
The Internet Operating System: Middleware for Adaptive
Distributed Computing

Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela
Department of Computer Science

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA
{elmagk,deselt,szymansk,cvarela}@cs.rpi.edu

Abstract

Large-scale, dynamic, and heterogeneous networks of computational resources (a.k.a. grids) promise
to provide high performance and scalability to computationally intensive applications. To fulfill this
promise, grid environments require complex resource management. We propose decentralized middleware-
triggered dynamic reconfiguration strategies to enable application adaptation to the constantly changing
resource availability of Internet-scale shared computational grids. As a proof of concept, we present a
software framework for dynamically reconfigurable distributed applications. The Internet Operating Sys-
tem (IOS) is a middleware infrastructure which aims at freeing application developers from dealing with
non-functional concerns while seeking to optimize application performance and global resource utilization.
IOS consists of distributed middleware agents that are capable of interconnecting themselves in various
virtual peer-to-peer topologies. IOS middleware agents: 1) profile application communication patterns,
2) evaluate the dynamics of the underlying physical resources, and 3) reconfigure application components
by changing their mappings to physical resources through migration and by changing their granularity
through a split and merge mechanism. A key characteristic of IOS is its decentralized coordination,
thereby avoiding the use of global knowledge and thus enabling scalable reconfiguration. The IOS mid-
dleware is programming model-independent: we have implemented an actor programming model interface
for SALSA programs and also a process programming model interface for MPI programs. Experimental
results show that adaptive middleware can be an effective approach to reconfiguring distributed applica-
tions with various ratios of communication to computation in order to improve their performance, and
more effectively utilize grid resources.

1 Introduction

A wide variety of computational environments are increasingly available to host the execution of
distributed and parallel applications. Examples include shared or dedicated clusters, supercomputers, and
large-scale grid and meta-computing environments. Performance variability in such environments is the
rule and not the exception. This poses new challenges for application developers that go far beyond those
of parallelism and scalability. The complexity lies not only in how to optimize large applications to run on
a given set of distributed resources, but also in how to maintain the desired performance when the pool
of resources may change anytime, the characteristics of the resources are variable, and the application’s
demands vary during its life-time. In conventional distributed and parallel systems, achieving high

szymansk
Text Box
International Journal of High Performance Computing Applications, vol. 20, no. 4, Winter 2006, pp. 467-480

performance is often accomplished through application-level scheduling or application-specific tuning.
Such techniques rely on the following assumptions: 1) having a good knowledge of the application’s
performance model, 2) executing over a relatively static set of resources, and 3) understanding well the
characteristics of these resources.

A successful example of application-level reconfiguration is adaptive mesh refinement in parallel ap-
plications [27, 11, 14]. Other approaches have relied on new programming models and abstractions
that promote composability, migration, and decentralized coordination [34, 7, 17, 30]. The latter work
advocates a separation of concerns between the applications and the middleware. The middleware is
responsible for addressing issues such as when and how to reconfigure applications. Applications need
to be amenable to reconfiguration by supporting migration which involves moving computational units
across physical resources, and/or malleability which enables splitting and merging computational units
to change the application components’ granularity.

We present a modular framework that supports application adaptation to both changing computa-
tional needs of applications and changing conditions of the execution environment. Reconfiguration is
supported at the level of application components—e.g., processes or actors—to allow for flexible adapta-
tion across a large range of distributed applications. The adopted approach tries to minimize the use of
a detailed application performance model for the purpose of performance predictions. Component-level
profiling is used to learn on the fly the behavior of the applications and to predict, based on the profiled
information, how the application can best utilize currently available resources. Resource-level profiling
helps match application components to newly available resources or away from resources becoming too
slow or unavailable.

In large-scale network systems, it is very expensive, if not impossible, to maintain global and accurate
knowledge about the behavior of the available resources. Designing reconfiguration policies that rely
on partial and inaccurate knowledge becomes inevitable to achieve fast and scalable decisions. The
proposed middleware embodies resource profiling and reconfiguration decisions into software agents. The
middleware agents form a virtual network. Every agent monitors a network node containing one or more
application entities and coordinates with peer agents to learn about available resource characteristics
and application communication patterns. We have investigated two virtual topologies for inter-agent
coordination: a peer-to-peer and a cluster-to-cluster virtual topology.

The remainder of the paper is organized as follows. In Section 2, we discuss middleware as an enabling
layer capable of reconfiguring and hence adapting applications to dynamic environments. Section 3
outlines some of the key design issues that arise at the middleware level, at the application level and the
interface between the middleware and the applications. Section 4 presents the IOS middleware prototype
that has been designed and developed with these design concepts and issues in mind. In Section 5, we
evaluate IOS performance. Finally, we conclude the paper with a brief discussion and related work.

2 Middleware-Driven Application Reconfiguration

Computational grids are inherently heterogeneous, shared, and dynamic. The efficient deployment
of applications on such environments demands complex resource management strategies. The sheer
size and dynamic behavior of grid environments makes automatic resource management a necessity.
To effectively utilize grid resources, it is imperative to enable applications to dynamically reconfigure to
adjust to the dynamics of the underlying resources. Dynamic reconfiguration implies the ability to modify
the mapping between application components and physical resources and/or to modify the application
components’ granularity while the application continues to operate without any disruption of service.
Applications should be able to scale up to exploit more resources as they become available or gracefully
shrink down as some resources leave or experience failures. Dealing with reconfiguration issues over large-

2

scale dynamic environments is beyond the scope of application developers. It is therefore imperative to
adopt a middleware-driven approach to achieve efficient deployment of distributed applications in a
dynamic setting in a portable and transparent manner. One way of achieving this vision is embodying
various middleware strategies and services within a virtual network of autonomous agents that coordinate
applications and resources.

Middleware geared towards applications’ reconfigurability should address the following issues:

Architectural Modularity Middleware agents should provide mechanisms that allow profiling meta-
information about applications’ behavior and resource usage characteristics, propagating this meta in-
formation, and deciding when and how to reconfigure applications. It is hard if not impossible to adopt
one single strategy that is applicable to different types of execution environments and a large spectrum
of applications. For example, it should be possible for the middleware to enable tuning the amount of
profiling done depending on the load of the underlying resources. The more accurate the profiling is,
the more informed the reconfiguration decisions are. A modular architecture is therefore critical to have
extensible and pluggable reconfiguration mechanisms. Different profiling, coordination, and reconfigura-
tion decisions strategies can be used depending on the class of applications and the characteristics of the
underlying execution environment.

Generic Interfaces To allow middleware to handle various programming models and technologies,
common and generic interfaces need to be designed. The functional details of how to accomplish recon-
figurability such as migration, replication, or re-distribution of computation are different among various
programming models. However, the strategies embodied in the middleware to achieve application’s adap-
tation such as deciding how to disseminate resource characteristics and how to use meta-level information
about applications and resources to effectively reconfigure applications is similar and therefore reusable
across various programming paradigms. Generalizing and standardizing the interactions between appli-
cations and middleware leads to a more generic and portable approach capable of using new programming
models and easily upgrading legacy code that use existing models to enable dynamic reconfiguration.

Decentralized and Scalable Strategies Grids consist of thousands—potentially millions—of glob-
ally distributed computational nodes. To address the demands of such large-scale environments with
higher degrees of node failures and latency variability, decentralized management becomes a necessity.
The sheer size of these computational environments renders using decisions based on global knowledge
infeasible and impractical since the overhead of obtaining global information may overwhelm the benefits
of using it. This forces any middleware to rely on making decisions based on local, partial, and often
inaccurate information. There is an inherent trade-off between the overhead of information dissemination
and the maintenance of high quality of information.

Dynamic Resource Availability Large-scale execution environments are expected to be more dy-
namic. Resource availability is constantly changing. Resources can join anytime during the lifetime of an
application, for example, when users voluntarily engage their machines as part of a distributed compu-
tation over the Web, or when an over-loaded machine becomes suddenly available upon the completion
of some tasks. Resources can also leave at anytime, for example, when a user withdraws her/his machine
from a web-based computation or because of a node failure. To improve efficiency, middleware-driven
reconfiguration can help applications adjust their resource allocation as the availability of the underlying
physical resources changes.

3

3 Virtual Network Topologies and Models of Reconfiguration

Designing middleware for application reconfiguration over dynamic environments poses a number of
challenges in terms of architectural modularity, generic interfaces to distributed applications, decentral-
ized management of information, and efficient and effective decision making in the presence of uncertainty.
In this section, we address some research challenges at the middleware level, the application level, and
the interface between these layers.

3.1 Middleware and Application Issues

Computational grids consist of diverse topologies of computational nodes. In some cases, nodes are
highly heterogeneous and geographically distributed, resembling nodes on the Internet, while in other
cases, nodes are tightly clustered, and these clusters may be geographically distributed with high band-
width connections, resembling hierarchical computational grids, such as the TeraGrid. Therefore, the
type of decentralized coordination plays an important role in the efficiency and effectiveness of the mid-
dleware. Depending on the computational grid topology, a purely peer-to-peer coordination scheme
might be more effective than a hierarchical coordination scheme. In other scenarios a hybrid approach
can be more effective.

The connectivity of the middleware agents can be designed to be very high—e.g., a complete graph
where every agent knows about every other agent—or very low—e.g., a ring, a tree, or a combination of
these two, as frequently used in distributed hash tables. The connectivity level and the frequency and
amount of communication between the middleware agents significantly influence the overhead of meta-
level information exchange and the quality of information agents can afford. Ultimately, these decisions
have an impact on the quality of application reconfiguration decisions that middleware agents take.

The middleware’s ability to reconfigure an application dynamically is ultimately bound by the applica-
tion’s reconfiguration capabilities. Different levels of reconfigurability include application stop and restart
mechanisms, application component migration and replication, and dynamic granularity of application
components. The latter techniques require more complex support from application programming models
and tend to be less transparent to application developers. However, they provide the most flexibility to
middleware and bring up the best opportunities for adaptability and scalability.

3.2 Application Programming Models

Functional issues of reconfiguration such as how to migrate application entities or how to change the
granularity of entities are highly dependent on the programming model and language used to develop a
given application. It is imperative to have tools that augment applications with these capabilities. When
such tools are available, the middleware can readily use them to automate the process of application
adaptation in dynamic environments. The middleware can shield application developers from dealing
with complex reconfiguration issues such as when and where to migrate application’s entities and which
entities need to be reconfigured.

In programming models such as actors [1], application component migration is obtained virtually for
free since memory is completely encapsulated and distributed and communication is performed purely by
asynchronous message passing. In programming models such as communicating processes (e.g., MPI [26]),
additional libraries and application programming interfaces (API) are required to enable process migra-
tion. In both the actor and process programming models, dynamic component granularity requires help
from the application developers since data repartitioning and process interconnectivity changes are usu-
ally highly application-dependent. Nonetheless, well-designed APIs can make the process of extending

4

Figure 1. Interactions between a reconfigurable application and the local IOS agent.
applications to support dynamic reconfiguration more manageable. This is particularly true for massively
parallel applications composed of relatively independent subtasks.

4 Generic Modular Middleware Architecture

In this section, we illustrate design and implementation decisions behind the Internet Operating System
(IOS) middleware.

4.1 The IOS Architecture

The IOS architecture consists of distributed middleware agents that are capable of interconnecting
themselves in various communication topologies. Figure 1 shows the architecture of an IOS agent and how
it interacts with the application components that are hosted on a given node. Every IOS agent consists of
three pluggable modules that enable evaluation of different types of autonomous reconfiguration, and also
allow users to develop their own fine-tuned modules for particular applications. These are the profiling
module, the decision module, and the protocol module:

Profiling Module: Resource-level and application-level profiling are used to gather dynamic per-
formance profiles about physical resources and application entities (such as processes, objects, actors,
components, or agents). Application entities communicate processing, communication, data access and
memory usage profiles to the middleware via a profiling API [25]. Profiling monitors periodically measure
and collect information about resources such as CPU power, memory, disk storage, and network band-
width. The IOS architecture defines interfaces for profiling monitors to allow the use of various profiling
technologies. Examples include the Network Weather Service (NWS) [36] and Globus Meta Discovery
Service [10].

Decision Module: Using locally and remotely profiled information, the decision module determines
how reconfiguration should be accomplished. Different reconfiguration strategies such as random work
stealing, application topology sensitive work stealing and network topology sensitive work stealing have
been implemented [12].

Protocol Module: The protocol module is responsible for inter-agent communication. It is used to
distribute profiled information among the different middleware agents. The agents can connect themselves
into various virtual agent topologies forming a virtual network. Examples include peer-to-peer and
hierarchical interconnections.

5

4.2 Generic Interface Implementations

The application profiling and reconfiguration request APIs in IOS are generic. We have implemented
two different programming models, SALSA and MPI, to illustrate generic middleware-triggered recon-
figuration. Our choice of these two programming models has been influenced by the fact that SALSA
is a programming language with several embedded features for reconfiguration such as migration and
asynchronous message passing while MPI is a standard model that has gained a widespread usage among
the parallel processing community. The following sections discuss some implementation details for both
programming models.

SALSA/IOS Implementation SALSA (Simple Actor Language System and Architecture) [34] is
a programming language for developing actor-oriented distributed applications. SALSA uses actors
as a programming abstraction to model a unit of concurrency, mobility and distribution. Unbounded
concurrency is supported through actor creation and asynchronous communication through message
passing. SALSA has been designed with additional abstractions to facilitate programming reconfigurable
distributed applications: universal naming, migration support, and coordination primitives.

Actors are inherently concurrent objects that communicate with each other via asynchronous message
passing. An actor is an object because it encapsulates a state and a set of methods. It is autonomous
because it is controlled by a single thread of execution. The anatomy of actors simplifies concurrency,
synchronization, coordination, namespace management, memory management, scheduling, and mobility
in distributed systems. SALSA and the actor model are extremely good candidates for use in developing
autonomously reconfigurable applications.

Migrating SALSA Actors: Actors in SALSA can be migrated transparently to the application de-
veloper, as references to other actors are location independent, and the language run-time guarantees
message delivery whether communication is remote or local. The anatomy of an actor simplifies migration
since every actor encapsulates cleanly its state and since it is based on asynchronous message passing.
Message forwarding protocols are used to ensure that no messages in transit are lost while an actor is
migrating to a new location.

Autonomous SALSA Actors: To enable profiling and middleware-driven migration of SALSA actors,
an actor behavior extends the AutonomousActor class. Autonomous actors automatically profile com-
munication, memory and CPU usage. This information is directly communicated to the IOS profiling
module through the IOS profiling API.

MPI/IOS Implementation MPI [26] is a widely used standard for developing parallel applications.
However, the issues of scalability, adaptability and load balancing are not directly addressed by MPI. To
maintain a good performance, MPI applications need to be able to scale up to accommodate new resources
or shrink to accommodate leaving or slow resources. Most existing MPI implementations assume a static
network environment. MPI implementations that support the MPI-2 Standard [19] provide some support
for dynamic process management by allowing running processes to spawn new processes and communicate
with them. However, developers still need to handle explicitly issues such as resource discovery, resource
allocation, scheduling, profiling, and load balancing. Additional middleware support is therefore needed
to relieve application developers from non-functional concerns while allowing high performance. In what
follows we describe mechanisms adopted to achieve migration of MPI processes at the user-level and how
iterative MPI applications have been integrated with IOS.

Migrating MPI Processes: We have achieved MPI process migration at the user level by rearranging
MPI communicators. Migration is performed through a collaboration of all the participating MPI pro-

6

Figure 2. Library and executable structure of an MPI/IOS application.

cesses. It has to be done at a point where there are no pending communications. Process migration
requires an update of any communicator that involves the migrating process. The class of iterative
applications have natural barrier points at the beginning of each iteration when there is no pending
communication. When necessary, we perform all reconfiguration at these times. A migration request
forces all running MPI processes to enter a reconfiguration phase. The migrating process spawns a new
process in the target location and sends it its locally checkpointed data.

Process migration and checkpointing support have been implemented as part of a user-level library.
This approach allows portability across several vendor MPI implementations that support MPI-2 process
spawning since the library is implemented entirely in the user space and does not require any infrastruc-
tural changes. The library is called PCM (Process Checkpointing and Migration) [24, 25].

Profiling MPI Processes: To accomplish application behavior profiling of MPI processes, their commu-
nication patterns must be periodically sent to their corresponding IOS profiling agents. This is achieved
through a profiling library based on the MPI profiling interface (PMPI). The MPI specification provides
a general mechanism for intercepting calls to MPI functions. This allows the development of portable
performance analyzers and other tools without access to the MPI implementation source code. The only
requirement is that every MPI function be callable by an alternate name (PMPI_Xxxx instead of the
usual MPI_Xxxx). This profiling library intercepts all communication methods of MPI using a local PCM
Daemon (PCMD) that sends periodically communication summaries to the local IOS profiling module.

4.3 IOS Module Implementations

The modularity of IOS allows for different implementations of the profiling, decision and protocol
modules. This section presents sample implementations of IOS modules.

Virtual Network Implementations Different protocols have been implemented to organize the mid-
dleware agents into different decentralized virtual networks, which can adjust themselves according to the
network topology of the execution environment. Two types of representative virtual networks have been
investigated: peer-to-peer (p2p) and cluster-to-cluster (c2c). The p2p virtual network provides strictly
peer-to-peer communication patterns between the middleware agents. The c2c virtual network provides
a hierarchical arrangement of agents, by electing middleware agents to act as managers for groups of
agents. Both virtual networks are sensitive to the fluctuations of the network load, and dynamically
change themselves in response to changes in the network.

A Network Sensitive Peer-to-Peer Topology (NSp2p): Agents initially connect to the IOS virtual

7

network either through other known agents or through a peer server. Peer servers act as registries for
agent discovery. Upon contacting a peer server, an agent registers itself and receives a list of other agents
(peers) in the virtual network. Peer servers are only used for discovering peers in a virtual network.
Being part of the virtual network, an agent can discover new peers as information gets propagated across
peers. Agents can also dynamically leave the virtual network. Each agent will keep a list of peers at
various distances (determined by latency), and will request reconfiguration with low latency peers before
high latency peers [12].

A Network Sensitive Cluster-to-Cluster Topology (NSc2c): In NSc2c, agents are organized into groups
of virtual clusters (VCs) which have collectively low latency communication. Each VC elects one agent
to act as the cluster manager. Cluster managers view each other as peers and organize themselves in the
same manner as the NSp2p virtual network topology.

Reconfiguration Decision Strategies Current implementations of decision strategies involve a de-
cision function which can utilize profiled information to determine if it is worthy to migrate an actor or
a process from one node to the other. Two strategies have been evaluated: random stealing (RS) and
application-sensitive random stealing (ARS) [12].

Random Work Stealing (RS): Random work stealing inherits ideas from previous work stealing ap-
proaches [8]. Nodes with light computation and communication loads attempt to steal work from heavily
loaded nodes. This reconfiguration strategy is quite simple and has low overhead as only communication
and computation load at each node must be profiled. No information about applications characteristics
is required. This strategy is stable since it does not cause additional overhead when the system is already
over-loaded.

Application-sensitive Random Stealing (ARS): Application-sensitive random stealing is an extension
of RS by taking into account the behavior of the application. The rationale behind ARS is collocating
highly synchronized application’s entities within nodes with low latency interconnections. ARS provides
significant improvement over RS for a large class of applications (see Section 5).

5 Profiling and Reconfiguration Performance Results

This section discusses some key experimental results pertaining to the IOS middleware. We show the
effect of using knowledge about the application’s topology in the reconfiguration decisions and the effect of
certain virtual topologies on the quality of reconfiguration. We also evaluate the effect of reconfiguration
using both SALSA and MPI.

5.1 Application-Sensitive Reconfiguration Results

In previous work [12], we have shown that using application behavior information to accomplish
autonomous reconfiguration can be highly effective. Additionally, in both programming models used,
the overhead of IOS is very low and in some cases negligible. For the experimental testbed we used a
four-dual node cluster of SUN Blade 1000 machines. Each node has a processing speed of 750M cycles
per second and 2 GB of memory.

Autonomous Reconfiguration using SALSA/IOS SALSA benchmarks were developed to model
various communication topologies with an emphasis on the computation-to-communication ratio of the
applications. Four different application topologies are represented, each pertaining to different levels of
inter-actor synchronization. The unconnected topology represents massively parallel applications. The

8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120 140 160

T
h
ro

u
g

h
p

u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 3. Performance of the massively parallel
unconnected benchmark.

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 4. Performance of the massively parallel
sparse benchmark.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 5. Performance of the highly synchro-
nized tree benchmark.

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 6. Performance of the highly synchro-
nized hypercube benchmark.

sparse topology models applications with a low communication to computation ratio. Both the tree and
hypercube topologies model higher communication to computation ratios.

Figures 3, 4, 5, and 6 show that a reconfiguration strategy that takes application behavior into consid-
eration (such as the application’s communication topology), results in largely improved performance on
applications with varying levels of synchronization, over strategies that do not, such as RS. Figure 3 also
shows that the overhead of the SALSA/IOS middleware is not significant—compare ARS to a round-
robin strategy with no reconfiguration overhead. We used the number of messages processed per second
(throughput) as a performance metric in these experiments. The benchmarks studied are characterized
by having uniformly distributed communication throughout execution. They have also been designed
to be long-running applications. Therefore, the number of processed messages per second gives a good
measure of how well the application is performing.

Autonomous Reconfiguration using MPI/IOS An implementation of a two-dimensional heat
diffusion application in MPI was used to evaluate the reconfiguration capabilities of MPI using IOS. For
comparative purposes, we used MPICH2 [6], a free implementation of the MPI-2 standard. We emulated
a shared and dynamic environment with varying load conditions by introducing artificial load in some of
the cluster nodes and varying it periodically.

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000 3500 4000

It
e
ra

ti
o
n

s
/s

Iteration Number

MPICH2

MPICH2/IOS

Figure 7. Performance of the heat simulation application using MPICH2 and MPICH2/IOS.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Figure 8. The tree topology on a dynamic envi-
ronment using ARS and RS.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(M
es

sa
g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Figure 9. The unconnected topology on a dy-
namic environment using ARS and RS.

In both experiments, the cluster’s load was varied by increasing or decreasing the processors loads
at various intervals. Figure 7 shows that IOS allows the MPI application to adapt by trying to get rid
of slow processors anytime an expected increase in performance is predicted through migration. This
evaluation occurs when the work stealing mechanism gets triggered by a processor becoming lightly-loaded
or a new processor becoming available. The figure also shows the performance of the same application
under the same dynamic environment with no reconfiguration capabilities. With no ability to adapt,
the application used the initial configuration throughout the course of the experiment and experienced
a constant degradation in its performance. This degradation was significant as the highly synchronized
nature of this application causes it to run as fast as the slowest processor.

5.2 Throughput and Scalability Improvements

Migration has been used to allow applications to utilize dynamic environments, by allowing the appli-
cation to use new nodes as they become available, and to withdraw from nodes that become unavailable
or over-loaded. Figures 8 and 9 show two different applications, one tightly coupled and the other
massively parallel, executing on a dynamic environment using two different reconfiguration strategies. In
both tests, the applications were run on a single node, and every 30 seconds an additional node was made
available. After allowing the application to execute on 8 nodes for three minutes, one by one, nodes were

10

Figure 10. Message throughput for the hypercube application topology on Internet- and Grid-like environ-
ments.

becoming unavailable every thirty seconds until only one node was remaining. These results show that
the middleware can effectively reconfigure the application to use the available resources as they change
over time. While the massively parallel application was able to utilize the available resources using both
an application topology sensitive reconfiguration strategy (ARS) and a strategy based solely on resource
availability (RS), the tightly coupled application showed improvement only when ARS was used.

5.3 Virtual Network Evaluation

We have evaluated different arrangements of middleware agents using NSp2p and NSc2c to propagate
profiled information for use in different reconfiguration strategies. Two different physical environments
were used to model Internet-like networks and Grid-like networks. The first physical network consisted
of 20 machines running Solaris and Windows operating systems with different processing power and
different latencies to model the heterogeneity of Internet computing environments. The second physical
network consisted of 5 clusters with different inter-cluster network latencies. Each cluster consists of 5
homogeneous SUN Solaris machines. Machines in different clusters have different processing power.

Figures 10 and 11 show not only that decentralized middleware management can accomplish intelligent
application reconfiguration, but also that the virtual network used plays a role in the effectiveness of the
reconfiguration. The p2p topology performs better in Internet-like environments that lack structure for
highly synchronized parallel and distributed applications, while the c2c topology is more suitable for
grid-like environments that have a rather hierarchical structure.

5.4 Overhead Evaluation

The overhead of using IOS with SALSA was evaluated using two applications, a massively parallel as-
tronomic application and a tightly coupled two-dimensional heat diffusion application. Both applications
are iterative. Therefore the average time spent of executing every iteration is a good measure of how well
the application is performing. Figures 12 and 13 show the the time spent by each iteration using SALSA
and SALSA/IOS. In both cases the overhead was minimal, around 0.5% for the astronomic application
and 2% for the two-dimensional heat diffusion application.

To evaluate the cost of reconfiguration of the PCM library, we varied the problem data size of the
heat diffusion application and measured the overhead of reconfiguration in each case. In the conducted
experiments, we started the application on a local cluster. We then introduced artificial load in one

11

Figure 11. Message throughput for the tree application topology on Internet- and Grid-like environments.

Astronomic application�
�
�
�

�
�
�
�

 Astronomic application with IOS

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

 10

 15

 20

 25

 30

 35

 40

 45

161284

E
xe

cu
tio

n
T

im
e(

s)

Number of Processors

 5

 0

Figure 12. Overhead of using SALSA/IOS on a
massively parallel astronomic data-modeling ap-
plication with various degrees of parallelism.

Heat application�
�
�
�

�
�
�
�

 Heat application with IOS

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 10

 15

 20

 25

 30

 35

161284

E
xe

cu
tio

n
T

im
e(

s)

Number of Processors

 5

 0

Figure 13. Overhead of using SALSA/IOS on a
tightly synchronized two-dimensional heat diffu-
sion application with various degrees of paral-
lelism.

of the participating machines. One execution was allowed to reconfigure by migrating the suffering
process to an available node that belongs to a different cluster, while the second execution was not
allowed to reconfigure itself. The experiments in Figures 14 and 15 show that in the studied cases,
reconfiguration overhead was negligible. In all cases, it accounted for less than 1% of the total execution
time. The application studied is not data-intensive. We also used an experimental testbed that consisted
of 2 clusters that belong to the same institution. So the network latencies were not significant. The
reconfiguration overhead is expected to increase with larger latencies and larger data sizes. However,
reconfiguration will still be beneficial in the case of large-scale long-running applications. Figure 15
shows the breakdown of the reconfiguration cost. The overhead measured consisted mainly of the costs
of checkpointing, migration, and the synchronizations involved in re-arranging the MPI communicators.
Due to the highly synchronous nature of this application, communication profiling was not used because
a simple decision function that takes into account the profiling of the CPU usage was enough to yield
good reconfiguration decisions.

12

Non−reconfigurable Execution Time�
�
�
�

�
�
�
�

Reconfigurable Executione Time

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

 400

 600

 800

 1,000

 1,200

 1,400

3.812.441.370.95

T
im

e(
s)

Data Size (Megabytes)

 200

 0

Figure 14. Execution time of reconfigurable and
non-reconfigurable execution scenarios for differ-
ent problem data sizes for the heat diffusion ap-
plication.

Synchronization�
�
�
�

�
�
�
�

��Checkpointing
Loading Checkpoints

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3.812.441.370.95

O
ve

rh
ea

d
(s

)

Data Size (Megabytes)

 0.4

 0.2

 0

Figure 15. Breakdown of the reconfiguration
overhead for the experiment of Figure 14.

6 Discussion and Related Work

Several research groups have been trying to achieve distributed computing on a large scale. Wiscon-
sin’s Condor project studies high throughput computing by “hunting” for idle workstation cycles [31].
The Globus project seeks to enable the construction of larger computational grids [15]. Virginia’s Le-
gion meta-system integrates research in object-oriented parallel processing, distributed computing, and
security to form a programmable world-wide virtual computer [18]. WebOS seeks to provide operating
system services, such as client authentication, naming, and persistent storage, to wide area applica-
tions [33]. UIUC’s 2K is an integrated operating system architecture addressing the problems of resource
management in heterogeneous networks, dynamic adaptability, and configuration of component-based
distributed applications [22].

Research on process and data migration for grid applications includes [32, 28]. A key idea behind
these approaches is to detect service degradations and react to such events by dynamically reconfiguring
application processes to effectively use available computational resources. An adaptive middleware layer
is needed, capable of migrating and replicating data and processes proactively based on the dynamically
changing availability of resources on the grid [12, 2, 23]. Peer-to-peer concepts have also been used in
the JUXMEM [5] project to enable data migration and sharing in dynamic grid environments.

While adaptive process and data migration and replication can have a large impact on the performance
of grid computing applications, they both assume a reasonable underlying model of resource usage and
expected future performance and availability of grid resources. Two mechanisms to predict performance
based on profiling resource usage are the Network Weather Service (NWS) [36] and the Globus Meta
Discovery Service (MDS) [10]. Recent research has devised and evaluated different mechanisms for
resource management in dynamic heterogeneous grid environments—e.g., see [16, 4, 20, 21, 3].

An important consideration when adapting applications to dynamic grid environments through proac-
tive data and process migration and replication is that the failure semantics of applications changes con-
siderably. Research on fault detection and recovery through checkpointing and replication includes [13,
29, 9]. Notice that an application checkpointing mechanism is necessary for adaptive application mi-
gration and can readily be used for fault tolerance as well. More fine-grained process-level rather than
application-level checkpointing and migration requires logging messages in transit to properly restore a
distributed application state upon failure [13].

13

There is a large body of research into computational grids and grid-based middleware, hence this
section only attempts to discuss a selection of this research area (see [35] for a more complete survey).
This work demonstrates that middleware can provide effective application reconfiguration using different
adaptation tools, based on profiling of application behavior and the execution environment, thus making
it generically applicable to different applications and programming models. Additionally, such types of
middleware and reconfiguration tools can enable applications to efficiently utilize dynamically changing
environments, which could lead to more efficient utilization of grid resources. Finally, for future grid
environments, decentralized management is possible and worthy of further research.

Acknowledgments

This work has been partially supported by the following grants: IBM SUR Award 2003, IBM SUR
Award 2004, NSF CAREER Award No. CNS-0448407, and NSF INT No. 0334667.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.
[2] G. Agha and C. Varela. Worldwide computing middleware. In M. Singh, editor, Practical Handbook on

Internet Computing, pages 38.1–21. CRC Press, 2004.
[3] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf. The Cactus Worm:

Experiments with dynamic resource selection and allocation in a grid environment. International Journal of
High-Performance Computing Applications, 15(4):345–358, 2001.

[4] D. Angulo, I. Foster, C. Liu, and L. Yang. Design and evaluation of a resource selection framework for grid
applications. In IEEE International Symposium on High Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, July 2002.

[5] G. Antoniu, J.-F. Deverge, and S. Monnet. How to bring together fault tolerance and data consistency to
enable grid data sharing. Concurrency and Computation: Practice and Experience, (17), 2006. To appear.

[6] Argone National Laboratory. MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2.
[7] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnson, K. Kennedy, C. Kesselman,

J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski. The GrADS project: Software support for high-level
grid application development. International Journal of High-Performance Computing Applications, 15(4):327–
344, 2002.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. In Proceedings
of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94), pages 356–368, Santa Fe,
New Mexico, November 1994.

[9] A. Bouteiller, F. Cappello, T. Hrault, G. Krawezik, P. Lemarinier, and F. Magniette. MPICH-V2: A fault
tolerant MPI for volatile nodes based on the pessimistic sender based message logging. In Supercomputing
2003, Phoenix, USA, November 2003.

[10] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for distributed resource
sharing. In 10th IEEE International Symposium on High-Performance Distributed Computing (HPDC-10),
August 2001.

[11] H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. Özturan, and M. S. Shephard. Load balancing
for the parallel adaptive solution of partial differential equations. Appl. Numer. Math., 16:157–182, 1994.

[12] T. Desell, K. E. Maghraoui, and C. Varela. Load balancing of autonomous actors over dynamic networks. In
Hawaii International Conference on System Sciences, HICSS-37 Software Technology Track, Hawaii, January
2004.

[13] J. Field and C. Varela. Transactors: A programming model for maintaining globally consistent distributed
state in unreliable environments. In Conference on Principles of Programming Languages (POPL 2005),
pages 195–208, 2005.

[14] J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz.
Parallel structures and dynamic load balancing for adaptive finite element computation. Applied Numerical
Mathematics, 26:241–263, 1998.

14

[15] I. Foster and C. Kesselman. The Globus Project: A Status Report. In J. Antonio, editor, Proceedings of the
Seventh Heterogeneous Computing Workshop (HCW ’98), pages 4–18. IEEE Computer Society, March 1998.

[16] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computation management agent
for multi-institutional grids. Cluster Computing, 5(3):237–246, 2002.

[17] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Farrellee,
M. Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. Rey-
Cenevaz. Programming the Grid: Distributed Software Components, P2P and Grid Web Services for Scientific
Applications. Journal of Cluster Computing, 2002.

[18] A. S. Grimshaw, W. A. Wulf, and ”the Legion team”. The legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1):39–45, January 1997.

[19] W. Gropp and E. Lusk. Dynamic process management in an MPI setting. In Proceedings of the 7th IEEE
Symposium on Parallel and Distributeed Processing, page 530. IEEE Computer Society, 1995.

[20] A. Iamnitchi and I. Foster. On fully decentralized resource discovery in grid environments. In International
Workshop on Grid Computing, Denver, Colorado, USA, November 2001.

[21] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting hierarchy in parallel
computer networks to optimize collective operation performance. In 14th International Parallel Distributed
Processing Symposium (IPDPS’00), pages 377–384, Cancun, Mexico, May 2000.

[22] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros. 2K: A Distributed Operating
System for Dynamic Heterogeneous Environments. In Proceedings of the 9th IEEE International Symposium
on High Performance Distributed Computing (HPDC’9), pages 201–208, Pittsburgh, August 2000.

[23] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman. Simulation of dynamic data replication strategies
in data grids. In Proceedings of the 12th Heterogeneous Computing Workshop, 2003.

[24] K. E. Maghraoui, T. Desell, B. K. Szymanski, J. D. Teresco, and C. A. Varela. Towards a middleware
framework for dynamically reconfigurable scientific computing. In L. Grandinetti, editor, Grid Computing
and New Frontiers of High Performance Processing. Elsevier, 2005.

[25] K. E. Maghraoui, B. K. Szymanski, and C. Varela. An architecture for reconfigurable iterative MPI applica-
tions in dynamic environments. In Proc. Sixth International Conference on Parallel Processing and Applied
Mathematics (PPAM 2005), Lecture Notes in Computer Science. Springer Verlag, 2005.

[26] Message Passing Interface Forum. MPI: A message-passing interface standard. The International Journal of
Supercomputer Applications and High Performance Computing, 8(3/4):159–416, Fall/Winter 1994.

[27] J.-F. Remacle, J. Flaherty, and M. Shephard. An adaptive discontinuous Galerkin technique with an orthog-
onal basis applied to compressible flow problems. SIAM Review, 45(1):53–72, 2003.

[28] O. Sievert and H. Casanova. A simple MPI process swapping architecture for iterative applications. Interna-
tional Journal of High Performance Computing Applications, 2003.

[29] P. Stelling, I. Foster, C. Kesselman, C.Lee, and G. von Laszewski. A Fault Detection Service for Wide Area
Distributed Computations. In Proceedings of the 7th IEEE International Symposium on High Performance
Distributed Computing, pages 268–278, Chicago, IL, 28-31 July 1998.

[30] K. Taura, K. Kaneda, and T. Endo. Phoenix: a Parallel Programming Model for Accommodating Dynamically
Joining/Leaving Resources. In Proc. of PPoPP, pages 216–229. ACM, 2003.

[31] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The Condor Experience.
Concurrency and Computation: Practice and Experience, 2004.

[32] S. S. Vadhiyar and J. J. Dongarra. A performance oriented migration framework for the grid. In CCGrid,
IEEE Computing Clusters and the Grid, Tokyo, Japan, may 2003.

[33] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P. Eastham, and C. Yoshikawa. WebOS: Operating
System Services For Wide Area Applications. In Proceedings of the Seventh IEEE Symposium on High
Performance Distributed Computing, July 1998.

[34] C. Varela and G. Agha. Programming dynamically reconfigurable open systems with SALSA. ACM
SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings, 36(12):20–34, Dec. 2001.
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[35] C. A. Varela, P. Ciancarini, and K. Taura. Worldwide computing: Adaptive middleware and programming
technology for dynamic Grid environments. Scientific Programming Journal, 13(4):255–263, December 2005.
Guest Editorial.

[36] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed resource performance
forecasting service for metacomputing. Future Generation Comput. Syst., 15(5-6):757–768, October 1999.

15

