Generating graphs with given properties has a significant history. While preserving graph

properties such as the spectrum have been studied somewhat, the problem of generating

graphs with a given degree sequence has received an overwhelming amount of research. The

degree sequence of a graph defines many important properties such as the epidemic threshold

for disease models [6] and the resilience [7], [8] of a network. Due to its link with important

graph metrics, generating graphs with given degree distributions is an important problem

1
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for graph null-hypothesis testing [9], [10]. Understanding if certain observed properties of

a graph are unique to an individual instance, or just arise as a consequence of its degree

distribution is important in many applications such as graph clustering [11], [12]. In this

thesis, Chung-Lu random graph generation [13] is focused on. This method is mathematically

simple, and as such is the basis for the theoretical analysis of many graphs as well as the

modularity metric which is used in clustering [14]. Despite this, Chung-Lu graph generation

gives rise to significant degree sequence errors when the underlying sequence does not have

certain properties.

1.3 Graph coarsening

Graph coarsening is a pre-processing technique where some graph G = (V,E) is reduced in

size to the graph Gc = (Vc, Ec) such that |Vc| < |V |. The goal of such a process is to solve

some problem on Gc which may otherwise be intractable on G, and then “map” this solution

back to the original graph. This yields an approximate solution to the problem which is

either sufficient for the given application, or can be further refined. The methods used for

graph coarsening range from expensive spectral methods to greedy metric maximization and

it is widely used in numerical PDE and clustering applications. Of some recent interest is

the coarsening of graphs while preserving spectral properties of various operators such as

the normalized Laplacian. This is largely because it has been shown that these methods

may provide significant speedups for training graph neural networks (GNN). Comparatively

little effort has been spent on the inverse problem. Given a coarsened graph, whose operator

spectrum approximates some original graph operator, how accurately can the topology of

the original graph be recovered. This can be seen as quantifying how well a given coarsening

preserves structure, and provides an alternate viewpoint for why such a coarsening may be

applied to training graph neural networks.

1.4 Node classification

The problem of classifying nodes in a graph based on a graphs topology and a set of features

assigned to each node is a learning problem with applications to protein protein interac-

tion networks, social network analysis, and clustering. Traditionally, learning methods have



3

struggled to perform this task since graph data does not inherently have a canonical ordering.

For this purpose a great deal of effort has been invested in creating methods for computing

graph embeddings. In 2017, the graph convolution network (GCN) was introduced by Kipf

and Welling which provided a method for learning from graph data with impressive results.

Despite this, the method was limited due to its scalability, and many methods have arisen

to deal with this. These methods include graph sparsification, graph coarsening, and graph

pooling. Each of these methods aim to downsize the data to reduce the cost of the message-

passing and backpropagation steps. Alternatively, the training time may also be reduced

via optimizer improvements. Recently it has been shown that Koopman operators, which

approximate the evolution of nonlinear dynamics based on observed states, may provide

improvements for optimizers on deep neural networks. Until now these methods have lacked

practicality as they have not been implemented on GPU. Furthermore their accuracy has

not been demonstrated on GCN problems.

1.5 Organization

The remainder of this thesis is organized into three chapters detailing four first author papers

as well as various workshop papers and presentations. Chapter 2 discusses novel analysis

methods for predicting the output degree sequences of Chung-Lu random graph generation

for simple graphs. The chapter also discusses various algorithmic extensions for improving

the accuracy of these sequences in an L1-sense. The papers which constitute this section

are Limitations of Chung-Lu Random Graph Generation: published in CNA21, and

Correcting Output Degree Sequences in Chung-Lu Random Graph Generation:

published in CNA22.

Chapter 3 discusses the inverse problem of spectral graph coarsening. In this section,

theoretical bounds are derived for the absolute difference between the adjacency matrix of

an original graph G = (V,E) and a “recovered” graph Ĝ, (V̂ , Ê), given a spectral approxi-

mation bound. Additionally a method for coarsening graphs while preserving the spectrum

of the graph Laplacian is presented. This work follows the paper Spectrum Consistent

Coarsening Approximates Edge Weights: set to appear in SIMAX. Additionally this

chapter discusses implementation details for parallel-coarsening which were presented in the

paper Parallel Coarsening of Graph Data with Spectral Guarantees: published in
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the proceedings of the SIAM TDA Workshop 2022.

Chapter 4 focuses on the use of Koopman operators for accelerating the training of

node classification on GPU. This section concerns itself with the manuscript Acceleration

of GNN Node Classification Using Koopman Operator Theory on GPU: currently

under review.



CHAPTER 2

RANDOM GRAPH GENERATION

2.1 Chapter overview

In this chapter we focus on analyzing and correcting sequence errors of graph null models.

We specifically investigate Chung-Lu random graph generation [13], as it is an easily scaled

method, amenable to significant parallelization. There are known degree sequence properties

which guarantee the accuracy of Chung-Lu generation, however these are incredibly restric-

tive in the case of simple graphs where multi-edges are disallowed. We present a matrix

formalism for predicting the output of Chung-Lu random graph generation and show that in

some cases, improving the degree sequence output can be reduced to solving a linear system.

Perturbations of this matrix formalism are then used to improve the accuracy of Chung-Lu

graph generation with the aid of standard learning techniques.

2.2 Modeling Chung-Lu

2.2.1 Introduction to modeling Chung-Lu

Say we wish to generate a random simple graph G = (V,E) with a degree distribution

y = {N1, N2, · · · , Nm} where Nk represents the numbers of nodes with degree k. Here,

simple means that there are no self-loops or multi-edges. This is a problem that arises

in many network science applications, most notably for the generation of null-models used

for basic graph analytics [15]. Generating such simple networks exactly using the explicit

configuration model, or erased configuration model is computationally expensive for even

moderately large networks [9]. This is in part because the explicit configuration model

is difficult to parallelize, and partly because correcting self-loops and multi-edges in the

Portions of this chapter previously appeared as: C. Brissette and G. M. Slota, “Limitations of chung lu
random graph generation,” in Proc. Tenth Int. Conf. Complex Netw. Appl., 2021, pp. 451–462.

Portions of this chapter previously appeared as: C. Brissette, , D. Liu, and G. M. Slota. “Correcting
output degree sequences in Chung-Lu random graph generation,” Proc. Eleventh Int. Conf. Complex Net.
Appl., 2022, pp.69-80.

5
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erased configuration model can be cumbersome. As such, we rely on probabilistic methods

for large-scale graph generation that only match y in expectation. The Chung-Lu random

graph model [13] is one such widely-used probabilistic model. This model pre-assigns to each

node vi ∈ V (G) a weight wi corresponding the the degree we wish for the node to have. It

then connects all nodes vi, vj pairwise with the probability pij =
wiwj∑

wk
. It is known that the

degree of each node in the output graph will match its pre-assigned weight in expectation.

There are a number of ways that generating such graphs can be done computationally. Some

methods generate loops and multi-graphs, while others generate simple graphs. We focus

on what is sometimes called the Bernoulli Method for generating Chung-Lu graphs [16], as

it is amenable to the edge-skipping technique [17] that allows linear work complexity and

near-constant parallel time for scalable implementations [10], [18], [19]. In this method,

we implicitly consider all possible pairs of edges between unique nodes and generate edge

(vi, vj) with i ̸= j according to the probability pij. This generates a simple-graph with degree

sequence ỹ where E[ỹ] = y. While we focus our analysis on this specific variation, as it is

the one most likely to be used in practice, other methods that generate multi-edges and/or

loops have many of the same issues that we discuss in this chapter.

The Chung-Lu model, though popular and theoretically sound under the tame condi-

tion that wiwj <
∑m

k=1wk for all vi, vj ∈ V , can produce degree distributions drastically

different from the desired expectation in practical settings. This has been widely noted and

addressed in the literature [10], [16], [20]–[24]. To theoretically motivate why this is the case,

consider generating a graph that has many nodes of degree two. While Chung-Lu guarantees

that the expected degree of each of these nodes will be two, it makes no other guarantees

regarding the probability mass function of these degrees. Indeed in practice, nodes with

expected degree two often have degree 0, 1, 3, and beyond. This is particularly challenging

when Chung-Lu generation is utilized as a subroutine for more complex graph generation,

such as when generating graphs that also match a clustering coefficient distribution (e.g., the

BTER model) [25] or a community size distribution for community detection benchmark-

ing [19], [26]. In these and other instances, minimizing error in the degree distribution is

critical, as this error can propagate through the rest of the generation stages. In Figure 2.1

we see an example of the observed error when generating some graphs. As can be seen,

the output of Chung-Lu in both cases underestimates the number of degree one nodes, and

accrues additional error from other low degree families as well. This suggests that instead
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of strictly caring about the expected degree of each node in Chung-Lu generation, as is

generally done, we should additionally consider deeper statistical properties of the model in

application.
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Figure 2.1: Distribution error of Chung-Lu. We consider the degree classes
between one and nine for two different power law distributions. On
the left is a power-law distribution with exponent β = 1.0 and on the
right is a power-law distribution with exponent β = 2.0. In the top
two plots, crosses represent the input distribution and x’s represent
the average distribution for 20 instances of Chung-Lu graphs given
the power law distribution distribution as input. We can see that
the Chung-Lu generated graphs drastically under-represent degree
one nodes. This is a phenomenon that commonly occurs in
application and can greatly affect generation accuracy.

To better understand the output of Chung-Lu, consider grouping all nodes by expected

degree. That is, take degree families dk = {vi ∈ V : wi = k} and consider connections

between them. From the point of view of a single node vj ∈ V with expected degree

wj the number of connections it has to each degree family dk is binomially distributed

with mean
kwj∑
wi
|dk|. Therefore the degree distribution of the nodes in dwj

is the sum of m

independent binomial random processes where m is the maximum expected degree of the

graph. This allows us to go beyond simply guaranteeing the mean of each degree family, and

instead predict the probability mass function for the degrees of each of these families, and

by extension predict degree distribution errors.

Since the degree distribution of each degree family dk in our graph is binomially dis-

tributed, we may apply a further approximation. Because the limiting case of the binomial

distribution is the Poisson distribution, we approximate the number of connections between

nodes in a given degree family with all other nodes as a sum of Poisson distributions, which
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is again Poisson. We note that often times a desired degree distribution will be such that

certain degree classes will not have the number of nodes required for this approximation to

have guaranteed accuracy. In fact, power-law degree distributions will in general have degree

families dk where k ≈ m such that |dk| ≈ 1. However, we also note that this additionally

means the node-wise error contributed by those families is relatively small, so we are willing

to sacrifice some accuracy in lieu of a cleaner description.

Say that Xij is the Poisson distribution representing the degree of each node in di if

di only connected to nodes in dj. Additionally, take the mean of this Poisson distribution

to be γij. Because the means of independent Poisson distributions are additive, we have the

following linear system, describing the means of each distribution.
γ11 γ12 · · · γ1m

γ21 γ22 · · · γ2m
...

...
. . .

...

γm1 γm2 · · · γmm




1

1
...

1

 =


µ1

µ2

...

µm

 (2.1)

This matrix provides additional rationale for our Poisson approximation. Since we assumed

the distributions were Poisson we may now add means of Poisson distributions directly as

opposed to computing with more complex independent binomial distributions. In the case of

the Chung-Lu model, each γij =
wiwj∑

wk
. This, perhaps as expected, gives the right hand means

of µk = k. This means that the degrees within each degree family dk should be approximately

Poisson distributed about k. Before moving on we note that a similar analysis can be done

for any connection probabilities. While we are focusing on Chung-Lu probabilities, this

model also describes the output degree sequence for any set of chosen pij between degree

families, albeit with potential changes to the means µi.

Given the description offered by Equation 2.1 we now have the tools to estimate the

output of Chung-Lu through a simple linear system. Consider an input degree distribution

y = [N1, N2, · · · , Nm]
T as a vector in Rm with the number of nodes being, N =

∑m
i=1Ni.

Additionally take poiss(k) to be the probability density function of the Poisson distribution
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with mean k. We can calculate the expected output ỹ of this as follows.

Qy =


| | |

poiss(1) poiss(2) · · · poiss(m)

| | |



N1

N2

...

Nm

 = ỹ (2.2)

This construction works in the following way. Each column of our matrix represents the

probability mass function of degrees within each degree family. Taking the inner product

of a row r of this matrix with a vector of degree family sizes amounts to adding together

the expected number of degree r nodes produced by each degree family under the Chung-Lu

algorithm. So, by considering the action of the entire matrix, we are considering the action of

Chung-Lu as a whole. Note here we are assuming poiss(k) is the full, discrete version of the

Poisson distribution with mean k. This implies that the system in Equation 2.2 maps Rm to

an infinite dimensional space. This is not computationally useful. We therefore truncate the

Poisson matrix Q to be square in Rm×m by removing the first row corresponding to degree

zero nodes, as well as everything below the mth row. We will denote this matrix by P. Our

justification for this truncation is two-fold. One, we are inputting a degree sequence from

Rm, and we mainly only care about error with regards to those output degrees between one

and m. Two, making the matrix square allows for us to invert the matrix which will be useful

for generating Chung-Lu graphs with more accurate degree sequences. Note that truncating

Q to some dimension m amounts to ignoring nodes with degree zero as well as nodes with

degree higher than m. If we wish to obtain error information for higher degrees as well we

can easily append zeros to the end of our input degree sequence and consider P∈Rn×n where

n > m and m is the maximum degree of our desired degree sequence. Then, for large enough

n, our error is only ignoring nodes of degree zero. In a practical setting, these nodes would

possibly be thrown out and ignored, anyways. The rest of this paper discusses properties of

P, the limitations these properties suggest, and how the matrix can be used to improve the

accuracy of Chung-Lu outputs in some cases.
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2.2.2 Contributions

As noted, while Chung-Lu graph generation is a useful tool for many theoretical purposes

and is used widely in fields such as social network analysis, it often does a poor job of approx-

imating degree sequences at the ends. The specific issue considered in this chapter is that

Chung-Lu generated networks will often under-represent low degree nodes. In Figure 2.1,

we can clearly see that actual Chung-Lu realizations may easily contain less than 60 percent

of the desired number of degree one nodes. This can lead to a great deal of inaccuracy for

sequences with particularly large numbers of low degree nodes, such as those arising from

power-law distributions. In practice, this generally means that generated graphs will have

many vertices of degree zero, so one way of resolving this issue is to connect these nodes

to the graph in order to inflate the number of degree one nodes. Depending on the degree

sequence, this can easily skew other degree classes without careful choice of where these

nodes are connected. This may also require considerable computation. For this reason, it

is far simpler for applications to throw away degree zero nodes. Other proposed methods

might artificially inflate the input sequence in terms of degree one nodes so the output better

matches the desired input [25], but this also presents similar challenges.

For this reason, we suggest the matrix model referenced in the introduction. The

standard input degree sequence for Chung-Lu is simply the desired output sequence y. We

suggest a “shifted” Chung-Lu algorithm where, given a matrix model P for the output of

the Chung-Lu algorithm, we take our desired output sequence y and solve for x = P−1y.

Then the input to a Chung-Lu graph generator is x as opposed to the desired output. This

is particularly compelling since the matrix P−1 only depends on the maximum degree of

our desired output sequence and once computed allows for drastic accuracy improvement

at negligible algorithmic cost. While useful in certain special cases, we find that such an

algorithm is not possible in general. We prove several the matrix P is invertable and show

that many distributions do not have non-negative inverses. We investigate these cases and

classify some instances in which an inverse distribution is guaranteed to have negative entries.

Most interestingly, we provide tight bounds on the expected maximum number of nodes that

may belong in each degree family for both non-increasing as well as general distributions.

These bounds suggest that there exists a vast number of graphs that Chung-Lu generation

is ill-equipped to generate.
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2.2.3 Properties of the matrix model

From the introduction, we use the assumption that the degree distribution of each family is

approximately Poisson distributed to form a matrix that will transform input distributions

into approximate output distributions from the Chung-Lu model. Assume that our input

distribution has degrees in Nm = {1, · · · ,m} and is represented by x = [N1, N2, · · · , Nm]
T

where Nk represents the number of nodes with expected degree k and N =
∑m

k=1Nk. We

can represent our matrix P in terms of the following factorization.

P =


1 0 · · · 0

0 1
2!
· · · 0

...
...

. . .
...

0 0 · · · 1
m!




1 1 · · · 1

1 2 · · · m
...

...
. . .

...

1 2m−1 · · · mm−1




e−1 0 · · · 0

0 2e−2 · · · 0
...

...
. . .

...

0 0 · · · me−m


= AVB

(2.3)

When this factorization is multiplied out, we obtain exactly the P matrix discussed in the

introduction. Note that realizing a Chung-Lu graph model amounts to computing Px for

some pre-defined x. We instead look at the inverse problem of determining x∈R+m given

P∈Rm×m and desired output y∈R+m. Here R+m is the element-wise positive region of Rm.

This amounts to solving the linear system Px = y. One may be tempted to simply invert

this matrix using any number of computational methods, and this is reasonable for small

m. However, given the factorization in Equation 2.3, we have that P = AVB with V a

Vandermonde matrix. Due to the extremely poor conditioning of both A and V, using a

computational method for inverting P is not advised. Fortunately A and B are diagonal,

meaning they are easy to invert, so finding the inverse of P only requires finding an inverse

to V. Again, we do not want to compute this using standard computational methods,

since Vandermonde matrices are the textbook examples of nearly uninvertible matrices.

Fortunately, our Vandermonde matrix is such that it has a special structure yielding a

somewhat simple closed-form inverse given in [27]. It relates each entry in the matrix to

associated binomial coefficients and Stirling numbers of the first kind. Explicitly, each entry
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is expressed as follows.

V−1
ij = (−1)i+j

n∑
k=max(i,j)

1

(k − 1)!

(
k − 1

i− 1

)[
k

j

]
(2.4)

For distributions with entry-wise positive inverses we can now compute the input of Chung-

Lu that will best approximate the desired output according to P−1y = x. The actual imple-

mentation of this would look like the pseudocode given in Algorithm 1 where ⌊·⌋ represents
element-wise rounding down to the nearest integer.

Algorithm 1 ShiftedChungLu (y,dmax)

1: S ← ComputeStirlingMatrix(dmax)
2: A−1 ← ComputeDiagInverse(A)
3: B−1 ← ComputeDiagInverse(B)
4: V −1 ← ComputeVandermondeInverse(S,dmax)
5: x̃ ← ⌊B−1V −1A−1y⌋
6: G ← GenerateChungLu(x̃)
7: return G

2.2.3.1 Not all solutions are positive

We now concern ourselves with cases where Algorithm 1 will fail. These cases will occur

exactly when P−1y has negative entries. To understand why this is the case, consider that

P−1y represents a degree distribution. Negative entries in this vector therefore represent

a meaningless value as an input to the Chung-Lu algorithm. Matrix P has only positive

real entries. This implies that for any element-wise positive vector x, Px is also positive.

While this implies that any positive input will yield an approximately valid result, it does

not exclude the possibility of vectors with negative entries also mapping into the positive

region of Rm under the action of P. This means that we may not be able to use the output

of P−1y = x as the input of Px since x has the possibility of containing negative elements.

In Figure 2.2, we can see what the action of P looks like on a sample of random vectors for

P∈R4. Notice how, as expected, it “squishes” the positive region into a small sliver.

Given a number of nodes N we look to bound how many nodes of each degree are

feasible. That is, if we have some degree distribution x with L1-norm ∥x∥1 = N we wish to

find lower and upper bounds, li and ui respectively on |(Px)i| such that li ≤ |(Px)i| ≤ ui.

We want to do this for every degree family. Take the projector ρi = eTi ei where ei is the ith
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Figure 2.2: Action of P on the positive hypercube. Here we can see plots of
projections of random vectors under the action of P as a heat map.
The sample consists of 100,000 random vectors with random
integer entries selected to be within {0, · · · , 100} under the action of
P ∈ R4×4. The output vectors are then projected onto each
canonical unit vector ej ∈ R4 and plotted pairwise. These vectors
are referred to as Xi in the axis labels. Intuitively this shows all
feasible output from a Poisson random graph model with node
degrees limited to those in {1, 2, 3, 4}. We can see that all positive
vectors remain inside the positive region as expected, and we also
see how sharply limiting this is for finding positive solutions of P−1y
for y positive.

canonical unit vector in Rm. Then we know |(Px)i| = ∥ρiPx∥1. This directly implies from

the structure of P that we have,

Nmin
k
|Pik| ≤ ∥ρiPx∥1 ≤ NPii ∀x∈Rm : ∥x∥1 = N (2.5)

Under the necessary, but reasonable, assumption that N > m, Equation 2.5 gives us a tight

upper bound on the number of nodes we can reliably generate of a given degree based on

only the number of nodes in our distribution. This bound is realized precisely when all of

the nodes in our distribution have input degree N
i
. We may be interested in what outputs

a more narrow space of input distributions can reliably generate. Consider bounding the

number of nodes with given degrees in a special case. Namely we pick degree family sizes
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such that the following is true.

N1 ≥ N2 ≥ · · · ≥ Nm (2.6)

That is, the size of the families are non-increasing with respect to input degree. This classifies

a wide variety of networks ranging from those with identical family sizes, to power-law

distributions. We wish to upper bound the number of nodes we can generate in a given degree

family j with a distribution following the Property 2.6. This problem can be expressed in

terms of finding coefficients satisfying Equation 2.7. Here we may take coefficients ∥a∥1 = 1

and then generalize by taking x = Na = [N1, N2, · · · , Nm]
T .

max
a

m∑
k=1

kj e
−k

j!
ak (2.7)

We can see the maximum occurs when aj has a maximal population. This means that,

perhaps as expected, the way to achieve the maximum number of nodes with degree j is to

maximize the number of input nodes with degree j. Since our function is nonincreasing this

means this maximum occurs when a1 = a2 = · · · = aj and aj+1 = aj+2 = · · · = am = 0. This

directly implies that we will get the most nodes of degree j when the following is true for

∥a∥1 = 1.

a1 = a2 = · · · = aj =
1

j
(2.8)

Therefore the maximum number of nodes we should expect in a given degree class can be

approximated as follows.

1

j!j

j∑
k=1

kje−k ≈ 1

j!j

∫ j

1

xje−xdx (2.9)

≈ 1

j!j
γ(j + 1, j) (2.10)

Equation 2.9 gives us both the exact upper bound and continuous approximation. Equa-

tion 2.10 can be used as a quick approximation of this value in terms of the incomplete

gamma function from 0 to j. This gives a far tighter bound than is provided by Equa-

tion 2.5 when we have a non-increasing degree distribution. It should be noted that one may

improve upon the accuracy of these bounds for even more restrictive families of distributions
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by including a lower bound as well as a tighter upper bound on the size of each degree family.

We can glean useful information from these bounds. For instance, if one desires an

output distribution where more than a tenth of the nodes have degree five, there are no

non-increasing inputs for which we should expect that property in output. In terms of the

inverse matrix P−1, inputting such a vector will yield negative family sizes in some indices.

This is incredibly limiting since this is independent of node number.

2.2.4 Results

We wish to determine how well P models the output of the Chung-Lu algorithm for a given

input distribution. In Figure 2.3 we compare the näıve output distribution to the outputs of

both Chung-Lu generation and our model taking that distribution as input. For this simple

example we find that our model predicts the output node degree frequency remarkably well.
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Figure 2.3: Model distribution versus Chung-Lu outputs. We consider the
degree classes between one and nine for two different power law
distributions. On the left is a power-law distribution with exponent
β = 1.0 and on the right is a power-law distribution with exponent
β = 2.0. In the top two plots, black crosses represent the näıve
input 1000× k−β, red circles represent the distribution our model
estimates will be the output of Chung-Lu generation, and blue x’s
represent the average distribution for 20 instances of Chung-Lu
graphs given the black crosses as input. We can see that the
Chung-Lu generated graphs match our model output remarkably
closely.

Additionally we aim to determine how much proportional L1 accuracy is gained by

using the vector x = P−1y as opposed to y itself as an input to Chung-Lu. Specifically, we
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consider generating a set of graphs {yi} using the Chung-Lu algorithm with the näıve inputs

{yi}, and the shifted inputs {xi = P−1yi}. We plot the proportional L1 errors ∥yi−ỹi∥1
∥yi∥1 and

∥yi−x̃i∥1
∥yi∥1 in Figure 2.4 where ỹi and x̃i are the output distributions of Chung-Lu for the näıve

input and shifted input respectively. we choose our set {yi} such that these are guaranteed

to be invertible distributions in the sense that x∈R+m. For this we use the variable precision

toolbox in matlab with the digits of precision set to 100. The results of this can be seen

in Figure 2.4. We find that our shifted input drastically decreases the proportional L1 error

between the output of Chung-Lu and the desired output.
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Figure 2.4: Error of näıve Chung-Lu input versus shifted Chung-Lu input. We
consider 100 input distributions yi such that P−1yi = xi where the
distribution xi is the power-law distribution 1000× k− 6i

100 with k
ranging between 1 and 40. For each of the 100 inputs, 30 graphs
were generated and their degree distributions were averaged using
the input yi for Chung-Lu. The proportional L1 error between this
output and the desired output yi is shown as the solid blue line.
Additionally 30 graphs were generated and their degree
distributions were averaged using the input xi for Chung-Lu. The
proportional L1 error between this output and the desired output yi
is shown as the dashed red line. We can see that the “shifted” input
we get using our model drastically reduces error for the sample.
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2.3 Correcting Chung-Lu

2.3.1 Introduction to correcting Chung-Lu

As discussed in the previous portion of this chapter, there are sometimes issues with the

solution vectors given by “shifted Chung-Lu”. These vectors do not have a useful interpreta-

tion with respect to the Chung-Lu generation algorithm, and the method is greatly limited

because of this. The following section aims to remedy these issues while utilizing the same

matrix model as an important building block.

Figure 2.5: Visualization of degree sequences. Comparisons of degree
sequences for the as20, GrQc, HepTh, and lastfm graphs. The
dotted lines denote the predicted output using standard Chung-Lu
weights, the solid grey region denotes the output sequence using
optimized Chung-Lu weights, and the solid line denotes the desired
output sequence. Each optimization here was performed using our
polynomial update method.
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We note that the matrix model can be easily generalized. By choosing a set of arbitrary

positive weights w = {w1, w2, · · · , wd}, instead of simply the nodal degrees, one obtains a

matrix P(w) where the means of each Poisson distribution correspond to the given weights.

This produces a new stochastic block model.

2.3.2 Our contribution

This section focuses on determining, for a given number of weight parameters d, the set of

weights such that the error between the desired output and actual output of Chung-Lu graph

generation will be minimized. We develop and optimize several novel methods to minimize

this error. Visualized in Figure 2.5 for several graphs in the Stanford Large Network Dataset

Collection are their degree sequences, the unoptimized output from Chung-Lu generation

using these degree sequences, and the generation output after applying one of our methods.

We will discuss our varying methods in the following section and further analyze their results

in the following sections.

2.3.3 Methods

As we note in our prior work [28], there are numerous sequences that can not be reliably

generated using näıve Chung-Lu weights. To remedy this short coming, there are two algo-

rithm parameters which may be adjusted to alter the output. One parameter is the input

sequence. This is the specific parameter studied in prior work. The other parameter is the

set of weights w = {w1, w2, · · · , wd}. Conceptually, both methods are trying to approximate

a distribution as a linear combination of Poisson distributions. In the former method, the

Poisson distributions have means equal to the target degree classes, and the approximation

is improved by altering the coefficients applied to each distribution. Alternatively, changing

the weights equates to changing these means, effectively moving the Poisson distributions

along the x-axis.

We present two methods incorporating weight alteration. Our first method relies on

several greedy updates, where weights are chosen such that ∥P(w)x − y∥ is minimized at

each step. The latter method uses maximum likelihood estimation [29] to solve for weights.

Before discussing either method, let us first formalize goals and definitions. Take P(w)

to be the square matrix given by weights w = {w1, · · · , wd} and removing both the first
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row and everything beyond row d + 1 in Equation 2.2. The first row is removed because

it corresponds to the number of zero-degree nodes. These nodes may be ignored after gen-

eration, so removing the first row of P(w) mathematically represents this. We call our

input degree sequence vector x = [x1, · · · , xd] and our desired output degree sequence vector

y = [y1, · · · , yd]. Additionally, call the output of the Chung-Lu algorithm with weight set

w and input vector x, CL(w, x). Then, our goal is to find a combination w, x such that

∥CL(w, x) − y∥1 is minimized. The 1-norm is specifically considered because it can be di-

rectly interpreted as the number of nodes with incorrect degrees. A log2-binned version of

this error will additionally be considered later.

2.3.3.1 Greedy updates

We first discuss the greedy update method. This is based off of a simple approximation and

update loop. The basic idea is as follows. Given an input degree sequence x, determine the

first k derivatives of each column of P(w) with respect to their means and use these deriva-

tives to approximate ∥P(w+ϵ)x−y∥ for small perturbations in the elements of the mean-set

w + ϵ. Then, update the means in the optimal direction according to some minimization

algorithm and repeat this process for some number of iterations.

Two update objectives are discussed in this section, which we call linear updates and

polynomial updates. These objectives only differ in the number of derivatives considered.

Linear updates approximate error based on the first derivative of each column in P(w) .

Alternatively, polynomial updates use an arbitrary number of k derivatives and the Taylor

series to approximate error. As is shown later, both of these methods reduce the per-node

degree error significantly; however, they require different numbers of iterations. All instances

of the polynomial-update variant use k = 2 in this section. In Algorithm 2, we show a gen-

eral template of the greedy method. The main difference in each of these methods comes

from how our objective changes the opt E(·) function. The objectives are discussed in more

detail in the following subsections.

Algorithm 2 is initialized with an input degree sequence vector x, a desired output

degree sequence vector y, a set of initial weights {w1, · · · , wd}, a maximum update step-

size δ, and an iteration number t. For this section, initial degree sequences are taken to

be x = cy for some positive constant c ∈ R+. Additionally, initial weights are taken to

be {w1 = 1, · · · , wd = d}. The iteration number and step size will vary depending on
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Algorithm 2 Polynomial-Update (x,y,{w1, · · · , wd}, δ,t)
1: P ← fill P( {w1, · · · , wd} )
2: for iters ∈ [1. . . t] do
3: U = {U1, · · · ,Uk} ← compute U set({w1, · · · , wd})
4: E ← opt E( P, U, x, y, δ )
5: P ← fill P( {w1 + E11, · · · , wd + Edd} )
6: return {w1, · · · , wd}

desired accuracy and whether linear, or polynomial updates are being used. The algorithm

proceeds as follows. P(w) is initialized with the input weights. Then, within the loop, a set of

matrices U = {U1, · · · ,Uk} is computed within the compute U set(·) function. Each matrix

Ui corresponds to the ith derivative of each column. These matrices are then used in the

opt E(·) function to determine how much each mean in w should change. For the purposes

of this thesis, opt E(·) uses the sequential least squares minimization [30] implementation

from scipy.optimize.minimize(·) in Python. Then new weights are computed and P(w) is

updated.

2.3.3.2 Linear updates

Linear updates are the simpler of the two greedy update methods. In the linear update

method, k = 1 and only a single U matrix is computed in compute U set(·). This matrix

has the same form given in Equation 2.11 and the columns take the form of the derivatives of

the columns in P(w) as given in Equation 2.12 with respect to their means. In Equation 2.11,

µj corresponds to the mean of the Poisson distribution.

U =


| | |

∂
∂µ1

poiss(µ1, x)
∂

∂µ2
poiss(µ2, x) · · · ∂

∂µm
poiss(µm, x)

| | |

 (2.11)

∂

∂µi

poiss(µi, x) =
(x− µi)e

−µiµx−1
i

x!
(2.12)

The linear update objective function used in opt E(·) takes the form of minimizing γ =

∥(P(w) +UE)x− y∥2 with respect to the diagonal matrix E, where each entry is bounded

by δ, |Ejj| ≤ δ. Unfortunately, linear approximations lack significant accuracy, and as

such, the step size δ needs to be rather small to maintain stability within each optimization
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step opt E(·). This ultimately leads to a method which requires many updates. This

can be prohibitive for graphs with high maximum degree, since the dimensionality of our

optimization problem depends on this.

2.3.3.3 Polynomial updates

The polynomial update method is very similar to the linear update method. In this method,

higher order derivatives are considered in the Taylor series. This higher order error approx-

imation is then used to predict degree sequence errors. The Taylor series approximation of

the Poisson distribution is given by Equation 2.13.

poiss(z, x) =
e−µµx

x!
+

∞∑
j=1

(
∂j

∂µj
poiss(µ, z)

)
(z − µ)j (2.13)

For a given number of derivatives k, a truncated series is used to make approximations.

Note that the term on the left of the sum is an entry of the matrix P(w) . Additionally, the

right hand sum consists of two components, the jth derivative, and a difference term. This

allows us to rewrite this expression in terms of matrices as in Equation 2.14.

P(w′) ≈ P(w) +
k∑

j=1

UjEj (2.14)

In Equation 2.14, Uj is the matrix corresponding to the jth derivative of each column,

similar to equation 2.11. Ej is a diagonal matrix with entries Ej(a, a) = eja, corresponding to

the step size in each dimension. In the polynomial update function, the error to be minimized

is of the form γ = ∥(P(w) +
∑k

j=1UjEj)x − y∥2. Because of the increased accuracy of the

polynomial method, a larger bound δ may be used for the step size. While we do not present

bounds for this here, the size of δ can be chosen to be larger for larger instances of the

number of derivatives k.

2.3.3.4 Maximum likelihood estimation

Maximum likelihood estimation (MLE) based clustering is a popular statistical method for

determining probabilistic clusters for a data set [29]. Given a pre-defined type of statistical

distribution (e.g. normal, binomial, Poisson, etc. ) and a number of distributions m, MLE
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clustering determines the parameters and coefficients for those distributions such that their

mixture distribution has the highest likelihood of generating the data set. While MLE is

most commonly used for clustering data, we instead use it here for function approximation.

Consider the desired degree sequence y as a realization of a mixture distribution and the

underlying statistical distributions as Poisson distributions. Then, the coefficients and means

which are output as a mixture model from MLE may be interpreted as the input vector x

and the µ values in P(w) , respectively.

Algorithm 3 MLE-Update (m,y,d,iters)

1: x ← [ 1
m
, · · · , 1

m
]

2: py ← y
∥y∥1

3: µ ← [ d
m
, 2d
m
, · · · , d]

4: (x,µ) ← poiss EM(x,µ,py,iters)
5: x ← ∥y∥1x
6: return (x,µ)

Our MLE based method proceeds as follows, and is demonstrated in pseudocode in

Algorithm 3. Begin by considering a desired output sequence y, a number of means m, and

an interval [0, d]. Initialize a vector x = [ 1
m
, · · · , 1

m
] and a vector of means µ = [µ1 =

d
m
, µ2 =

2d
m
, · · · , µm = d]. Note that these means may be initialized randomly within the interval

[0, d], if desired. Then, normalize y to obtain a probability distribution py = y
∥y∥1 , from

which points are sampled for maximum likelihood estimation. Maximum likelihood estima-

tion is then run on these inputs, updating the entries of x and µ at each iteration. Once this

has concluded, x is scaled by ∥y∥1 and each entry is rounded to the nearest natural number.

This ensures that x now corresponds to the number of nodes instead of a proportion of all

nodes.

As discussed earlier, there are two parameters which may be tuned when improving

Chung-Lu graph generation. While our earlier work focused on changing the input sequence,

and both the linear and polynomial methods focus on changing the means of Poisson distri-

butions, Algorithm 3 simultaneously solves for both. Additionally, expectation maximization

has a tune-able dimensionality. This means that one may take small samples from py, and

consider fewer Poisson distributions to improve compute time. This is not an option that is

readily available in the case of greedy linear and polynomial updates.
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2.3.4 Results

In Figure 2.6, the three methods discussed in the previous section are compared against

näıve Chung-Lu generation on a set of degree sequences from the Stanford Large Network

Dataset Collection. Graph generation is performed using the expected degree graph(·)
function from the NetworkX [31] package in Python.

Figure 2.6: Proportional errors of degree sequences. Degree error plots for all
methods on a number of graphs. Both the proportional error (top),
and log2-binned proportional error (bottom) metrics are as
described in the Results section. As is seen, every method
drastically reduces the proportional L1 error of the degree sequence
when compared with näıve Chung Lu. However, different methods
perform better on differing degree sequences.

As can be seen, each method outperforms näıve Chung-Lu by a considerable mar-

gin. However, our different methods perform better on different degree sequences. The

exact reason for this requires further analysis. Figure 2.6 considers two different propor-

tional error functions. The first one is L1 proportional error which is computed as the ratio
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∥CL(w, x) − y∥1/∥y∥1. This can be directly interpreted as the proportion of nodes which

have the correct degree. Additionally, one can interpret this error function as a normalized

version of the total variation distance. The log2-binned proportional error is also considered.

In this case the sequences CL(w, x) and y are partitioned into b = ⌈log2(d)⌉ bins, forming

the sequences β(CL(w, x)) and β(y), both of which are in Rb. The entries of β(CL(w, x))

are β(CL(w, x))i =
∑2(i−1)+2i

j=2(i−1) CL(w, x)j, and the entries of β(y) follow similarly. The pro-

portional binned error is then computed as ∥β(CL(w, x)) − β(y)∥1/∥β(y)∥1. The reason

for defining this error function is that there are many applications where the exact degrees

are less important than simply having the correct number of “low-degree”, or “high-degree”

nodes. For this purpose, the log2-binned proportional error provides a quantitative under-

standing of how many nodes are being generated for different “sections” of the sequence.

As is seen in Figure 2.7, the polynomial update method outperforms the other optimiza-

tion methods in proportional error. Additionally, the MLE optimization method outperforms

the others for log2-binned proportional error. Conceptually, this implies that the polynomial

update method may be the best at matching the degrees of nodes exactly, while the MLE

method is superior for approximate reproduction of sequences.

2.4 Discussion

2.4.1 Parameters

When choosing parameters for Algorithm 2, a reader may be rightfully curious as to what

constitutes a “good” choice. In Figure 2.8, a parameter search over several choices of iteration

number t and constant c, such that x = cy are shown for two example graphs from the

Stanford Large Network Dataset Collection. As is seen, the error reaches similar levels for

both the polynomial and linear update methods for different parameters. We note that

1.05 < c < 1.15 appears to work best for both graphs. While not shown, this behavior

is also seen a across many other degree sequences. Furthermore, the number of iterations

required to achieve a similar error reduction with polynomial updates versus linear updates

is seen to be considerably smaller. In fact, for these two graphs, a similar error reduction is

seen with an order of magnitude fewer update steps.

There is significant work to be done deciding parameters. While Figure 2.8 suggests
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Figure 2.7: Average proportional errors of degree sequences. The proportional
(left) and log2-binned proportional (right) errors are compared
over all test graphs for each optimization method as well as näıve
Chung-Lu. Both the proportional error, and log2-binned
proportional error metrics are as described in the Results section.
As is seen, on average the polynomial update method results in the
more significant reduction of proportional error, however the MLE
method results in the largest reduction in log2-binned proportional
error.

some best practices, it is far from definitive. Furthermore, the choice of step-size δ is currently

somewhat arbitrary. In this section, it is taken to be 0.05 ≤ δ ≤ 0.2 for linear updates, and

0.2 ≤ δ ≤ 0.5 for polynomial updates. Different step sizes drastically alter the stability

and number of requisite iterations of the method. This requires further experimental and

theoretical results for varying degree sequences.

2.4.2 Timing considerations

The methods presented in this thesis require varying times to run. The linear update method

uses a miniscule step size, and as such requires many iterations to terminate. This is a sig-

nificant concern when the maximum degree of the desired output is large. This is because

the maximum degree controls the dimensionality of the optimization step, which must be

performed at every iteration. To this end, the polynomial update method can iterate with a

larger step size, requiring less iterations. However, in the case of a significantly large max-

imum degree, the optimization step may still not be practical. The MLE-method does not
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Figure 2.8: A parameter search of sequence error. We vary the coefficient
c ∈ R+ for x = cy, and the number of iterations for both the
polynomial and linear update methods respectively. The
polynomial update method in this case has k = 2. The colors
indicate the proportional L1 error ∥CL(w, x)− y∥1/∥CL(y)− y∥1. As
can be seen for the two sample graphs, the polynomial update
method converges to a smaller proportional L1 error than the
linear method does in the same number of iterations.

suffer from these same drawbacks, because the sample number and number of distributions

may be tuned. This means the MLE method should not perform slower on larger degree

sequences, given constant sample and distribution numbers.

In the case of the greedy update methods, a simple change can be made which drasti-

cally speeds up compute time. This is the method of truncation. Note that, for most real

world degree sequences the vast majority of the weight lies in the lowest degrees of the graph.

Because of this, one may ignore a portion of the sequence when using either greedy update
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method. This drastically reduces compute time, but may introduce additional error. In our

limited testing, removing the final 1% of the sequence by node count greatly improves run

times and minimally affects error. Despite this, the best practice for truncation is an open

problem.

2.5 Extensions

Ultimately, the goal of improving graph null models is to make comparisons with observed

datasets. For null models such as Chung-Lu graph generation, which are based on the degree

distribution, these comparisons are useful for clustering tasks. In the case of modularity

maximization [14] clusters are determined which maximize the Modularity heuristic 2.15.

Q =
1

2m

∑
u,v∈V

(
Auv −

dudv
2m

)
δ(cu, cv) (2.15)

In Equation 2.15, δ denotes the Kronecker delta, cx denotes the cluster membership of node

x, dx denotes the degree of node x, and Axy denotes the xth, yth element of the adjacency

matrix. The right hand term within the parenthesis in the equation 2.15 dudv/2m is the same

as the probability of two nodes with degree du and dv being connected within the Chung-Lu

model. We can therefore construct a more general modularity expression for any null model

using per-edge probabilities as follows.

Q =
1

2m

∑
u,v∈V

(Auv − p(u, v)) δ(cu, cv) (2.16)

In Equation 2.16, p(u, v) denotes an arbitrary probability for the edge connecting nodes u, v.

This has been discussed in Fosdick et al. [9], however they suggest an edge-skipping technique

for computing these probabilities. This technique works as follows. First, a graph with the

desired degree distribution is taken as an input and a copy of its adjacency matrix is stored.

This graph can in general be taken as the one we want to cluster. Then double-edge swaps

are performed. The exact number of double edge swaps required is unknown, but some

number of double edge swaps are done. After these edge swaps, the adjacency matrix of the

new graph is added to the prior adjacency matrix. These steps are repeated for some number

of samples, and then the sum of adjacency matrices is divided by that number of samples to
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obtain per-edge probabilities. In general this is a very slow technique, and anything which

could achieve a similar result with grater speed could yield a more representative version of

modularity maximization.



CHAPTER 3

SPECTRAL GRAPH COARSENING

3.1 Chapter overview

We investigate the problem of coarsening graphs while preserving the properties of their spec-

trum Laplacian spectrum. The first portion of this chapter is spent on analyzing the inverse

problem for the unnormalized graph Laplacian. For this portion, we ask the question, If a

coarsened graph’s spectrum approximates the spectrum of the original graph to within some

threshold, may we approximately recreate the original graph from its coarsened counterpart

with some bound on the per-edge weight difference?. After this, we explore an algorithm for

Laplacian consistent coarsening for the normalized Laplacian matrix on GPU.

3.2 Introduction to spectral coarsening

Graph coarsening has been a long standing field of study since Gabriel Kron’s 1939 work [32]

creating reduced order models of electrical networks. While this original work was focused

mainly on coarsening for applications to electrical networks, it has spurred a great deal

of study in several different disciplines, such as machine learning and scientific comput-

ing [33]. In machine learning and scientific computing, graph coarsening is often used as a

pre-processing step for clustering or partitioning. An example of this is the METIS algo-

rithm which partitions a coarsened graph before performing a series of refinement steps [34].

Recently, some work [35], [36] has put forward methods for coarsening graphs while pre-

serving portions of the eigenspace relating to the graph Laplacian and normalized graph

Laplacian [37]. There are many benefits to this sort of analysis for preserving broader func-

tional behavior of a network. As opposed to preserving another metric, such as approximate

Portions of this chapter are to appear as: C. Brissette, A. Huang and G. M. Slota, “Spectrum consistent
coarsening approximates edge weights.”, Soc. Ind. Appl. Math. J. Matrix Anal. Appl., vol. 44, no. 3, pp.
1032–1046, Sep. 2023

Portions of this chapter appear as: C. Brissette, A. Huang, and G. M. Slota, “Parallel coarsening of
graph data with spectral guarantees,” 2022, arXiv:2204.11757.

29
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cut values, preserving a portion of the Laplacian eigenspace also preserves a portion of the

behavior of the discrete heat and wave equations on the graph.

It is well known in the continuous case that the Laplacian operator can confer a sig-

nificant amount of information about geometry [38]–[40]. While not all information can be

retrieved [40], one may wonder what similar methods may reveal in the discrete case. Fortu-

nately, a great deal of geometric information is conveyed through the spectrum of graphs as

well [37], [41]–[44]. One may ideally wish for there to be a way to uniquely determine a graph

and its automorphisms [45] by its spectrum. Unfortunately, a complete characterization of

which graphs can be determined by their spectrum is an open problem, and most classes of

graphs that are known to be classified by their spectrum are either small or rather simple

in their structure. However, some geometric quantities can be found. For instance, we can

“hear” the volume of a graph, defined to be the sum of it’s degrees, simply by adding together

each eigenvalue of the graph Laplacian. Additionally, we can “hear” an approximation of

the optimal conductance cut in a graph by considering the first nontrivial eigenvalue [37].

The aim of this section is to formalize and prove a statement similar to the following.

If the spectrum of a graph G is close to that of its coarsened representation Gc, then the edge

weights of G can be closely determined from those of Gc. The utility of such a statement is

perhaps best explored through the geometry of data. Assume there exists a set of k points

{ai}i∈[1..k], ai ∈ Rn. Form a graph from these points using a concave or convex weighting

function wij = f(∥ai − aj∥2). Given the ability to approximate these weights within some

bound given a coarsening Gc, it follows that the pairwise distances between nodes are also

approximated within some bound given the same coarsening. For such a weighting scheme,

this implies that coarsenings which closely preserve eigenvalues also closely preserve nodal

embeddings in Rn to within some perturbation of a rigid transformation. This is discussed

further in the final discussion section. For now, we begin towards this goal by defining the

coarsening of a graph with respect to a nodal partition.

Definition 1. Consider a weighted graph G = (V,W ) and a partition of its nodes into

k disjoint sets, P = {V1, · · · , Vk}, V = V1 ∪ V2 ∪ · · · ∪ Vk. The coarsened graph of

G with respect to P , Gc, is the loopy weighted graph given by collapsing each of these

partitions to a single node {ν1, · · · , νk}. The adjacency matrix elements are given by W c
νiνj

=∑
u∈Vi

∑
v∈Vj

Wuv. For brevity, we will often leave out the explicit partition P , and instead

we refer to Gc simply as the coarsening of G.
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This is the interpretation provided in Loukas [35] and Jin et al. [36] and allows for

coarsening can be expressed as a product of matrices Wc = SWST for a coarsening matrix

S. This definition retains the sum of weighted degrees within and between partitions, as

well as the total sum of weighted degrees of the graph. One should note that the coarsened

graph will have fewer eigenvalues than in the original graph. Comparing the spectra becomes

difficult in this instance. For this reason, Loukas considers a truncated spectrum that is cut

to the dimension of the coarsened graph. We instead follow Jin et al.’s later work, where

the original and coarsened graphs are compared through a structure called the lift, which

extends the spectrum of the coarsened graph to the correct dimension.

G G Gc
^

Figure 3.1: Coarsening and lifting. A visualization of the coarsening and lifting
process. In the figure, the relative thickness of an edge positively
correlates with the edge weight. Note how in the shift from G to Gc

the graph gains self-loops. Additionally, after lifting the coarsened
graph Gc to Ĝ, the weights within and between partitions become
evenly distributed.

Definition 2. Consider a coarsening Gc of graph G = (V,W ) with respect to nodal partition

P = {V1, · · · , Vk}. We call Ĝ = (V̂ , Ŵ ) the lift of G with respect to P , where |V̂ | = |V |. The
adjacency matrix elements are given by Ŵuv = W c

νiνj
/(|Vi||Vj|) where u ∈ Vi and v ∈ Vj. For

brevity, we will often assume a partition P with associated coarsening Gc and simply refer

to Ĝ as the lift of G.

As previously mentioned, the lift is useful because the sorted eigenvalues of the lift Ĝ

align with those of the original graph G. Before continuing we define the graph Laplacian

as L = D−W , and the normalized Laplacian as L = D−1/2LD−1/2, where D is the diagonal
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degree matrix of G, and W is the weighted adjacency matrix. We now define notions which

will be useful when comparing the structure of the original graph G with that of the lift Ĝ.

This begins with the notion of σ-connectedness.

Definition 3. Consider a graph G = (V,W ) and a nodal partition P = {V1, · · · , Vk}.
The weighted adjacency of G can be written as W = W (C) + W (R). Here W (C) is a

block-diagonal matrix of k disconnected weighted adjacencies corresponding to the k induced

subgraphs of G given by the entries in P . The matrix W (R) is the adjacency of a weighted k-

partite graph on the same partitions. Then for ∥W (R)∥1 ≤ σ
2
, we call the graph σ-connected.

L =


L11 L12 · · · L1k

L21 L22 · · · L2k

...
...

. . .
...

Lk1 Lk2 · · · Lkk

 =


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Ck

+


R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

. . .
...

Rk1 Rk2 · · · Rkk

 (3.1)

We will also refer to Laplcian C associated with W (C) as the core Laplacian, and the

Laplcian R associated with W (R) as the ambient Laplacian. The associated graphs for these

matrices will be referred to as the core structure C, and ambient structure R respectively.

There are several noteworthy properties of the core and ambient structures of a graph G given

the nodal partition P . First, the adjacency matrix Wc for a coarsening of G with respect

to partition P is equal to W (C)c + W (R)c, where W (C)c and W (R)c are the coarsened

adjacency matrices of the core and ambient structures with respect to the same partition.

Additionally, the lift Ŵ is equal to Ŵ (C) + Ŵ (R), where Ŵ (C) and Ŵ (R) are the lifted

adjacency matrices of the core and ambient structures with respect to the partition P . Note

that all graphs are σ-connected for some value σ. Because of this, all graphs can be broken

into a core and ambient structure, where the ambient structure defines perturbations in the

Laplacian of the core structure C. This is largely how this definition is used as the section

progresses.

Definition 4. We call a weighted graph G = (V,W ) δ-complete if all the weights in the

graph are Wuv =
δ
N
.

The definition of a δ-complete graph generalizes the concept of the complete graph

in the unweighted case to one in the weighted case. It is worth noting that δ-complete

graphs have the same normalized Laplacian spectrum as complete graphs. Additionally, the
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nontrivial eigenvalues of the combinatorial Laplacian for δ-complete graphs are all equal to δ.

Graphs which are δ-complete form the natural building blocks of the lift of the core structure

Ĉ. With this, all the requisite language is defined.

3.2.1 Notation

Graph G = (V,W ) is assumed to be weighted, and |V | = N , |W | = M . The variable ϵ will

refer to a real number such that ϵ > 0. Additionally we will be discussing many eigenvalues

of different matrices. The ordered eigenvalues of the Laplacians of G and Ĝ will be denoted

as λi and λ̂i respectively. Similarly the ordered eigenvalues of the adjacency matrices W

and Ŵ associated with G and Ĝ will be denoted ωi and ω̂i respectively. Additionally we

will concern ourselves with the normalized Laplacians L and L̂. The eigenvalues of these

will be denoted ηi and η̂i respectively. The eigenvalues of the core Laplacian C with k

connected components will be denoted µi(k), where (k) denotes membership within the

assumed partition P = {V1, · · · , Vk}. the associated eigenvalues of the lifted core Laplacian

Ĉ will be denoted by µ̂i(k).

Weighted adjacency matrices will be denoted by W and Ŵ respectively. Individual

adjacencies between nodes u, v ∈ V will be denoted by Wuv, and Ŵuv will denote the adja-

cency between u, v ∈ V̂ . Additionally Mi: and M:i represent the i
th and column respectively

for an arbitrary matrix M . The degree of any node u ∈ V will be denoted by du. Similarly,

d̂u will denote the same for u ∈ V̂ . These degrees show up in the diagonal degree matrices

D and D̂. Additionally, when considering eigenvalues of induced subgraphs with respect to

some partition P = {V1, · · · , Vk}, they will be expressed as λi(j) where j ∈ [1..k] denotes set

membership within an element of P . This notation extends to degrees, as well as all other

associated eigenvalues. Finally vol(H), for some subgraph H, denotes the sum of weighted

degrees within the subgraph.

3.2.2 Spectrum consistent coarsening

We first present a method for spectrum consistent coarsening of a graph G with respect to the

combinatorial Laplacian. This is in contrast to the work in Jin et al. [36] using normalized

Laplacians; however, the proof method is incredibly similar. The idea behind this method is

simple. Two nodes may be merged if their rows in the adjacency matrix are approximately
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linearly dependent. This linear dependence is evaluated by computing the 1-norm of the

difference between rows in the adjacency matrix, and merging the rows with the smallest

1-norm difference. This is then iterated to the users desired level of coarsening. The proof

follows the same format as Proposition 4.2 in Jin et al.

Theorem 5 (Spectrum consistent coarsening). For a graph G with all self-loops hav-

ing the same weight, if it is coarsened by combining nodes u, v ∈ V , then |λi − λ̂i| ≤ 3ϵ
2
if

∥Wu: −Wv:∥1 ≤ ϵ.

Proof. The proof follows similarly to that in Jin et al. We consider entries of the lifted

adjacency matrix.

Ŵij =



Wuu+Wuv+Wvu+Wvv

4
if i, j ∈ {u, v}

Wuj+Wvj

2
if i ∈ {u, v} and j ̸∈ {u, v}

Wiu+Wiv

2
if i ̸∈ {u, v} and j ∈ {u, v}

Wij else

As noted in the original citation, this then means that the degrees of the lifted nodes will

be as follows.

d̂i =


du+dv

2
if i ∈ {u, v}

di else

There are now a Laplacian L = D −W and a lifted Laplacian L̂ = D̂ − Ŵ , and we wish

to know the difference between these E = L − L̂ = D − D̂ + Ŵ −W as to apply Weyl’s

inequality.

Ŵij −Wij =



Wuu+Wuv+Wvu+Wvv

4
−Wij if i, j ∈ {u, v}

Wuj+Wvj

2
−Wij if i ∈ {u, v} and j ̸∈ {u, v}

Wiu+Wiv

2
−Wij if i ̸∈ {u, v} and j ∈ {u, v}

0 else

Dii − D̂ii =

di − du+dv
2

if i ∈ {u, v}

0 else
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Because ∥Wu: − Wv:∥1 ≤ ϵ, it is also true that |du − dv| ≤ ϵ by the triangle inequality.

Therefore, without loss of generality, du+dv
2
≤ du +

ϵ
2
meaning |du − du+dv

2
| ≤ ϵ

2
. Therefore,

to prove the lemma, only considerations for the difference in the adjacency matrices remain.

For this, two cases need to be analyzed, including the case where i ∈ {u, v} and the case

where i ̸∈ {u, v}. Without loss of generality, take i = u, then in the former case above the

following is true.

∥Ŵi: −Wi:∥1 =
∑
j∈V

|Ŵuj −Wuj|

=

∣∣∣∣Wuu +Wuv +Wvu +Wvv − 4Wuu

4

∣∣∣∣+ ∣∣∣∣Wuu +Wuv +Wvu +Wvv − 4Wuv

4

∣∣∣∣
+

∑
j ̸∈{u,v}

∣∣∣∣Wuj +Wvj − 2Wuj

2

∣∣∣∣
=

1

4
|Wuv +Wvu +Wvv − 3Wuu|+

1

4
|Wuu +Wvv − 2Wuv|+

1

2

∑
j ̸∈{u,v}

|Wvj −Wuj|

≤ 3

4
|Wuu −Wuv|+

3

4
|Wvv −Wuv|+

1

4
|Wuu −Wvv|+

1

2

∑
j ̸∈{u,v}

|Wvj −Wuj|

≤ |Wuu −Wuv|+ |Wvv −Wuv|+
1

2

∑
j ̸∈{u,v}

|Wvj −Wuj|

≤ ∥Wu: −Wv:∥1 ≤ ϵ

Now we prove a similar result when i ̸∈ {u, v}.

∥Ŵi: −Wi:∥1 =
∑
j∈V

|Ŵij −Wij|

=
1

2
|Wiu −Wiv|+

1

2
|Wiv −Wiu|

= |Wui −Wvi|

≤ ∥Wu: −Wv:∥1 ≤ ϵ

Then ∥E∥1 = ∥L̂ − L∥1 = ∥D̂ − D + W − Ŵ∥1 ≤ ϵ
2
+ ϵ = 3ϵ

2
. Our lemma then follows

immediately from Weyl’s inequality.
□
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3.2.3 Discussion

We note that this bound can be repeated in succession m times, and if each successive

coarsening has an L1 difference less than or equal to ϵ, then the spectral gap we obtain at the

end between our graphs is less than or equal to 3mϵ
2
. We show an example of this coarsening

performed on a σ-connected graph according to the criteria of theorem 5 in figure 3.2.

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00

ei
ge

nv
al

ue

prop error 0.024819981548931946

normalized Laplacian comparison

0 5 10 15 20 25
0

2

4

6

8

ei
ge

nv
al

ue

prop error 0.049140917598092

Laplacian comparison

Figure 3.2: A coarsening example. An example of σ-connected graph is
pictured in the top right of the figure and a greedily coarsened
representation is shown beneath it. This graph was coarsened
according to the criteria in Theorem 5, using ϵ ≤ 0.1 as a maximum
threshold. The red-dots denote eigenvalues of the original graph,
and the blue crosses denote the eigenvalues of the lift after
coarsening. Both the spectrum of the normalized Laplacian and the
spectrum of the combinatorial Laplacian are shown along with the
proportional L1 error for each of them as ∥Λ− Λ̂∥1/∥Λ∥1, where Λ
and Λ̂ are vectors containing the sorted eigenvalues of G and Ĝ
respectively.

When coarsening with respect to the normalized Laplacian, the eigenvalues of the

coarsened graph are all eigenvalues of the lifted graph. This makes comparisons between

the lift and the original graph meaningful, because they bound the spectral behavior of

the coarse graph. This is not true in the case of the combinatorial Laplacian. However,

coarsening with respect to the combinatorial Laplacian achieves multiple objectives.
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Theorem 6. Given a graph G = (V,W ), if two nodes u, v ∈ V are such that ∥Wu:−Wv:∥1 ≤
ϵ, then ∥Wu:/du −Wv:/dv∥1 ≤ 2ϵ/max{du, dv}.

Proof. First note that ∥Wu:−Wv:∥1 ≤ ϵ implies |du−dv| ≤ ϵ. Then without loss of generality

the following is true. ∥∥∥∥Wu:

du
− Wv:

dv

∥∥∥∥
1

=

∥∥∥∥dvWu: − duWv:

dudv

∥∥∥∥
1

≤
∥∥∥∥Wu: −Wv:

dv

∥∥∥∥
1

+
ϵ

dv
≤ 2ϵ

dv

Because dv was chosen without loss of generality, ∥Wu:/du −Wv:/dv∥1 ≤ 2ϵ/max{du, dv} is
true, proving the theorem.

□

As shown in Theorem 6, the bound ϵ given in combinatorial Laplacian coarsening enforces

a related bound with regards to normalized Laplacian coarsening. That is, combinatorial

Laplacian coarsening coarsens with respect to both objectives at once. This is not guaran-

teed with normalized Laplacian coarsening. Furthermore, as is discussed throughout this

manuscript, relations between nodes in the fine graph are preserved when coasening with

respect to the combinatorial Laplacian. This has potential applications to data mining and

clustering tasks.

We now present a comparison between the normalized objective and algebraic distance.

AMG methods are extensions of classical multigrid methods [46] in scientific computing,

which rely on successive coarsenings of a linear operator to efficiently solve a linear system.

The algebraic distances used in relaxation based AMG methods rely on sampling a set of test

vectors [47] {xi}i∈[1..k] and computing χi = Lrwx
i, where Lrw is the random walk normalized

Laplacian [37]. A distance metric between nodes is computed using the output of these

vectors. One such metric is the following.

αuv = max
i∈[1..k]

|χi
u − χi

v| (3.2)

Intuitively, this quantifies the linear dependence between rows of the random walk Laplacian

Lrw. In Jin et al. the linear dependence between rows of the random walk Laplacian is also

considered. In the former case, linear dependence is probed by test vectors, whereas it is
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quantified by the 1-norm difference in the latter case. Using the bound in Jin et al. one can

also bound the distance metric αuv. Assuming ∥xi∥2 = 1 for all i ∈ [1..k], then the following

is true.

∥∥∥∥Wu:

du
− Wv:

dv

∥∥∥∥
1

≤ ϵ (3.3)

⇒
∣∣∣∣(Wu:

du
− Wv:

dv

)
xi

∣∣∣∣ ≤ ϵ∥xi∥2 ≤ ϵ (3.4)

⇒ αuv ≤ ϵ (3.5)

One may construct a similar algebraic distance using the combinatorial Laplacian. In

this case, the same argument can be made using the bound given in Theorem 5. A very

similar bounding argument may be made for another algebraic distance metric used in AMG

methods.

βuv =
∑

i∈[1..k]

(
χk
u − χk

v

)2
(3.6)

If the bound from Jin et al. is assumed, one knows βuv ≤ kϵ2 due to a similar argument

as before. An identical argument can be made for an algebraic distance using the combina-

torial Laplacian when the bound given in Theorem 5 is used. In this sense, the bound from

Theorem 5 can be interpreted as a stronger criteria than those of relaxation based algebraic

multigrid. To achieve the same spectral bound using an algebraic metric such as αuv or

βuv, one requires k = N linearly independent test vectors at minimum. This implies the

work complexity of relaxation based AMG needs to be O(MN) to achieve a similar spectral

bound to Theorem 5. Alternatively, computing a sparse norm between adjacency vectors

for every edge in the graph requires only O(N ⟨d2⟩) where ⟨d2⟩ is the second moment of the

graph’s degree distribution [48]. While it may be possible to define a spectral bound given

algebraic distances between nodes, to the authors’ knowledge no such bound exists [33]. Fig-

ure 3.3 compares coarsening heuristics on three different graphs from the Koblenz Network

Collection. In Figure 3.3 one can see that, despite not having the same guarantees as the

criteria in Theorem 5, coarsening with respect to algebraic distance does perform well for

spectral approximation. Both methods perform better than heavy weight matching, which
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is a popular coarsening method attempting to maximize wij
didj

for each merge [33].

Figure 3.3: Coarsening method comparison. Three graphs were coarsened
using three different heuristics to half-size and then the spectra of
their lifts were compared with the original. From left to right, the
graphs are Euroroad, Jazz Musicians, and the Zachary Karate
Club. All of these were collected from the Koblenz Network
Collection. The bottom row of the figure displays the original
graphs. For heavy weight matching the edge (u, v) corresponding to
the highest value of Wuv

dudv
was contracted at each step. For algebraic

distance, the edge corresponding to the minimum of Equation 3.2
was contracted. Finally for the L1 method, the edge minimizing
the criteria in Theorem 5 was contracted. It should additionally be
noted that 20 test vectors were used for computing algebraic
distances.

3.2.4 Edge weight approximation for general graphs

We now proceed with the proof of the main result of the manuscript. The details behind

the main result of this chapter are that every graph is σ-connected for some value σ and

the Laplacian can be expressed as the sum of two independent graph Laplacians. These

Laplacians are defined by the core Laplacian C and the ambient Laplacian R. Comparisons

can then be made between the core structures of the original graph and the lift, viewing

R and R̂ as perturbation matrices. In this way the degrees of individual nodes may be
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bounded according to the difference in spectra, and the parameter σ. This allows for the

application of discrepancy bounds [37] to various subgraphs and, most importantly, pairs of

nodes. These bounds are then used to bound weight differences accordingly. A visualization

of the dependencies between results can be seen in Figure 3.4.

Figure 3.4: Result dependencies. The dependencies between results in this
section are shown. The boxes are numbered with their respective
results, and any boxes nested within them represent sub-results
which are used to prove the larger corollary, lemma, or theorem.

Lemma 7. Given a σ-connected graph G = (V,W ) and its approximated lifted graph Ĝ =

(V̂ , Ŵ ), say |λi − λ̂i| ≤ ϵ for all i ∈ [1..N ]. Then |µi − λ̂i| ≤ ϵ+ σ for all i ∈ [1..N ].

Proof. Since G is σ-connected, its Laplacian structure can be written as the sum of two

separate Laplacians, L = C + R. Note ∥R∥2 ≤ ∥R∥1 ≤ σ. Using this, we directly apply

Weyl’s inequality [49] to get |λi − µi| ≤ σ. Then, because |λi − λ̂i| ≤ ϵ, |µi − λ̂i| ≤ ϵ+ σ.

□

In simplifying language, Lemma 7 states that the eigenvalues of the core Laplacian C

closely approximate eigenvalues of the lift Ĝ when the eigenvalues of Ĝ closely approximate

the eigenvalues of G.

Lemma 8. If G = (V,W ) is a σ-connected graph, then its lift Ĝ = (V̂ , Ŵ ) is also σ-

connected.

Proof. Note that lifting preserves the sum of edge weights within partitions and the

sum of edge weights between partitions. Therefore, if L is expressed in terms of its core and

ambient structures, the lifts of both of these structures may be independently considered.

For any node u ∈ Vi in R̂, the degree d̂u = 1
|Vi|

∑
v∈Vi

dv. The following relationship then

holds true.

max
v∈V
|d̂v| ≤ max

u∈V
|du|
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This implies ∥R̂∥1 ≤ ∥R∥1 ≤ σ proving our lemma.

□

Lemma 8 in conjunction with Lemma 7 allows for direct comparison between the

spectra of the core Laplacians C and Ĉ.

Corollary 9. Given a σ-connected graph G = (V,W ) and its approximated lifted graph

Ĝ = (V̂ , Ŵ ), respectively, say |λi − λ̂i| ≤ ϵ for all i ∈ [1..N ]. Then |µi − µ̂i| ≤ ϵ+ 2σ.

Proof. This follows immediately from the fact that Ĝ is σ-connected from Lemma 8,

and then applying Lemma 7.

□

Corollary 9 states that the core-structure of a graph and its lift have similar eigenvalues

when G and Ĝ have similar eigenvalues. Each independent core sub-Laplacian Ĉ(i) of our

lift Ĝ is δi-complete, where δi is the average degree within C(i). This implies µ̂j(i) = δi for

all nontrivial eigenvalues. Therefore, full information of the degrees and spectra of every

Ĉ(i) are known. In conjunction with Corollary 9, this will allow for comparison between the

degrees of partitions of the core structures C(i) and Ĉ(i).

Lemma 10. If all the nontrivial eigenvalues of the Laplacian L of a connected graph G =

(V,W ) lie within the bounds δ − ϵ ≤ λi ≤ δ + ϵ, with δ = V ol(G)
N

, then |di − δ| ≤ 4ϵ for all

i ∈ [1..N ]. Here di =
∑

j∈[1..N ] Wij is the degree of the node i ∈ V .

Proof. Consider the vector eij = 1√
2
(ei − ej), where ei, ej are the unit vectors with

value zero everywhere except for a one in the ith and jth element, respectively. Note that

eTij⊥1, meaning ∥Leij∥2 cannot be arbitrarily small. Instead, it is bounded below and above

by λ2 ≤ ∥Leij∥2 ≤ λN . By assumption, δ − ϵ ≤ λi ≤ δ + ϵ for all nontrivial eigenvalues.

This means δ − ϵ ≤ eTijLeij ≤ δ + ϵ must be true due to eij having unit length ∥eij∥2 = 1.

By writing out eTijLeij explicitly, one gets that 2(δ − ϵ) ≤ (di + dj + 2Wij) ≤ 2(δ + ϵ). From

this, the following must be true.
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2N(N − 1)(δ − ϵ) ≤
N∑
i=1

N∑
j=1,j ̸=i

di + dj + 2Wij ≤ 2N(N − 1)(δ + ϵ)

2N(N − 1)(δ − ϵ) ≤
N∑
i=1

(N − 1)di + (V ol(G)− di) + 2di ≤ 2N(N − 1)(δ + ϵ)

2N(N − 1)(δ − ϵ) ≤ 2NV ol(G) ≤ 2N(N − 1)(δ + ϵ)

⇒ 1−N

N
ϵ ≤ δ +

1−N

N
δ ≤ N − 1

N
ϵ

⇒ (1−N)ϵ ≤ δ ≤ (N − 1)ϵ

The inequality δ ≤ (N−1)ϵ can now be used to prove our lemma. The proof follows similarly

to the previous inequalities, however now the outer sum is removed.

2(N − 1)(δ − ϵ) ≤
N∑

j=1,j ̸=i

di + dj + 2Wij ≤ 2(N − 1)(δ + ϵ)

2(N − 1)(δ − ϵ) ≤ (N − 1)di + (V ol(G)− di) + 2di ≤ 2(N − 1)(δ + ϵ)

2(N − 1)(δ − ϵ) ≤ Ndi + V ol(G) ≤ 2(N − 1)(δ + ϵ)

⇒ 2
(N − 1)

N
(δ − ϵ) ≤ di + δ ≤ 2

(N − 1)

N
(δ + ϵ)

⇒ 1−N

N
ϵ ≤ di − δ +

2δ

N
≤ 2

N − 1

N
ϵ

⇒ −2ϵ− 2(δ − ϵ)

N
≤ di − δ ≤ 2ϵ− 2(ϵ+ δ)

N

⇒ −2ϵ− 2ϵ ≤ di − δ ≤ 2ϵ

⇒ |di − δ| ≤ 4ϵ

The second to last line comes as an immediate consequence of the previous inequality δ ≤
(N − 1)ϵ, and proves our lemma.

□

Lemma 10 allows for statements to be made about the degrees of nodes in G based

on the average degrees of partitions. This completes one of two major building blocks for

the final edge approximation theorem. Before proving the next lemma we state a weighted
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version of Theorem 5.1 in Chung and Graham [37], noting that the original proof provided

does not change in the case of weights.

Lemma 11 (Chung. 5.1). Suppose X,Y are two subsets of the vertex set V of a graph G.

Then, ∣∣∣∣∣ ∑
x∈X,y∈Y

Wxy −
vol(X)vol(Y )

vol(G)

∣∣∣∣∣ ≤ λ̄
√
vol(X)vol(Y )

where λ̄ = max
i ̸=1
|1− ηi|. Here {ηi}i∈[2..N ] are eigenvalues of the normalized Laplacian L(G) =

D− 1
2L(G)D− 1

2 .

Ideally, this theorem could be applied directly to a σ-connected graph G to bound

the difference between the edge weights of G and Ĝ. In order to apply lemma 11, an

approximation of λ̄ is required.

Lemma 12. Assume graph G is coarsened to a single node and then lifted to Ĝ. If |λi−λ̂i| ≤
ϵ then |ηi − η̂i| ≤ min{hp, 1} where hp =

5p
1−2p

and p = ϵ
δ
< 1

4
.

Proof. Begin by noting that the random-walk normalized Laplacian Lrw = D− 1
2LD 1

2 = D−1L

has the same eigenvalues as the normalized Laplacian. It is true from Lemma 10 that

|dv − δ| ≤ 4ϵ. This implies the following bounds on the eigenvalues of D−1.

1

δ + 4ϵ
≤ λi(D

−1) ≤ 1

δ − 4ϵ

This implies that the nontrivial eigenvalues {ηi}i∈[2..N ] of D
−1L lie in the following bounds.

δ − ϵ

δ + 4ϵ
≤ ηi ≤

δ + ϵ

δ − 4ϵ

⇒ 1− p

1 + 4p
≤ ηi ≤

1 + p

1− 4p

⇒ (1− p)− (1 + 4p)

(1 + 4p)
≤ ηi − 1 ≤ (1 + p)− (1− 4p)

(1− 4p)

⇒ −5p
(1 + 4p)

≤ ηi − 1 ≤ 5p

(1− 4p)

For 0 ≤ p < 1
4
, 5p

(1−4p)
> 5p

(1+4p)
. Additionally, η̂i = 1 implying the following and completing

the proof.

|ηi − η̂i| ≤ min

{
5p

1− 4p
, 1

}
□
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Lemma 12 provides a bound on λ̄ which, in conjunction with Lemma 11, may be

used to prove that the differences between edge weights in G and Ĝ remain bounded within

partitions. This bound does require p = ϵ
δ
to be rather small, however, since 5p

1−4p
→ ∞

as p → 1
4
. In fact, p = 1

9
is where this bound becomes devoid of useful information, since

|ηi− η̂i| ≤ 1 by virtue of this being a difference of normalized Laplacian eigenvalues. We can

now prove a useful discrepancy bound for the case p < 1
9
.

Lemma 13. Let there be a weighted graph G = (V,W ). Additionally, consider the lift of

the graph Ĝ = (V̂ , Ŵ ), which comes from first coarsening G to a single node. This implies

Ĝ is δ-complete with δ = V ol(G)
N

. If |λj − λ̂j| ≤ ϵ for all j ∈ [1..N ], then |Wuv − Ŵuv| ≤
min{hp, 1}(δ + 4ϵ) + 4ϵ

N
(p+ 1) where hp =

5p
1−4p

and p = ϵ
δ
< 1

9
.

Proof. We directly apply Lemma 11 by considering X = u to be a single node and

Y = v to be a single node. ∣∣∣∣Wuv −
dudv
vol(G)

∣∣∣∣ ≤ λ̄
√
dudv

≤ 5p

1− 4p
(δ + 2ϵ)

The right hand side follows from Lemma 10 and Lemma 12. Going forward, 3p
1−2p

will be

denoted by hp. Note that vol(G) = vol(Ĝ) = Nδ.

δ2 − 4δϵ+ 4ϵ2

Nδ
≤ dudv

Nδ
≤ δ2 + 4δϵ+ 8ϵ2

Nδ

⇒ 4pϵ− 4ϵ

N
≤ dudv

Nδ
− δ

N
≤ 4pϵ+ 4ϵ

N

⇒ −4pϵ+ 4ϵ

N
≤ dudv

Nδ
− δ

N
≤ 4pϵ+ 4ϵ

N

⇒
∣∣∣∣dudvNδ

− δ

N

∣∣∣∣ ≤ 4ϵ

N
(p+ 1)

Using this, we can refine our statement further, thus proving our lemma.∣∣∣∣Wuv −
δ

N

∣∣∣∣ = ∣∣∣Wuv − Ŵuv

∣∣∣ ≤ min{hp, 1}(δ + 2ϵ) +
4ϵ

N
(p+ 1)

□
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Using Lemma 13, the main theorem is ready to be proven.

Theorem 14 (Edge Approximation). Let G be a σ-connected graph with respect to the

partition P = {V1, · · · , Vk}, and let Ĝ be the lift of G with respect to that partition. Addition-

ally, assume |Vi| is large for each i ∈ [1..k]. If |λi−λ̂i| ≤ ϵ, the difference between in-partition

weights is bounded by |Wuv− Ŵuv| ≤ min{hq(j), 1} (δ(j) + 2(ϵ+ 2σ))+ 4(ϵ+2σ)
N

(q(j) + 1) for

u, v ∈ Vj. Additionally, between-cluster weights are bounded by |Wuv−Ŵuv| ≤ σ where u ∈ Vi

and v ∈ Vj where i ̸= j. Here, hq(j) =
5q(j)

1−4q(j)
and q(j) = ϵ+2σ

δj
.

Proof. From the definition of σ-connected, the Laplacian R is such that ∥R∥1 ≤ σ. This

bounds the maximum value of the matrix, implying that |Wuv − Ŵuv| ≤ σ for u ∈ Vi and

v ∈ Vj where i ̸= j. For in-partition weights, first note that from Corollary 9, the eigenvalues

of C(j) and the eigenvalues of Ĉ(j) are bounded such that |µi(j)− µ̂i(j)| ≤ ϵ+2σ. By using

this as the error term in Lemma 13, one obtains the following bound: |Wuv − Ŵuv| ≤
min{hq(j), 1} (δ(j) + 2(ϵ+ 2σ)) + 4(ϵ+2σ)

N
(q(j) + 1), which proves the theorem.

□

3.2.5 Discussion

Theorem 14 states that as the difference in spectrum |λi−λ̂i| approaches zero for all i ∈ [1..N ],

the difference in the weights of all edges depends only on the connectivity between subgraphs

in the partition P . As a consequence of this, one can in a sense “hear” the shape of the

original graph, given a coarsened graph Gc whose lift Ĝ spectrally approximates it. In

practice, this bound is only practical for graphs which do not occur in general applications.

To observe why, assume that a simple graph G is coarsened to Gc with respect to some

partitioning P = {V1, · · · , Vk}. Further assume that within any partition Vi there are two

nodes which are not adjacent. Because all nodes within the same partition are adjacent in

the lift, the maximum edge-weight difference is bounded below by δi
N
. This minimum upper

bound exists regardless of the spectral properties of G and Ĝ. Furthermore, in most real

world graphs, σ is relatively large and the resulting bound in Theorem 14 is dominated by

the σ term in the expression, often leading to bounds larger than the largest degree in the

graph. This implies that meaningful uses of the upper bound in Theorem 14 may generally
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be restricted to weighted graphs where every node is adjacent to every other, and there are

small weights between partitions. While not generally found in social-science, or scientific

computing applications, such graphs are used in practice for image segmentation [50]–[52],

and data mining tasks [29]. These methods use weighting schemes based on the distance

between nodes to define similarities in arbitrary data. One common weight function is

wuv = exp{∥ru− rv∥22/Θ} where ru, rv are the embeddings of u, v in RN , and Θ is a positive

constant. Given this, or other similar weighting schemes, one can bound the distance between

ru and rv. This implies that by bounding edge weights between the graph G and it’s lift Ĝ,

one is simultaneously preserving the distances between these nodal embeddings. However,

the bound in theorem 14 is only usable in the most well clustered of test cases, and requires

further refinement before being usable in application.

3.3 Edge weight approximation for weighted

regular graphs

We briefly turn our attention to a special case where the spectrum fully determines the

properties of graph connectivity. This is in the case of weighted regular graphs where di = d

for all nodes i ∈ V and some positive real number d. For this purpose we will instead examine

the adjacency matrices W and Ŵ . Coarsening as defined in definition 1 may be expressed

as a matrix product W = SWST for a coarsening matrix S discussed in further detail in

Loukas [35]. Additionally the lifting operation can be expressed as the pseudo-inverse of this

operation, given by Ŵ = P †PW (P †P )T . The matrix PP † = Π has a simple form given

in both Loukas [35] and Jin et al. [36]. Given a partition P = {V1, · · · , Vk} each element

Πij =
1

|Vr| for i, j ∈ Vr, otherwise Πij = 0. One can easily check that this coincides with our

definition of coarsening.

This matrix relation between the original and lifted adjacencies allows for a powerful

theorem to be proven.

Theorem 15. For a weighted adjacency matrix W and lifted adjacency matrix Ŵ = ΠWΠ,

if |ωi − ω̂i| ≤ γ for all i ∈ [1..N ], then ∥W − Ŵ∥2F ≤ Nγ (2∥W∥2 + γ) where ∥ · ∥F is the

Frobenius norm.
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Proof. We begin by breaking the Frobenius norm into individual traces.

∥W − ΠWΠ∥2F = Tr((W − ΠWΠ)2)

= Tr(W 2) + Tr(Ŵ 2)− 2Tr(WŴ ) = Tr(W 2)− Tr(Ŵ 2)

Additionally note the following.

|ωi − ω̂i| ≤ γ

⇒ |ωi + ω̂i| ≤ γ + 2|ωi|

⇒ |ω2
i − ω̂2

i | ≤ γ2 + 2γ|ωi|

From here, each trace is considered independently, with the intent of upper bounding ∥W −
ΠWΠ∥2F .

Tr(Ŵ )− Tr(Ŵ 2) =
∑
i∈V

(ω2
i − ω̂2

i )

≤
∑
i∈V

(γ2 + 2γ|ωi|)

⇒ ∥W − Ŵ∥2F ≤ Nγ(γ + 2∥W∥2)

□

3.3.1 Discussion

Theorem 15 states that, preserving the spectrum of the adjacency matrix while coarsening is

sufficient to preserve all edge weight information. This is a far stronger statement than the

one proposed in Theorem 14. However, this is only applicable when the adjacency spectrum

is preserved, not necessarily the Laplacian since the two spectra are not directly related for

general graphs. In the case of weighted regular graphs it is easy to check that these are one

in the same since, for a weighted regular graph with degree d, λi = d−ωi. Unfortunately this

is not true for most graphs. Using this theorem 15 in the general case will require bounding

|ωi − ω̂i| ≤ f(ϵ) for some function f(·) where |λi − λ| ≤ ϵ for all i ∈ [1..N ]. This remains an

open problem.
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3.3.2 Conclusion

The contributions of this manuscript have been twofold. A result originally derived by Jin

et al. [36] was generalized to the case of the combinatorial Laplacian. We showed that, by

using this result, one can closely preserve the spectrum of the graph Laplacian while per-

forming graph coarsening. Additionally it was shown that the suggested coarsening criteria

implies bounds on algebraic distances between nodes of the same graph. A comparison be-

tween coarsening methods was also presented. The latter half of the manuscript studied how

closely the edge weights of a graph’s lift approximate those of the original graph under an

assumption that their Laplacian spectra are close. A sufficiently tight bound would guaran-

tee that arbitrary data sets in Rn imbued with a graph structure could be coarsened while

preserving their relative embeddings in Rn. This is a novel question with potential applica-

tions to image segmentation and data mining. Unfortunately the bound proven relies on the

connectivity of the graph and is unlikely to be useful in real world applications. It was then

shown that, in the case of weighted regular graphs the connectivity of the graph does not

require consideration, and a spectral approximation provides an edge weight approximation.

Various avenues for extensions and branching research exist.

One obvious path for future research is to diminish the bound provided in Theorem 14.

The proof for the theorem relies heavily on a discrepancy bound which is particularly loose.

By circumventing this, perhaps with a more sophisticated extension to Lemma 10, one may

be able to significantly tighten this bound. As an extension of this, removing the dependency

on σ is important for applicability. In practice σ will be too large for this bound to be useful

to practitioners. One avenue for exploring this may be to relate spectral differences between

the adjacency and coarsened adjacency with those of the Laplacian and coarsened Laplacian,

and then apply Theorem 15. Additionally, there are several interesting questions one may

ask about the effects of coarsening arbitrary data sets. For instance, if the spectrum between

a graph G and it’s lift are close, how close are their edge weights on average? This is answered

in a special case by Theorem 15, but is not known in general. This question is significantly

less restrictive than the one presented in this section, however it still provides insight into the

effects of coarsening on node embeddings. As for extending the results discussed in section

2, while it was shown that the coarsening criteria in Theorem 5 implies a bound on algebraic

distances, a result in the opposite direction would be preferable. Algebraic distances are
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cheap to compute for small numbers of test vectors, and if there were a reasonable guarantee

on the accuracy of the spectrum, they would be preferable to the criteria presented in this

thesis. Such a bound would likely be probabilistic for k < N due to the fact that ensuring

linear dependence between nodes using the algebraic distance requires the test vectors to

span RN .

3.4 Introduction to the spectral coarsening

implementation

Several methods exist for performing the task of spectrum preserving coarsening, however

they are often computationally expensive. For instance in Liu et al. [53] a method is suggested

where an initial combinatorial coarsening is performed and then cluster assignment is refined

by iterating upon and optimizing a given matrix norm. This method does not have an

explicit bound on its run time and instead iterates gradient descent to within some tolerance.

Alternatively, Loukas [35] suggests a “local variation” method where k eigenvalues are pre-

computed and then used as a point of comparison when considering potential merges. The

explicit complexity of this method is given by Õ(ckm + k2n + ck3 +
∑c

l=1 Φl(min{k2δ +

kδ2, kδ2 + δ3} + log|Fl|)). Here c is the number of coarsening levels, k is the number of

desired eigenvectors matched, n is the number of nodes, and m is the number of edges in the

original graph. For further details bout this complexity, one can visit the original publication.

Both of these methods boast powerful spectral guarantees and impressive results. However,

as discussed, they inherently have limitations in terms of compute time due to both the usage

of expensive linear algebra operations as well as the methods being inherently sequential and

unable to make use of modern parallel architectures. Other spectrum preserving coarsening

methods [54], [55] fall victim to similar issues. In this section we aim to reduce the time

required to perform spectrum consistent coarsening. We derive a new spectral approximation

bound for agglommerative coarsening and implement our algorithm on GPU.
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3.5 Greedy algorithm

In [36] a greedy algorithm for spectrum consistent coarsening is defined. This algorithm,

which has a complexity of O(m(n+nc)(n−nc)) will be called the “explicit greedy algorithm”

for the remainder of this section. The algorithm works as follows. For every edge in the

graph the 1-norm is computed between the adjacency vectors of the nodes at the ends of

that edge. Then these 1-norms are sorted and a merge is performed along the edge with the

smallest 1-norm. These steps are then repeated to our desired level of coarsening. First we

note how the inner two loops of the explicit greedy algorithm may be parallelized. These

loops iterate over each of m edges and compute the associated norm-difference between node

adjacencies. Therefore we are computing O(m) norms, where the computation of each norm

between nodes u, v ∈ V has sparse vector work complexity O(du + dv). This gives us an

overall complexity for these inner loops of O(n ⟨d2⟩) where ⟨d2⟩ is the second moment of

the degree distribution of our graph. Note that none of these norms depend on previously

computed norms, so these inner loops can be parallelized such that given p available threads,

if we evenly distribute the edges among threads we achieve a shared-memory parallel-time

complexity of O(n
p
⟨d2⟩) for our inner loops, where p is the number of threads.

To achieve further complexity reduction we would like to be able to remove the outer

loop of the greedy algorithm. This will allow us to avoid recomputing norm differences.

For this purpose we make an additional observation that the eigenvalue differences of an

arbitrary level of coarsening may be bounded in terms of the norm differences in the original

uncoarsened graph given by the following theorem.

Theorem 16. Given a set of s merges {(a1, b1), · · · , (as, bs)} where ∥wai

dai
− wbi

dbi
∥1 ≤ ϵ for

every i ∈ [1..s], then we know ∥Λ− Λ̂∥∞ ≤ s(s+1)
2

ϵ.

Proof. The proof breaks in to two parts. First we wish to show that ∥wa

da
− wb

db
∥1 ≤ ϵ implies,

without loss of generality, that ∥wa

da
− wa+wb

da+db
∥1 ≤ epsilon. This statement says that if two

nodes have a small adjacency difference norm before merging, each of them will also have a

small difference norm when compared with the merged node. Take v = wa

da
− wa+wb

da+db
, then by

algebra it can be shown that ∥v∥1 ≤ ϵ
da
db

+1
≤ ϵ, which directly implies ∥wa

da
− wa+wb

da+db
∥1 ≤ ϵ

For the second half of our proof, imagine we have performed some number of merges.
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Then there are two possibilities for the subsequent merge. Either it shares no nodes with

the previous merge, or it shares nodes with the previous merge. In the first case, neither

of the nodes have been coarsened, so their similarity remains the same and the specral

approximation theorem from Jin and Loukas [36] tells us that we simply add ϵ to our spectral

error bound after merging them. In the latter case, assume without loss of generality that

our merge consists of nodes a, c where a overlaps with the first merge. Then by triangle

inequality, and the first part of our proof we know ∥wc

dc
− wa+wb

da+db
∥1 ≤ 2ϵ. This means that the

normalized adjacency vector of node c is 2ϵ similar to the normalized adjacency vector of

the supernode given by our first merge. Therefore we can apply the Jin and Loukas bound

again and this error of 2ϵ, adds to our bound. We may then repeat this process until our

desired level of coarsening, adding a factor of ϵ to each addition. The worst case error occurs

when all the merges overlap, in which case the upper bound is given by the following.

∥Λ− Λ̂∥∞ ≤
s∑

k=1

kϵ =
s(s+ 1)

2
ϵ

□

While looser than the bound provided in [36], this bound requires no knowledge about

intermediate coarsenings of our graph. Because of this, we can remove the outer loop of

the explicit greedy algorithm to obtain an order O(n) work complexity reduction while still

preserving a spectral bound. This gives us our Algorithm 4.

Algorithm 4 Approximate Greedy Coarsen (G = (V,E), nc, p)

s← |V |
fitness ← ∅
{E1, · · · , Ep} ← partition(E, p)
for (a, b) ∈ Ei in parallel do
fitness ← fitness ∪ ((a, b), ∥wa

da
− wb

db
∥1)

fitness ← sort(fitness)
while s < nc do
(a, b)← fitness [index ][0]
G← merge(a, b)
s← s− 1

Algorithm 4 closely resembles the explicit greedy algorithm with some reorganization.

We still iterate through every edge and calculate a fitness function which is the norm-

difference of the normalized adjacencies between each node, however we only perform this
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once for each edge. Then a sort is performed, which can be done in O(m
p
log(m)) parallel

time. Finally, our merges are performed in order of fitness, requiring O(n− nc) operations.

This gives us a final parallel time of O(n
p
⟨d2⟩+ m

p
log(m) + (n− nc)) for Algorithm 4.

3.6 Results

We present results for both the scaling and approximation properties of our algorithm on two

small example graphs, the “Stanford bunny” from the Stanford 3D Scanning Repository as

well as “ego-Facebook” from the Stanford Large Network Dataset Collection. The former is

a nearly-regular mesh and the latter has a highly irregular degree distribution. We find that

while spectral approximations appear better on the irregular “ego-Facebook”, the parallel

time scaling is far superior on the mesh.

3.6.1 Scaling

We observe in Figure 3.5 the runtime scaling of our algorithm for the “ego-Facebook” and

“Stanford bunny” graphs. We can see that, the Facebook graph has drastically worse scaling

properties which level out well before reaching the final 2048 thread test. Additionally the

Facebook graph requires far more time to coarsen, despite it being almost a tenth the size

of the bunny mesh. In comparison, the bunny mesh experiences nearly theoretically ideal

strong scaling. This scaling difference can be attributed to load imbalance. Note that in

our parallel algorithm we do not parallelize within each norm computation. For a highly

irregular network such as “ego-Facebook” algorithm 4 partitions edges naively across threads

without any consideration for the nodes at either end of each edge. The irregularity of the

degree distribution in “ego-Facebook” guarantees that norm-differences along certain edges

will require far more compute time than others, and by not accounting for this it is likely

that some threads have significant work to perform when computing norms, while others

have little to compute. As an example, in the norm computation step one thread may

own k edges which connect to the largest degree node in the network with degree D, while

another may own k edges that all connect to nodes with unit degree. In this case the latter

http://graphics.stanford.edu/data/3Dscanrep/
https://snap.stanford.edu/data/

http://graphics.stanford.edu/data/3Dscanrep/
https://snap.stanford.edu/data/
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Figure 3.5: Scaling for two different topologies. We compare the scaling
properties of our algorithm running from 32 to 2048 threads on a
single Nvidia Quatro M5000 on each of the two test graphs. We
can see that the runtimes on the bunny mesh is incredibly small in
comparison with the Facebook graph, which has a highly irregular
degree distribution. Also notably, we observe that the bunny mesh
almost reaches theoretical perfect scaling.

thread only has to complete 2k operations, while the former thread has to complete more

than k(D+1) operations. This can be mitigated in future work through more sophisticated

thread parallelism and usage of more modern GPU architectures, where warp divergence of

threads is less of an issue [56].

3.6.2 Spectral approximation

In Figure 3.6 we present the eigenvector and eigenvalue approximation properties for the

“Stanford bunny” as well as “ego-Facebook” on the first fifty nontrivial eigen-pairs. We

compare the approximation properties on graphs coarsened to half the number of nodes,

quarter the number of nodes, and an eighth the number of nodes. We can see that for both

graphs, the half-coarsening is a reasonably accurate approximation of the original eigenval-

ues, however the eigenvalues quickly stray as we add additional levels of coarsening. As for

eigenvector approximations, we consider the inner product between the first fifty normalized

eigenvectors of the original graph with the first fifty normalized eigenvectors of the lifted

graph for each level of coarsening. In Figure 3.6 eigenvector comparisons comprise the right-

most three columns. The better the eigenvector approximation is, the more each matrix will

resemble an identity matrix since the eigenvectors of the normalized Laplacian are orthogo-

nal [37]. We see that the eigenvector approximation appears better for “ego-Facebook” and

for the “Stanford bunny” becomes rather poor after half coarsening.
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Figure 3.6: Spectral and eigenvector approximation. We present spectral
approximation properties on the two test-graphs. Each graph was
coarsened to half size, quarter size, and eighth size. On the left we
compare the first 50 eigenvalues of each lift against the eigenvalues
of the original graph. The right three columns compare the angles
between the associated eigenvectors by considering the dot product
of the eigenvectors in the original graph, with the eigenvectors of
each lifted graph. Intuitively, the closer this matrix resembles the
identity, the better the eigenvector approximation is.

We also show example eigenvectors on the bunny graph and the lift of the half-coarsened

bunny graph in Figure 3.7. We can see that, while the positive and negative regions drift for

the selected eigenvectors, the overall pattern is somewhat conserved. This is of significant

interest since the sign patterns of the eigenvectors are important for tasks such as spectral

clustering [29].

3.6.3 Conclusion

In this section we iterated upon a previously researched algorithm for coarsening graphs

while preserving approximate eigenvalues. This method can be used to quickly compute

spectrally approximate coarsenings of general graph data such as geometric and finite ele-

ment meshes. We presented a new bound for the eigenvalue differences between original and

coarsened graphs, and presented a parallel algorithm for performing graph coarsening within
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Figure 3.7: Bunny eigenvectors. Here we plot three eigenvectors on the
original bunny mesh as well as the corresponding lifted
eigenvectors on the half-coarsened bunny mesh. The A row are the
eigenvectors on the original mesh, and the B row contains the
eigenvectors of the coarsened mesh. From left to right the columns
correspond to the Fiedler vector, the fifth, and the tenth nontrivial
eigenvectors respectively. The blue portions denote negative values
and red portions denote positive values. We can see that the
eigenvector values have drifted even though the eigenvalues are
reasonably close as is seen in Figure 3.6.

this bound. Our suggested algorithm has a parallel time of O(n
p
⟨d2⟩+ m

p
log(m) + (n− nc))

for coarsening graph G = (V,E) to nc nodes, a vast theoretical speed up over other pre-

viously suggested coarsening algorithms preserving spectra. We additionally showed that

our algorithm remains faithful to the spectrum of the original graph for limited amounts

of coarsening, however the spectrum deviates significantly as the number of nodes in the

coarsening diminishes.

Our proposed coarsening algorithm leaves room for improvement in the areas of accu-

racy and parallel time scaling. For the former, we observe that our Bound 16 is rather loose,

and it may be tightened by recomputing difference-norms between nodes after some amount

of coarsening. This suggests that greater overall accuracy may be obtainable by iterating

the difference-norm computations after some amount of coarsening. The optimal amount of
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coarsening between such iterations remains an open problem. For parallel scaling, several

improvements could be made. As mentioned earlier in the chapter, we partition edges naively

among threads which leads to load balancing issues for irregular degree distributions. This

could be remedied by considering more sophisticated methods for partitioning the edge set,

however this will likely come at the cost of additional preemptive computations. Addition-

ally, faster norm-computations may be achieved by using finer-grained parallelism, where

multiple threads are assigned to compute each individual norm. Currently, each norm is

computed sequentially by a single thread, which leads to warp divergence and compounds

our imbalance issues. Well-known techniques such as hierarchical parallelism [57], loop col-

lapse [58], and graph adjacency reordering [59] are relatively straightforward to implement

and will greatly improve speedups for irregular graph datasets.

3.7 Extensions

Graph coarsening is a topic which has received a great deal of study due to its use in

multilevel schemes for numerical algorithms. Despite this, little work has been done on the

inverse problem, and there is a significant amount of room to expand upon the topic. The

bounds given in Theorem 14 are incredibly loose in general, and need to be tightened for

practitioners. This may potentially be done by exploring specific topological constraints as

in Theorem 15, or other proof techniques not explored here. There are a few reasons such

bounds may be useful in practice. Assume that we wish to solve some large, symmetric

linear system defined by the matrix W . Further assume that we have some bound such that

ΠWΠ = W + E for a coarsening defined by P , where Π = P †P . Note that chapter three

focuses on bounding the norm ∥E∥ when the difference in eigenvalues between W and ΠWΠ

is small. In this case we can ensure the following for least-squares solutions of the linear
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system.

ΠWΠa = b+ θ (3.7)

⇒ (W + E) a = b+ θ (3.8)

⇒ Wa− b = Ea+ θ (3.9)

⇒ ∥Wa− b∥ = ∥Ea+ θ∥ (3.10)

⇒ ∥Wa− b∥ ≤ ∥E∥∥a∥+ ∥θ∥ (3.11)

This says that least squares solutions for linear equations involving ΠWΠ yield errors with

respect to W which are bounded by a combination of the per-weight errors and the quality of

the original least squares approximation. But, we also have to remember that ΠWΠ can be

perfectly recovered from the coarsened matrixWc = PWP T , since ΠWΠ = P †PW (P †P )T =

P †Wc(P
†)T . This means such a solution a in equation 3.11 can also be found by solving the

simplified system on Wc as follows.

Wc(P
†)Ta = b′ + θ′ (3.12)

⇒ ΠWΠa = P †b′ + P †θ′ (3.13)

∴ b = P †b′ + β ⇒ ΠWΠa− b = β + P †θ′ (3.14)

∴ ∥Wa− b∥ ≤ ∥β∥+ ∥P †θ′∥+ ∥E∥∥a∥ (3.15)

Equation 3.15 yields a way to bound the error of approximate solutions to linear systems

in W given by solving a system using the smaller matrix Wc. In this case we solve for

a′ = (P †)Ta on the coarsened level, and then the equivalent solution a = P Ta′ is used as the

approximate solution for the original system. If b ∈ span(Π), this means the solution error

depends entirely on the solution quality on the coarsened graph, and the edge approximation

quality defined by the matrix E. This equation provides a useful bound which may be used to

predict the quality of multilevel schemes for solving linear systems. Because of this, finding

coarsenings for which ∥E∥ is minimized presents a compelling avenue for further research.



CHAPTER 4

TRAINING GCN WITH KOOPMAN

OPERATORS

4.1 Chapter overview

In this chapter we discuss the acceleration of graph neural networks for node classification.

We investigate how to accelerate backpropogation by interweaving approximation steps with

standard backpropagation steps to avoid explicit computations. For this purpose we utilise

Koopman theory, and apply these approximations on GPU.

4.2 Introduction

Neural networks are ubiquitous in many domains of study including physics, biology, and

general data science. Because of this, accelerating the training time of neural networks is

an incredibly active area of research. Graph neural networks (GNN) and more specifically,

graph convolutional networks (GCN) are of particular contemporary interest. Since deep

neural networks (DNN), convolutional neural networks (CNN), and recurrent neural networks

(RNN) require ordered data in order to perform well, the ability of GCNs to perform tasks

on unordered data presents an avenue for learning from datasets which have been historically

cumbersome or infeasible. Due to the rising interest in GNNs and GCNs, many methods for

accelerating training have been proposed (see [60]–[62] for recent surveys). These methods

include graph sparsification, graph coarsening, and most notably graph pooling. The concept

behind each of these methods is to alter the graph topology during training in order to

resolve issues with the “neighborhood blow-up” associated with many real world networks.

While these methods are topological simplifications in nature, GNNs use the same standard

backpropagation-based optimizers as traditional neural network architectures. It then makes

Portions of this chapter have been submitted as: C. Brissette, W. Hawkins, and G. M. Slota, “Accel-
eration of GNN node classification using Koopman operator theory on GPU.”, Adv. Neural Inf. Process.
Syst.
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sense that acceleration in optimizers for traditional neural networks may lead to acceleration

in GNNs. For this purpose, we introduce the Koopman operator ([63]).

The Koopman operator is of historical importance in the field of functional analysis.

Originally introduced by Bernard Koopman in 1931, it provides a method for analyzing finite

dimensional nonlinear dynamics with an infinite dimensional linear system. While the study

of this operator was broadly relegated to the whiteboards of functional analysts for many

decades, it has experienced a renaissance in the applied community in the last decade ([64]–

[66]). This is largely due to the popularity of a method from computational fluid dynamics

known as the dynamic mode decomposition (DMD) being interpreted as a finite dimensional

approximation of the Koopman operator ([67]).

The utility of the Koopman operator is multifaceted, but for the case of neural network

training it is important for one main reason. The discrete Koopman operator allows for

accurate predictions in the state evolution of a nonlinear dynamical system at the cost of

a single matrix-vector multiplication. Previous work ([68], [69]) has made this connection

and shown that by treating the weights of a neural network as the state variables in a

nonlinear dynamical system, Koopman operator theory and DMD may be used to train

neural networks. The prior work has also shown that the weights output by Koopman

training approximate those of a network fully trained with the underlying optimizer. Despite

this, previous publications on the subject either lack the speed to be useful to practitioners,

or they are only shown to be useful near the optimal solution of a DNN. Furthermore, prior

work focuses solely on DNN architectures and do not test on GCNs. We address both of

these problems in this chapter.

4.2.1 Our contribution

We present a fast method for Koopman training entirely on GPU which performs well in

terms of performance acceleration and memory requirements. We apply this method to

three standard node-classification problems using GCNs and show that Koopman training

can produce accurate results in this domain with much faster training times relative to Adam.

We additionally discuss best practices to avoid and mitigate potential instabilities in these

methods.
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4.3 Background

4.3.1 GNNs / GCNs

GNNs, and more specifically GCNs, rose to popularity in the machine learning community

after the publication of a popular paper by [70] detailing a convolutional architecture for

learning on graphs. The Kipf and Welling architecture remains popular, and it will be the

architecture referred to interchangeably by the acronyms GNN and GCN for the remainder

of this chapter.

The fundamental idea behind GCNs, and specifically GCNs for node classification, is

to produce embeddings for each node based on aggregates of neighboring feature vectors.

The difficulty in this technique is learning the aggregation function for each neighborhood.

For this purpose, Kipf and Welling suggested the following architecture.

H l+1 = σ
(
D̂− 1

2 ÂD̂− 1
2H lW l

)
(4.1)

Here H l is the matrix of activation functions at the lth layer and Â = A + I|V | is the

adjacency matrix of the underlying graph G = (V,E) with added self-loops. Additionally, D̂

is the diagonal degree matrix given by the sums of rows of Â, σ is an element-wise activation

function, and W l is a learnable matrix of weight parameters for layer l. For a node u ∈ V ,

this function considers a weighted sum of the activations H l of its neighbors v ∈ N (u),

multiplies that by a weight matrix W l, and applies an element-wise activation function. The

goal of training the GCN is to solve for all weights, W l in each layer.

Without additional acceleration techniques, this method can be particularly slow. To

deal with this, topological simplification methods such as graph pooling are utilized. There

are many methods for graph pooling; however, the common idea is to sample from a reduced

graph for training instead of using the entire graph topology. This is an active area of

research, and techniques range from explicit spectral methods to heuristics ([71]–[74]).

4.3.2 Koopman operator

There is a wealth of information about the Koopman operator that is not required to under-

stand the rest of this thesis. We present a less general definition of the Koopman operator
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for our application. Denote by xt ∈ Rn, the state of a dynamical system at time t ∈ R.

Additionally, take F to define our dynamical system such that F (xt) = xt+1. Also consider

any observable g : Rn → R on the Hilbert space L2(Rn, µ). The Koopman operator K is the

infinite dimensional linear operator such that the following is true for all such functionals g.

Kg(xt) = g(F (xt)) (4.2)

This means K is a linear operator which preserves all measurements of our dynamical

system at time t + 1, given its state at time t. Because of this, it may be used to predict

future states. Since we do not have access to storage for infinite dimensional matrices, prac-

titioners who wish to use Koopman operator theory must rely on finite rank approximations

of K. These finite rank approximations may take several forms, including the finite section

method and the dynamic mode decomposition. While the dynamic mode decomposition is

noteworthy and its variants have spawned a wealth of research, it requires the computation

of eigenpairs for potentially non-symmetric matrices, and it is therefore not amenable to fast

parallelism on GPU. For this reason, we will be focusing on the finite section method for

Koopman approximation.

The finite section method is incredibly simple. Given a set of observations of the

dynamical system as a matrix x = [x0, x1, · · · , xT ], they may be broken into two matrices

X = [x0, x1, · · · , xT−1] and Y = [x1, x2, · · · , xT ]. These matrices define the “before and

after” states, where we know xt+1 = F (xt). Then, the finite section approximation U of K

is given by the following where † denotes the pseudo-inverse of a matrix.

U = Y X† (4.3)

From this, future states may be predicted using the equation U sxt ≈ xt+s. The intuition

behind this method is that, by properties of the pseudo-inverse, ∥Uxt − xt+1∥2 is minimized

for all (xt, xt+1) in x. This means that on our observed subspace we match the nonlinear

dynamics as closely as possible with respect to the L2-norm.
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4.3.3 Koopman training

The concept of Koopman training is simple: treat the weights in the neural network as the

variables in a dynamical system and apply a Koopman operator at some time step to avoid

back-propagation. Functionally, this amounts to tracking the weights of the neural network

for some number of time steps m, then solving for a finite dimensional Koopman operator

approximation U , and finally predicting p steps ahead using Up. The advantage to this

method is that matrix-vector multiplication is much faster than back-propagation.

We discuss both of the former works studying Koopman training of neural networks

by [68] as well as the work by [69]. These papers, posted to the arXiv within a couple

weeks of each other, present very different approaches to Koopman training. In the paper by

Dogra and Redman, Koopman training is applied near the end of optimization when weight

evolution is slow. Starting at some time t1 they begin tracking weights until another time

t2. These weights are then used to obtain U via the finite section method. U is then used

to approximate the final state of the network after many steps. In the paper, they predict

an impressive 2500 steps ahead and show that their final network weights are very close to

those of the traditionally trained network.

Tano et al. take a very different approach. Primarily, their method utilizes the dynamic

mode decomposition as opposed to finite sections. This has two effects. First, it makes their

method slower than the work of Dogra and Redman, since now an eigen-decomposition must

be computed on top of the pseudo-inverse. Second, it additionally can provide improved

accuracy, since DMD allows for the pruning of spurious modes which may create instabilities

in predictions. Beyond that, the authors do not wait to use their Koopman operator as Dogra

and Redman do. Instead, they alternate during training, performing m steps of standard

optimization before predicting p steps forward in time and returning to standard training

for another m steps. This allows for acceleration throughout the entire training process, not

just near a minimum.

Both methods are shown to train their test networks well, however there are gaps for

further research. As noted by both groups, these implementations are CPU only, but they

require a GPU implementation to be useful to practitioners. In fact, Tano et al. note that

their DMD-based method is ultimately slower than standard optimization. Furthermore all

test instances in both papers were on DNN architectures, and it is yet to be shown how
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similar methods may generalize to learning tasks such as GCNs.

4.4 Methods

4.4.1 Algorithm

Table 4.1: Variables for Koopman training (Algorithm 5) and prediction
(Algorithm 6).

Variable Definition Experimental Values
m Number of standard training steps {4, 8, 16, 32}
p Number of steps predicted forward {4, 8, 16, 32}
r Finite dimension for SVD truncation {1, 2, 3, 4, 5}
M Input network –

ω Number of learnable parameters in the network –
W Weight history matrix for prior steps –

Our Koopman training algorithm takes place in two distinct alternating phases, as seen

in Algorithm 5. In one phase (Line 8), training is performed using a standard optimization

technique, such as stochastic gradient descent (SGD) ([75], or adaptive moment estimation

(Adam) ([76]). This training is performed on some input network M for some number of

pre-determined steps m, and the weights of the network are stored as a column Wi ∈ Rω in

the weight history matrix W ∈ Rω×m, where ω is the number of learnable parameters in the

network. We additionally use parameters r and p, which are the finite dimension for SVD

truncation and number of steps predicted forward, respectively. We summarize the variables

for our algorithms in Table 4.1.
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Algorithm 5 : Koopman training (M,m, p, r, iters)

1: ω ← param num(M)
2: W ← zeros(Rω×m)
3: W ← pad(W,ω mod 32)
4: for i ∈ [1..iters] do
5: if i mod m = 0 then
6: weights(M)← koopman prediction(W,m, p, r)
7: else
8: weights(M)← train epoch(M)

9: W(i mod m) ← weights(M)
10: return M

In the second phase of Koopman training, seen in Algorithm 6 (and called from

Line 6 in Algorithm 5), the weight history matrix is used to form the matrices X =

[W0,W1, · · · ,Wm−1] and Y = [W1,W2, · · · ,Wm]. Then the singular value decomposition

(SVD) is computed for X = ZΣV ∗ and its pseudo-inverse is computed from that decom-

position. This yields our finite section approximation of the Koopman operator U as the

following.

U = Y V Σ−1Z∗ (4.4)

It should be noted that computing the SVD is an incredibly expensive operation with

a work complexity of O ((m− 1)2ω). One may notice that Algorithm 6 reshapes the data

before performing SVD. This is because we subdivide both X and Y into small matrices for

efficient batched computations on GPU. This yields a piece-wise approximation of U across

subsets of weights in the network. In the language of Dogra and Redman, this is a type of

sub-node level Koopman operator. We call this “patchwork Koopman training”. Patchwork

Koopman training is discussed in further detail in the ‘Implementation’ section that follows.

After U is computed, training is projected forward a pre-determined number of steps

p by the equation UpWm = Wm+p. Afterwards, the weight history matrix is cleared, Wm+p

replaces the old vector W0, and we return to standard optimization for another m steps

before repeating the process again. This is repeated for some number of iterations, or some

early stopping criteria.
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Algorithm 6 : Koopman prediction (W,m, p, r)

1: X ← reshape ([W0,W1, · · · ,Wm−1])
2: Y ← reshape ([W1,W2, · · · ,Wm])
3: (Z,Σ, V ∗)← batched svd(X)
4: Z ← trunc(Z, r)
5: Σ← trunc(Σ, r)
6: V ∗ ← trunc(V ∗, r)
7: U ← Y V Σ−1Z∗

8: v ← reshape(Wm)
9: for j ∈ [1..p] do
10: v ← Uv
11: return v

4.4.2 Implementation

A number of optimizations are made to the base Algorithm 5 in order to improve its per-

formance on GPU. For starters, the expensive O ((m− 1)2ω) SVD is broken into many

subproblems. In Figure 4.1, it can be seen that Algorithm 6 reshapes the first m−1 columns

of W into matrices of size 32×(m−1). This is done in order to make use of the batched SVD

operation available via CUDA’s gesvdjBatched function. This function allows for multiple

singular value decompositions to be performed at once, so long as the shape of each individ-

ual matrix is smaller than or equal to 32×32 and all sub-matrices are the same size. Because

of this, U , in our case, does not stand for the Koopman operator of the entire model. In-

stead, U can be thought of as a patchwork Koopman operator of smaller matrices U = {Ui},
where each matrix is an approximation of the full Koopman operator on a subspace with

maximum dimension 32. In order to meet these requirements, zeros may need to be added

in order to pad the size of W such that its column number is divisible by 32. This can be

seen in Algorithm 5 as the function pad(·).
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Figure 4.1: Visualization of Algorithm 6.

A further optimization is the truncation operation. Here, a finite dimension r ≤ m

is chosen, and the SVD (Z,Σ, V ∗) is truncated to that dimension. This is akin to using

principal component analysis (PCA) ([77]) to reduce the dimensionality of X before com-

puting the pseudo-inverse. This has two benefits. First, for r < m, this can drastically

reduce both the total work required as well as the per-thread work. Additionally, for small

r, this prunes minuscule singular values from Σ. If not pruned, these values may cause

instabilities in the method. After the truncation step, U = Y V Σ−1Z∗ is computed. The

influence of r on our patchwork Koopman implementation is discussed in the ‘Best Practices

for Mitigating Instabilities’ section in the Discussion. Unfortunately, there are no readily

available methods for batched eigen-pair computations of non-symmetric matrices on GPU.

This relegates us to using the finite section method, and it means that fast implementations

of more robust Koopman approximations such as Exact DMD ([78]) and ResDMD ([79]) are

currently infeasible.

All algorithms were implemented using the PyTorch ([80]) and CuPy ([81]) libraries

in Python. CuPy is GPU-optimized implementation of the functionality contained within

NumPy and SciPy. While both of these libraries have access to functions utilizing gesvd-

jBatched, we used the PyTorch batched SVD function and torch.linalg.svd(·). CuPy was

used for all other linear algebraic operations.

4.4.3 Experiments

We performed a parametric study for the task of GCN node classification over the parameters

m, p, and r, which were varied over {4, 8, 16, 32}, {4, 8, 16, 32}, and {1, 2, 3, 4, 5}, respectively.
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The parameters for m had to be less than 32 to allow use of batched SVD with CUDA. We

also found in prior experiments that p > m was susceptible to instability. Hence, we use the

same parameter space for m and p. We limit r ≤ 5, as experiments have demonstrated that

higher r values result in increasing instability and lower speedups.

Each test consisted of 10 runs. All tests were performed on a single Nvidia Quadro

M5000 GPU on the publicly available Cora ([82]), PubMed, and Citeseer ([83]) datasets.

These three datasets are referred to as the Planetoid ([84]) collection in the PyTorch Geo-

metric Library. This collection has been used extensively in GNN research for benchmarking

node classification results (e.g., [70], [85], [86]). Two network architectures were considered.

A GNN with a single convolution, and another with two convolutions. The outputs of all

convolution layers were size 64, their activation function was ReLu, and the output was put

through a softmax layer. All training was performed the Adam optimizer in PyTorch. These

network architectures were selected because the weight numbers would be easily divisible

for patchwork Koopman, and in testing they were expressive enough to train well for our

classification problems.

4.5 Results

We examine the effects of m, p, r on the loss and accuracy of networks trained using Adam

as well as our patchwork Koopman Adam (PKA). The results of this parametric study can

be seen in Figure 4.2, and Figure 4.3. In these figures, networks are trained for 400 epochs

using Adam, as well as being trained for the same duration using PKA. The speedup is then

computed as T (Adam)/T (PKA), where T (Adam) is the amount of time required for Adam

to achieve its highest accuracy (maxpoint) or lowest loss (minpoint) over the 400 epochs,

respectively, and T (PKA) is the amount of time required for PKA to achieve the same

accuracy or loss. Instances where PKA does not achieve the desired accuracy, or where the

loss explodes due to instability are omitted from the average. The proportion of experiments

for a given parameter-pair which are stable is reported as a decimal value over each heatmap

element in Figures 4.2 and 4.3.

In Figure 4.4 we show how the results from the heatmaps may be used to determine

best-parameters in the case of the Cora dataset. In this instance, the earlier Figures 4.2 and

4.3 suggest m = 4, p = 4, r = 2 are good candidate parameters for accelerating the training
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Figure 4.2: Maxpoint accuracy speedup. The average maxpoint accuracy
speedup is shown for each pair of parameters (m, p), (m, r), (p, r),
and each dataset Cora, Citeseer, and PubMed. Darker coloring
implies greater speedup for our method. The proportion of stable
runs is given as a decimal value. These results are for networks
with both a single convolution as well as networks with two
convolutions, and the base optimizer is Adam. All speedups over 3x
are presented as the same color to preserve detail in the heatmap.

of our network with reasonable stability. In the Figure 4.4 we can see that these parameters

indeed yield acceleration in all but one case where PKA never reaches the maximum accuracy

of Adam, or the minimum loss of Adam. This is discussed further in the Discussion.
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Figure 4.3: Minpoint loss speedup. The average minpoint loss speedup is
shown for each pair of parameters (m, p), (m, r), (p, r), and each
dataset Cora, Citeseer, and PubMed. Darker coloring implies
greater speedup for our method. The proportion of stable runs is
given as a decimal value. These results are for networks with both
a single convolution as well as networks with two convolutions, and
the base optimizer is Adam. All speedups over 3x are presented as
the same color to preserve detail in the heatmap.

4.6 Discussion

4.6.1 Performance

Our method shows impressive speed-ups when parameters are well chosen. As suggested

in Figures 4.2 and 4.3, to minimize instabilities p and r should tend towards the bottom

of their ranges, while m should be as high as possible while still maintaining a speed-up.

This theoretically makes sense, since this means we are forecasting over small time horizons



70

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8
ac

cu
ra

cy

test accuracy
train accuracy
adam test accuracy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

nl
l l

os
s

test loss
train loss
adam test loss

learning rate: 0.0001.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

1

2

3

4

nl
l l

os
s

test loss
train loss
adam test loss

learning rate: 0.001.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

0

1

2

3

4

nl
l l

os
s

test loss
train loss
adam test loss

learning rate: 0.01.

0 1 2 3 4

0.2

0.4

0.6

0.8

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0 1 2 3 4
time (s)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

nl
l l

os
s

test loss
train loss
adam test loss

learning rate: 0.0001.

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0 1 2 3 4
time (s)

0.0

0.5

1.0

1.5

2.0

nl
l l

os
s

test loss
train loss
adam test loss

learning rate: 0.001.

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0 1 2 3 4
time (s)

2

0

2

4

6

nl
l l

os
s

1e10

test loss
train loss
adam test loss

(a) learning rate: 0.01.

Figure 4.4: Cora speedups for parameters interpreted from heatmaps. Plots of
Cora training for the parameters m = 4, p = 4, r = 2 obtained from
the heatmaps in Figure 4.2 and Figure 4.3. Three learning rates are
shown. The networks in the top row have a single convolution, the
bottom row networks have two convolutions. One of these runs
(4.4a) is unstable and experiences exploding loss, while the other
runs all present speedups in both accuracy and loss improvement.

and have many observations. However, one may be able to ignore this prescription and

obtain impressive speedups because of it. Since any speedup over three times is represented

as the same color in the heatmaps, these results somewhat conceal how fast patchwork

Koopman can be in extreme cases. In Table 4.2, we show the mean and max speed-ups for

all experiments whose parameter combinations are stable and achieve the minimum loss or

maximum accuracy obtained by Adam for the experiment. We additionally remove outliers

from this dataset beyond two standard deviations above the mean. We can see that for

the proper combination of parameters and problems, patchwork Koopman yields incredible

speedups.
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Table 4.2: Mean and max speedups for all runs which achieve the desired
accuracy or loss. Outliers beyond two standard deviations were
removed before computing.

Cora Citeseer PubMed
Loss speedup mean 2.233 3.323 2.517
Loss speedup max 11.483 18.5 23.233

Accuracy speedup mean 1.615 2.689 1.851
Accuracy speedup max 4.078 10.488 8.256

Beyond speedups, our method requires minimal memory. Any Koopman training

method will require a minimum of O(mω) floats for tracking memory and O((m − 1)ω +

2(m − 1)2) for computing the SVD. In [68], they require a very large m. This is because

they only use the Koopman approximation for the final steps of training near convergence,

and they track the state for a long time horizon to ensure accuracy. Large m values quickly

become unfeasible on GPU. Alternatively, we use a method similar to [69] which alternates

between Koopman training and standard training techniques. This requires a much smaller

m value that is easier to store on GPU.

4.6.2 Best practices for mitigating instabilities

As can be seen in Figure 4.4, cases may arise when the parameter choice for patchwork

Koopman yields exploding loss and accuracy diminishes. The first reason this arises is

numerical stability. Because we are iterating matrices on vectors in Algorithm 6, we can

loosely analyze this method in terms of power iteration. As p increases, Upv approaches

the eigenvector associated with ∥U∥2 for a random vector v. Because of this, one avenue

for improving stability is to reduce p. This means that it is generally best practice to not

“over-predict” when using patchwork Koopman. Alternatively, when ∥U∥2 is comparatively

large, it will require less iterations p to achieve a similar loss increase. This suggests one

may reduce ∥U∥2 in order to improve stability. In our implementation this is done through

the parameter r. Recalling that Ui = YiX
†
i , we know ∥Ui∥2 ≤ ∥Yi∥2∥X†

i ∥2, therefore, ∥Ui∥2
can be controlled by reducing ∥Yi∥2 or ∥X†

i ∥2, respectively. Because r prunes the smallest

singular values from Xi, that means it also prunes the largest singular values from X†
i , thus

minimizing ∥X†
i ∥2. Note this does not guarantee a lack of blow-up, since ∥Yi∥2 may still be
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large; however the results in Figures 4.2,4.3 suggest a correlation between a low r value and

increased stability. It should additionally be noted that r should not be too low as to not lose

out on crucial information for prediction. For our test instances, the suggested minimum r

value is 2.

4.7 Conclusions

We presented an algorithm on GPU which uses a Koopman operator approximation to ac-

celerate optimizers for GCN node classification. Our implementation is the first to present

on-GPU speed-ups for Koopman training methods over the entire training window. We found

that our operator, which we call the “patchwork Koopman operator”, can be computed effi-

ciently with the use of popular libraries such as PyTorch and CUDA’s gesvdjBatched func-

tionality. We performed a parametric study over the Cora,Citeseer, and PubMed datasets,

and we found that our method boasts an average speedup of over three times that of Adam

in many cases. It was additionally determined that certain parameter choices may lead to

instabilities in the loss function, and we outline general best practices for avoiding these.

4.8 Extensions

Using Koopman operators for training neural networks is an incredibly fresh field of research,

with only three publications prior to this work. Because of this there are a wealth of open

problems worth exploring. As mentioned in the preceding chapter, patchwork Koopman

operators are prone to instabilities when used with adaptive optimizers such as Adam. It is

an unanswered question as to whether or not the same may be said for non-adaptive schemes.

In Figure 4.5 we show how effective Koopman training can be for SGD.
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Figure 4.5: SGD Koopman. Results for Koopman accelerated SGD on the
Cora dataset on a network with two convolutional layers. In both
cases m = 8, p = 16, and lr = 0.01. The top row has r = 2, and the
bottom row has r = 3.

As can be seen in the figure 4.5, Koopman training may provide drastic acceleration for

SGD as well as Adam. However SGD may be more stable. Consider the following. Assume

during training using Koopman enhanced Adam that the tracked states are all at a high

learning rate. Further assume that the learning rate diminishes soon after the final tracked

iteration before Koopman approximation. In this case, a purely Adam optimized network

may continue to learn, however it is likely that the following Koopman prediction will over-

project into the future, increasing loss. In this way non-adaptive schemes may be “safer”

with patchwork Koopman optimization since the dynamics are easier to approximate. This

suggests one method for improving the stability of patchwork Koopman is to simply change

the optimizer we are predicting from. This remains an open question worth investigating.

As previously mentioned, one may be able to obtain more accurate approximations

with a “clever” split of the weights. Due to hardware and software constraints we currently

can only split the weight vector of our matrix into maximum sizes of 32, and we do this

by index. However this is not necesarilly the best course of action. In Figure 4.6 a simple

example of our splitting technique is shown on the left. As can be seen each edge in the

Koopman operator is independent on the others. This means that the matrix Ui in this case

is attempting to predict the next state based on uncorrelated information. Despite this, each

red edge on the left hand side of the figure is correlated to edges in the previous layer as

shown on the right. A Koopman operator formed using the red edges on the right in the

figure 4.6 would likely have an easier time predicting upcoming states.
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Simple weight split Adaptive weight split

forward propagation forward propagation

Figure 4.6: Koopman weight splits. Visualization of two different weight splits
for patchwork Koopman. Red edges denote edges used to create a
sub-Koopman operator.

Such a weight split will likely not be this simple however. For starters, these networks

are often deep, and the number of dependencies increases with the number of layers. This

poses a significant problem for the imposed maximum of 32 weights per Koopman operator.

Instead, one may come up with heuristics for edge-weight correlation within the network, and

group them accordingly. Any heuristics which are used must be significantly parallelizable,

and have very small computational overhead since our Koopman approximation step must

be faster than backpropagation. The best way to approach the subdivision of edges within

patchwork Koopman remains an open problem with several avenues for research.



CHAPTER 5

CONCLUSION

In this thesis we explored preprocessing and acceleration techniques for improving the

accuracy and timing of node classification and clustering tasks on graphs. New theory was

developed for the analysis of null-graph models. This theory was applied in multiple ways to

automatically generate new null-graph models with fixed degree sequences in a way which

is amenable to parallelization. We also discussed how this may be utilised for an alterna-

tive version of modularity maximization, which requires more research. Additionally, we

explored the topic of spectral graph coarsening. We discussed how graphs may be coarsened

while preserving the Laplcian spectrum and provided a parallel algorithm for greedily per-

forming this task. This represents the first parallel method for explicit spectrum preserving

coarsening, which may be useful for multilevel-spectral clustering. We further developed

theory relating the difference between the spectrum of the coarsened and original graphs

with the per-edge weight approximation which can be recreated from the coarsened graphs

weighted topology. This represents the first work to examine this inverse problem. Finally,

we investigated how Koopman operators may be used to accelerate GNN node classification.

We extended previous CPU only work examining how Koopman theory may be used to

accelerate neural networks and implemented Koopman training on GPU. This is the first

instance of Koopman training being used for practical speedups throughout the entire neural

network training process. Additionally this is the first work to use Koopman training for

graph neural networks and node classification. Together, this body of work presents several

novel methods which may find applications as important subroutines for many graph data

tasks.
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