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We introduce a homogeneous pair approximation to the NamingGame (NG) model by deriving a six-
dimensional ODE for the two-word Naming Game. Our ODE reveals the change in dynamical behavior of
the Naming Game as a function of the average degree< k> of an uncorrelated network. This result is in good
agreement with the numerical results. We also analyze the extended NG model that allows for presence of
committed nodes and show that there is a shift of the tipping point for social consensus in sparse networks.

I. INTRODUCTION

The dynamics of social influence has been heavily studied
in the network science literature [1–3]. Some of the models
used include the Voter Model [4], the threshold model [5], the
Bass model [6] and the Naming Game models [7–10]. The
last model is the focus of our paper. In this model, each node
is assigned a list of names as its opinions chosen from an al-
phabetS. In each time step, two neighboring nodes, one lis-
tener and one speaker are randomly picked. The speaker ran-
domly picks one name from its name list and sends it to the
listener. If the name is not in the list of the listener, the listener
will add this name to its list, otherwise the two communica-
tors will achieve an agreement, i.e. both collapse their name
list to this single name. The variations of this game can be
classified as the “Original” (NG), “Listener Only” (LO-NG)
and “Speaker Only” (SO-NG) types [11] regarding the update
when the communicators make an agreement, and as the “Di-
rect”, “Reverse” and “Neutral” types regarding the way that
the two communicators are randomly picked, as defined in
[12]. These variations have different behaviors but can be an-
alyzed in the similar way. In this paper we mainly focus on
the “Original” “Direct” version using binary alphabet of two
symbols, denoted here as A and B.

A key feature in the Naming Game models (symmetric bi-
nary agreement version) is that once a susceptible individual
adopts the new opinion, he can still revert back to his old opin-
ion at all subsequent times which is suited to studying the dy-
namics of competing opinions where switching one’s opinion
has little overhead, and where the opposing opinions A and B
are not socially, culturally or morally ranked. These dynamics
correspond to a particular case of the 2-convention NG intro-
duced in [2] with the trust parameterβ = 1. Other versions of
the Naming Games have been developed that address the is-
sues of overall social preference of one opinion over the other
through an asymmetry in the stickiness of each opinion.

Another significant difference between the Naming Games
(NG) and other stochastic games on networks including pop-
ulation genetics models is the symmetric forms of the NG do
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not take into account the selective survivability or fitnessof
agents that adopt one opinion over another.

A third significant difference between the NG and other so-
cial influence models such as the Voter models [4] is that in
the NG, an agent is allowed to hold more than one opinions
before switching to the other opinion. This changes the ex-
pected time to consensus starting from uniform initial condi-
tions even in perfectly symmetric form of the models. Nu-
merical studies in [2] have shown that for the symmetric NG
on a complete graph, starting from the state where each agent
has one of the two opinions with equal probability, the system
first achieves consensus in order lnN number of time steps, as
compared to orderN time steps for the Voter models. HereN
is the number of nodes in the network, and unit time consists
of N speaker-listener interactions.

Numerical studies in [2] have shown that for the symmetric
NG on a complete graph, starting from the state where each
node has one of the two opinions with equal probability, the
number of time steps needed by the system to achieve con-
sensus is of the order lnN, while the number of time steps to
consensus in the Voter models is of the orderN. HereN is
the number of nodes in the network, and a single time step
consists ofN speaker-listener interactions.

In this paper, we also address the nearly-symmetric cases of
the Naming Game models where a single asymmetry is intro-
duced into the models through the random inclusion of a mi-
nority fraction of committed agents whose opinion are fixed
for all times to be A, say. The key observable is the expected
time to consensus of the A opinion and its dependence on (I)
the committed fraction and (II) the network topology.

In [13] and [14], we show that, for a complete graph,
when the committed fraction grows beyond a critical value
pc ≈ 0.0979, there is a super-exponential decrease in the time
taken for the entire network to adopt the A opinion. Specif-
ically, using a straight forward mean field approach, coarse-
grained stochastic analysis, and direct simulations of theNG,
we show that forp < pc, the mean consensus timeTc ∼ eN,
while for p > pc, Tc ∼ lnN . In the presence of committed
agents of opinionA, the only absorbing state in the associ-
ated random walk Markov chain model [13] is the consen-
sus state of opinionA while the near-consensus state where
all susceptible agents have theB opinion becomes a reflecting
state. Similarly, the averaged or mean field system of two cou-
pled nonlinear differential equations [14], undergoes a saddle-
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node bifurcation whenp= pc, in which the saddle point (sym-
metric in phase plane in the case with no committed agents)
merges with a node to form a new equilibrium point of saddle-
node type [15] [16]. TheTc ∼ lnN time scale comes from the
slow dynamics along the center manifold between the saddle-
node and the consensus ofA opinion, and is the same order
as the symmetric case where there are no committed agents.
In contrast, forp < pc, theTc ∼ eN time scale is due to the
additional numerous time steps spent along that portion of the
center manifold which is between the stable fixed point and
the saddle-point where the latter corresponds to a state with a
larger fraction of agents of opinionA than the former.

Simulations on a range of sparse random networks with 100
- 10000 nodes have shown, after extensive and costly numeri-
cal experiments, that the above tipping point effect of the NG
with a minority fraction of committed agents is a very robust
phenomenon with respect to underlying network topology. Of
particular significance is the numerical / empirical observation
[14] that as one lowers the average degree of the underlying
random network, the tipping fractionpc decreases.

In this paper, we analytically establish the numerical dis-
covery using a refined mean field approach [17] and report
on precise changes in NG dynamics with respect to the av-
erage degree< k > of an uncorrelated underlying network
which are beyond the reach of the straight forward mean field
model in [13], [14]. Specifically, the critical tipping fraction
in the binary agreement model decreases to a minimum of 5
percent when the average degree< k >= 4 from a maximum
of 10 percent for complete graphs. This shows that the new
mean field model is in better agreement with the numerical
results reported above in [14] and provides a much improved
approximation to NG dynamics on large random networks in
comparison to the straight forward mean field model in [14].

II. IMPROVED MEAN FIELD APPROACH

Although the basic mean field approach applied to the NG
models [14] have yielded significant results such as a phase
transition at a critical fraction of the committed agents inthe
network, the tipping point [14], its theoretical predictions de-
viate from the results of simulations on complex networks es-
pecially when the network is relatively “sparse”. The qual-
itative changes in dynamical behavior of the network under
social games such as the NG, in terms of its average degree or
the degree distribution, is important in network science, and
we report here the significant results of a refined mean field
model for the NG with committed agents.

Recently, a so-called homogeneous pair approximation has
been introduced to study the dynamics of the voter model
[18][19], a model simpler than the NG, which improves the
basic mean field approximation by taking account of the cor-
relation between the nearest neighbors. Their analysis is based
on the master equation of the active links, the links between
nodes with different opinions. Although it shows a spurious
transition point, it captures most features of the dynamicsand
works very accurately on most uncorrelated networks such as
Erdos-Renyi (ER) and scale-free (SF) networks.

In this paper, we apply a similarly improved mean field
approach to the NG, especially the binary agreement model.
Compared to the voter model, there are more than one type of
active links (edges) in the NG, so we have to analyze all types
of links including active and inert ones. As a consequence,
instead of a one dimensional averaged nonlinear ODE in the
voter model, we have a six dimensional nonlinear coupled sys-
tem. We will derive the equations by analyzing all possible
updates in the process and write it in a matrix form with the
average degree< k > as a explicit parameter. In contrast to
the basic mean field theory, this improved ODE approxima-
tion clearly shows how the NG dynamics changes when< k>
decrease to 1, the critical value for ER network to have giant
component, and converges to the basic mean field equations in
[14] when< k > grows to infinity. Next we show the signif-
icantly better agreement between the theoretical predictions
of the new mean field theory and the simulations on ER net-
work. Using this improved model, we are able to predict and
replicate the empirically observed lowering of critical tipping
fraction in low average degree networks, i.e. we need fewer
committed agents to force a global consensus in a loosely con-
nected social network.

III. THE MODEL

In the “Original” “Direct” version of Naming Game, every
agent in the network has a naming list in its memory. In each
time step, a speaker is randomly picked first and then a lis-
tener is randomly picked from the speaker’s neighbors (this
order is called “Direct”). The speaker picks one name from
its memory and sends it to the listener. If the listener does not
know this name , it adds this new name to its list. Otherwise,
both agents delete all names in their list but the one sent (this
update is the “Original” version).

Consider the NG dynamics on an uncorrelated random
network where the presence of links are independent, to-
gether with the following assumptions which comprise the
foundation of the homogeneous pair approximation:

1. The opinions of direct neighbors are correlated, while
there is no extra correlation besides that through the
nearest neighbor. To make this assumption clear, sup-
pose three nodes in the network are linked as 1-2-3 (so
there is no link between 1 and 3). Their opinions are de-
noted by random variablesX1,X2,X3, correspondingly.
Therefore our assumption says:P(X1|X2) 6= P(X1), but
P(X1|X2,X3) = P(X1|X2). This assumption is valid
for all uncorrelated networks (Chung-Lu type network
[20], especially the ER network).

2. The opinion of a node and its degree are mutually inde-
pendent. Suppose the node indexi is a random variable
which labels a random node. In terms of the opinion and
degree of nodei, denoted respectively asXi andki , this
assumption meansE[ki |Xi ] =< k >, P(Xi |ki) = P(Xi)
andP(Xi |Xj ,ki ,k j) = P(Xi |Xj) where j is a neighbor of
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i. This assumption is obviously satisfied for the net-
works in which every node has the same degree (reg-
ular geometry), but it is also valid for the network
whose degree distribution is concentrated around its
average (for example, Gaussian distribution with rela-
tively small variance or Poisson distribution with not
too small< k >). It can be shown that this assumption
is good enough for ER network.

In other words, in typical mean field language, the prob-
ability distribution of the neighboring opinions of a specific
node is an effective field. This field is however not uniform
over the network but depends only on the opinion of the given
node. For an uncorrelated random network with N nodes and
average degree< k >, the number of links in this network is
M = N < k > /2. We denote the numbers of nodes taking
opinions A,B and AB asnA, nB, nAB, their fractions aspA,pB,
pAB. We also denote the numbers of different types of links
as~L = [LA−A,LA−B,LA−AB,LB−B,LB−AB,LAB−AB]

T , and their
fractions are given by~l =~L/M. We take~L or~l as the coarse
grained macrostate vector. The global mean field is given by:

~p(~L) =





pA
pB
pAB



=
1

2M





< k> nA
< k> nB
< k> nAB





=
1

2M





2LA−A+LA−B+LA−AB
LA−B+2LB−B+LB−AB

LA−AB+LB−AB+2LAB−AB



 .

SupposeXi, Xj are the opinions of two neighboring nodes.
We simply writeP(Xi = A|Xj = B), for example, asP(A|B).
We also represent the effective fields for all these types of
node in terms of~L:

−−−→
P(·|A)(~L) =





P(A|A)
P(B|A)

P(AB|A)



=
1

2LA−A+LA−B+LA−AB





2LA−A
LA−B
LA−AB



 ,

−−−→
P(·|B)(~L) =





P(A|B)
P(B|B)

P(AB|B)



=
1

LA−B+2LB−B+LB−AB





LA−B
2LB−B
LB−AB



 ,

−−−−→
P(·|AB)(~L)=





P(A|AB)
P(B|AB)

P(AB|AB)



=
1

LA−AB+LB−AB+2LAB−AB





LA−AB
LB−AB

2LAB−AB



 .

To derive the averaged nonlinear ODE for NG dynam-
ics, we calculate the expected change of~L in one time step,
E[∆~L|~L]. In the following equation, we add up the expecta-
tion E[∆~L|~L,ω ] conditioned by each type of nodes communi-
cations (ω), and weighted by the probability of this type of
nodes communications,P(ω).

E[∆~L|~L] = ∑
ω

P(ω)E[∆~L|~L,ω ]. (1)

For brevity, we display the calculation of one term in the
above summation as example. Consider the case: listener

holds opinion A while speaker has opinion B, and denote this
case byω = (B→ A). The probability for this type of com-
munication is

P(B→ A) = pBP(A|B) =
1

2M
LA−B.

The direct consequence of this communication is that the link
between the listener and speaker changes from A-B into AB-
B, so LA−B decreases by 1 andLB−AB increases by 1. This
direct change of~L is represented by

~D(B→ A) =















0
−1
0
0
1
0















.

Furthermore, since the listener changes opinions from A to
AB, all his other related links change. The number of these
links is on average< k > −1 (here we use the assumption 2,
E[ki |Xi ] =< k >.). The probabilities for each link to be A-

A, A-B, A-AB before the communication is given by
−−−→
P(·|A)

(here we use assumption 1). After the communication, these
links will change into AB-A, AB-B, AB-AB correspondingly.
This related change of~L is represented by

(< k>−1)















−1 0 0
0 −1 0
1 0 −1
0 0 0
0 1 0
0 0 1



















P(A|A)
P(B|A)

P(AB|A)



 .

The 6-by-3 matrix in the above expression indicates the link
correspondence between A-A, A-B, A-AB and AB-A, AB-B,
AB-AB when a “A node” changes into “AB node”, we denote
it by

QA =















−1 0 0
0 −1 0
1 0 −1
0 0 0
0 1 0
0 0 1















.

Let ~R(B→ A) = QA
−−−→
P(·|A), we obtain:

E[∆~L|~L,B→ A] = ~D(B→ A)+ (< k>−1)~R(B→ A).

On the right hand side of the above equation, the first term
represents thedirect change and the second term represents
therelated change.

Similarly, we analyze all the other terms in equation (1) for
differentω (the listener and speaker’s opinions), and write the
weighted sum in matrix form, we obtain:

E[∆~L|~L] =
1
M

[D+(< k>−1)R]~L,
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whereD is a constant matrix whose column vectors come
from linear combinations of~D(ω)’s:

D =

















0 0 3
4 0 0 1

2
0 −1 0 0 0 0
0 1

2 −1 0 0 0
0 0 0 0 3

4
1
2

0 1
2 0 0 −1 0

0 0 1
4 0 1

4 −1

















,

and matrixR is a function of~L, given by column vectors
which come from~R(ω)’s:

R=
(

~0,
1
2
[QA

−−−→
P(·|A)+QB

−−−→
P(·|B)],QA[

1
4

−−−→
P(·|A)−

3
4

−−−−→
P(·|AB)],

~0,QB[
1
4

−−−→
P(·|B)−

3
4

−−−−→
P(·|AB)],−(QA+QB)

−−−−→
P(·|AB)

)

.

Here QB, similar to QA defined above, indicates the link
correspondence between B-A, B-B, B-AB and AB-A, AB-B,
AB-AB when a “B node” changes into “AB”,

QB =















0 0 0
−1 0 0
1 0 0
0 −1 0
0 1 −1
0 0 1















.

When “AB node” changes into “A” or “B”, the link corre-
spondence is given by−QA or−QB respectively.

Then we normalize~L by the total number of linksM and
normalize time by the number of nodesN to obtain:

d
dt
~l =

N
M

E[∆~L|~L] =
N
M

[D+(< k>−1)R]~l

= 2

[

1
< k>

D+(
< k>−1
< k>

)R

]

~l . (2)

Thus, we derived the new mean field ODEs for~l and the aver-
age degree< k > of the underlying social network on which
the NG is played is explicit in the formula. In the last line, the
first term is linear and comes from thedirect change of the
link between the listener and the speaker. The second term is
nonlinear and comes from therelated changes.

Under the previous basic mean field assumptions in [14],
the first term does not exist because there is no specific
“speaker” and every one receives messages from the effective
mean field. When< k>→ 1, the new ODE becomes:

d
dt
~l = 2D~l ,

which is a linear system. When< k >→ ∞, this ODE be-
comes:

d
dt
~l = 2R~l .

If in matrix Rwe further require
−−−→
P(·|A) =

−−−→
P(·|B) =

−−−−→
P(·|AB) =

~p and transform the coordinates by~L → ~p(~L), this ODE re-
verts to the one we have under the basic mean field assumption
in [14].

IV. NUMERICAL RESULTS WITHOUT COMMITTED
AGENTS

In this section, we show the numerical results of solving our
ODEs by Runge-Kutta method and compare the phase trajec-
tories with those of the basic mean field theory and also with
the stochastic dynamical trajectories of the simulated NG on
random networks of varying average degree. Fig.1 shows the
comparison between our theoretical prediction (color lines)
and the simulation on ER networks (black solid lines). The
dotted lines are theoretical prediction by basic mean field ap-
proximation. We calculate the evolution of the fractions of
nodes with A, B and AB opinions respectively and show that
the prediction of the older basic mean field approximation
deviates from the simulations significantly while that of the
homogeneous pair approximation matches simulations very
well.

0 2 4 6 8 10 12 14 16 18 20
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0.4
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0.6

0.7

0.8

0.9

1

t

 

 

p
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p
B

p
AB

Theoretical

Mean field

FIG. 1. Fractions of A, B and AB nodes as function of time. The
three color lines are the averages of 50 runs of NG (without commit-
ted agents) on ER network withN = 500 and< k >= 5. The black
solid lines are solved from the ODE above with the same< k>. The
black dotted lines are from the ODE using mean field assumption.

Fig.2 shows the trajectories of the macrostate mapped onto
two dimensional space (pA,pB), the black line is the trajec-
tory predicted by the mean field approximation. We find
that when< k > is large enough, say 50, the homogeneous
pair approximation is very close to the mean field approxima-
tion. When< k > decreases, the trajectory tends to the line
pAB = 1− pA− pB = 0, which means there are fewer nodes
with mixed opinions than predicted by the mean field. In this
situation, opinions of neighbors are highly correlated forming
the “opinion blocks”, and mixed opinion (AB) nodes can only



5

appear on the boundary between the “A opinion block” and
“B opinion block”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
A

p B

 

 

mean field
<k>=3
<k>=4
<k>=5
<k>=10
<k>=50

FIG. 2. The trajectories of NG (no committed agents)solved from the
ODE with different< k> mapped onto 2D macrostate space. When
< k >→ ∞, the trajectory tends to that of the mean field equation.
When< k>→ 1, the trajectory get close to the linepAB = 1− pA−
pB = 0.

In the ODE models, it is hard to identify a proper cutoff for
“total consensus”. Therefore, to make a comparison between
the theoretical prediction and the simulation, we considerη-
consensus (Tη ) which is the first timepA or pB achievesη .
Fig.3 shows the comparison ofTη (η = 0.95) for different
system sizeN and average degrees< k >. According to this
figure, we find that whenN grows, the relative standard devia-
tion of T0.95 (∆T0.95/T0.95 ≈ ∆ ln(T0.95)) decreases, which val-
idates the pair approximation in the sense of thermodynamic
limit. Further more, when< k > grows, the pair approxima-
tion tends to the simple mean field assumption.

V. COMMITTED AGENTS

In this section, we consider the asymmetric case of the NG
on large random networks withp (fraction) committed agents
(nodes that never change their opinions) of opinion A. Ini-
tially, all the other nodes are of opinion B. The main question
considered here is under what conditions it is possible for the
committed nodes to persuade the others and achieve a global
consensus. Previous studies found there is a robust critical
value ofp called the tipping point. Above this value, it is pos-
sible and the persuasion takes a short time, while below this
value, it is nearly impossible as it takes exponentially long
time with respect to the system sizes[13, 14].

Similar to what we did in the previous section, we
derive the new mean field ODE for the macrostate
in the NG with committed agents, although the

macrostate now contains three more dimensions.~L =
[LA−C,LB−C,LAB−C,LA−A,LA−B,LA−AB,LB−B,LB−AB,LAB−AB]

T ,
whereC denotes the committed A opinion andA itself denotes
the non-committed one. Hence we have a nine dimensional
ODE which has the same form as equation (2), but with
different details inD andRgiven below:

D =





























0 0 3
4 0 0 0 0 0 0

0 − 1
2 0 0 0 0 0 0 0

0 1
2 − 3

4 0 0 0 0 0 0
0 0 0 0 0 3

4 0 0 1
2

0 0 0 0 −1 0 0 0 0
0 0 0 0 1

2 −1 0 0 0
0 0 0 0 0 0 0 3

4
1
2

0 0 0 0 1
2 0 0 −1 0

0 0 0 0 0 1
4 0 1

4 −1





























,

QA =



























−1 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0
0 0 −1 0
0 1 0 −1
0 0 0 0
0 0 1 0
0 0 0 1



























, QB =



























0 0 0 0
−1 0 0 0
1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 −1
0 0 0 1



























,

4.5 5 5.5 6 6.5 7 7.5 8
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

ln(N)

ln
(T

0.
95

)

 

 

<k>=5 simulation
<k>=5 pair approx
<k>=10 simulation
<k>=10 pair appro
simple mean field

FIG. 3. Comparison ofη-consensus timesT0.95 of NG (no commit-
ted agent) between the simulation and theoretical prediction for dif-
ferent system sizesN and average degrees< k >. The straight lines
are from theoretical analysis under simple mean field assumption or
pair approximation. The cycles and error bars show the meansand
the relative standard deviations ofT0.95 by simulation of dynamics
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R= (~0,
1
2

QB
−−−→
P(·|B),−

3
4

QA
−−−−→
P(·|AB),~0,

1
2
[QA

−−−→
P(·|A)+QB

−−−→
P(·|B)],

QA[
1
4

−−−→
P(·|A)−

3
4

−−−−→
P(·|AB)],~0,QB[

1
4

−−−→
P(·|B)−

3
4

−−−−→
P(·|AB)],

−(QA+QB)
−−−−→
P(·|AB)).

Finally, we show the change of the critical tipping frac-
tion with respect to the average degree< k > of the under-
lying random networks in Fig.4. Starting from the state that
pB = 1− p, the new ODE system will go to a stable state
for which pB = p∗B. p∗B is 0 if the committed agents finally
achieve the global consensus. The sharp drop of each curve
indicates the tipping point transition with the corresponding
< k >. Fig.5 shows the normalized consensus time,T0.95/N
around the tipping pointpc for different system sizes. When
p> pc, T0.95/N is logarithmic withN; whenp< pc, T0.95/N
grows very fast (since it takes to much time, we stop the simu-
lation whenT0.95/N exceeds 104). Fig.5 confirms the tipping
point found in Fig.4 is consistent with the transition pointbe-
tween the region of the logarithmic consensus time and expo-
nential consensus time, and when the system size grows, the
transition becomes sharper.

According to Fig.4, the tipping point shifts left when the av-
erage degree< k> decreases. This theoretical result confirms
and replicate in full without costly numerical simulations, the
observed lowering of the tipping fraction as a function of de-
creasing the average degree of the underlying large random
networks.
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FIG. 4. Fraction of B nodes of the stable point (p∗B) as a function of
the fraction of nodes committed to A (p). The color lines consist of
stable points obtained by tracking the ODE of NG on ER for a long
enough time. The black lines are the stable points solved from the
mean field ODE.
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FIG. 5. Normalized consensus time,T0.95/N around the tipping point
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is obtained by average of 100 runs of NG simulation with committed
agents on ER network. The simulation stops whenT0.95/N exceed
104, since it almost never achieve consensus whenp< pc.
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