Physical Review E, 86(6) 061134 (2012) [7 pages].
Analytic Treatment of Tipping Pointsfor Social Consensusin Large Random Networks
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We introduce a homogeneous pair approximation to the NarGiame (NG) model by deriving a six-
dimensional ODE for the two-word Naming Game. Our ODE revghé change in dynamical behavior of
the Naming Game as a function of the average degrke- of an uncorrelated network. This result is in good
agreement with the numerical results. We also analyze ttendzd NG model that allows for presence of
committed nodes and show that there is a shift of the tippoigtgor social consensus in sparse networks.

I. INTRODUCTION not take into account the selective survivability or fitness
agents that adopt one opinion over another.

The dynamics of social influence has been heavily studied A third significant difference between the NG and other so-
in the network science literature [1-3]. Some of the modelgial influence models such as the Voter models [4] is that in
used include the Voter Model [4], the threshold model [5§, th the NG, an agent is allowed to hold more than one opinions
Bass model [6] and the Naming Game models [7-10]. Théefore switching to the other opinion. This changes the ex-
last model is the focus of our paper. In this model, each nod@ected time to consensus starting from uniform initial dend
is assigned a list of names as its opinions chosen from an alions even in perfectly symmetric form of the models. Nu-
phabetS. In each time step, two neighboring nodes, one lis-merical studies in [2] have shown that for the symmetric NG
tener and one speaker are randomly picked. The speaker ra@h a complete graph, starting from the state where each agent
domly picks one name from its name list and sends it to thdas one of the two opinions with equal probability, the syste
listener. If the name is not in the list of the listener, tistdner ~ first achieves consensus in ordeNInumber of time steps, as
will add this name to its list, otherwise the two communica-compared to ordeN time steps for the Voter models. Hexe
tors will achieve an agreement, i.e. both collapse theirenamis the number of nodes in the network, and unit time consists
list to this single name. The variations of this game can be&f N speaker-listener interactions.
classified as the “Original” (NG), “Listener Only” (LO-NG) Numerical studies in [2] have shown that for the symmetric
and “Speaker Only” (SO-NG) types [11] regarding the updateNG on a complete graph, starting from the state where each
when the communicators make an agreement, and as the “Diode has one of the two opinions with equal probability, the
rect”, “Reverse” and “Neutral” types regarding the way thatnumber of time steps needed by the system to achieve con-
the two communicators are randomly picked, as defined irsensus is of the order M, while the number of time steps to
[12]. These variations have different behaviors but canrbe a consensus in the Voter models is of the orber HereN is
alyzed in the similar way. In this paper we mainly focus onthe number of nodes in the network, and a single time step
the “Original” “Direct” version using binary alphabet of tw  consists olN speaker-listener interactions.
symbols, denoted here as A and B. In this paper, we also address the nearly-symmetric cases of

A key feature in the Naming Game models (symmetric bi-the Naming Game models where a single asymmetry is intro-
nary agreement version) is that once a susceptible individu duced into the models through the random inclusion of a mi-
adopts the new opinion, he can still revert back to his oldopi nority fraction of committed agents whose opinion are fixed
ion at all subsequent times which is suited to studying the dyfor all times to be A, say. The key observable is the expected
namics of competing opinions where switching one’s opiniontime to consensus of the A opinion and its dependence on (1)
has little overhead, and where the opposing opinions A and EBhe committed fraction and (I1) the network topology.
are not socially, culturally or morally ranked. These dyizam In [13] and [14], we show that, for a complete graph,
correspond to a particular case of the 2-convention NGntrohen the committed fraction grows beyond a critical value
duced in [2] with the trust paramet@r= 1. Other versions of . ~ 00979, there is a super-exponential decrease in the time
the Naming Games have been developed that address the {gken for the entire network to adopt the A opinion. Specif-
sues of overall social preference of one opinion over theroth jcaly, using a straight forward mean field approach, coarse
through an asymmetry in the stickiness of each opinion.  grained stochastic analysis, and direct simulations ofGe

Another significant difference between the Naming Gamesye show that forp < pc, the mean consensus tiriig~ eV,
(NG) and other stochastic games on networks including popahile for p > pc, Tc ~ InN . In the presence of committed
ulation genetiCS models is the Symmetric forms of the NG d(.hgents of OpiniorA’ the 0n|y absorbing state in the associ-

ated random walk Markov chain model [13] is the consen-
sus state of opinio# while the near-consensus state where
all susceptible agents have tB®pinion becomes a reflecting
* {zhangw10,lim¢ @rpi.edu state. Similarly, the averaged or mean field system of twe cou
 corresponding author: szymansk@cs.rpi.edu pled nonlinear differential equations [14], undergoestalka
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node bifurcation whep = p¢, in which the saddle point (sym- In this paper, we apply a similarly improved mean field
metric in phase plane in the case with no committed agentgpproach to the NG, especially the binary agreement model.
merges with a node to form a new equilibrium point of saddle-Compared to the voter model, there are more than one type of
node type [15] [16]. Thd; ~ InN time scale comes from the active links (edges) in the NG, so we have to analyze all types
slow dynamics along the center manifold between the saddlesf links including active and inert ones. As a consequence,
node and the consensusAfopinion, and is the same order instead of a one dimensional averaged nonlinear ODE in the
as the symmetric case where there are no committed agentster model, we have a six dimensional nonlinear coupled sys
In contrast, forp < pc, the T, ~ €N time scale is due to the tem. We will derive the equations by analyzing all possible
additional numerous time steps spent along that portioheof t updates in the process and write it in a matrix form with the
center manifold which is between the stable fixed point andaverage degree k > as a explicit parameter. In contrast to
the saddle-point where the latter corresponds to a stateawit the basic mean field theory, this improved ODE approxima-
larger fraction of agents of opiniohthan the former. tion clearly shows how the NG dynamics changes whda>
Simulations on a range of sparse random networks with 100ecrease to 1, the critical value for ER network to have giant
- 10000 nodes have shown, after extensive and costly numerdomponent, and converges to the basic mean field equations in
cal experiments, that the above tipping point effect of ti& N [14] when< k > grows to infinity. Next we show the signif-
with a minority fraction of committed agents is a very robusticantly better agreement between the theoretical predisti
phenomenon with respect to underlying network topology. Ofof the new mean field theory and the simulations on ER net-
particular significance is the numerical / empirical obagion ~ work. Using this improved model, we are able to predict and
[14] that as one lowers the average degree of the underlyinggplicate the empirically observed lowering of criticgifing
random network, the tipping fractiqm; decreases. fraction in low average degree networks, i.e. we need fewer
In this paper, we analytically establish the numerical dis-committed agents to force a global consensus in a looseky con
covery using a refined mean field approach [17] and reportected social network.
on precise changes in NG dynamics with respect to the av-
erage degreec k > of an uncorrelated underlying network
which are beyond the reach of the straight forward mean field 1. THE MODEL
model in [13], [14]. Specifically, the critical tipping frdon
in the binary agreement model decreases to a minimum of 5 In the “Original” “Direct” version of Naming Game, every

percent when the average degreé >= 4 from a maximum agent in the network has a naming list in its memory. In each
of 10 percent for complete graphs. This shows that the neg? 9 Y-

mean field model is in better agreement with the numericaIIme step, a speaker is randomly picked first and then a lis-

results reported above in [14] and provides a much improveaener is randomly picked from the speaker's neighbors (this

approximation to NG dynamics on large random networks inorder is called “Direct”). The speaker picks one name from

. . : . its memory and sends it to the listener. If the listener dags n
comparison to the straight forward mean field model in [14]. know this name , it adds this new name to its list. Otherwise

both agents delete all names in their list but the one seist (th
update is the “Original” version).

Consider the NG dynamics on an uncorrelated random
network where the presence of links are independent, to-
Although the basic mean field approach applied to the NGether with the following assumptions which comprise the

models [14] have yielded significant results such as a phas@undation of the homogeneous pair approximation:
transition at a critical fraction of the committed agentstia

network, the tipping point [14], its theoretical predictde-
viate from the results of simulations on complex networks es 1. The opinions of direct neighbors are correlated, while

1. IMPROVED MEAN FIELD APPROACH

pecially when the network is relatively “sparse”. The qual- there is no extra correlation besides that through the
itative changes in dynamical behavior of the network under nearest neighbor. To make this assumption clear, sup-
social games such as the NG, in terms of its average degree or  pose three nodes in the network are linked as 1-2-3 (so
the degree distribution, is important in network science a there is no link between 1 and 3). Their opinions are de-
we report here the significant results of a refined mean field noted by random variable$;,X,,X3, correspondingly.
model for the NG with committed agents. Therefore our assumption sayR(Xz|Xz) # P(X1), but
Recently, a so-called homogeneous pair approximationhas  P(X3|X2,X3) = P(X1|X2). This assumption is valid
been introduced to study the dynamics of the voter model for all uncorrelated networks (Chung-Lu type network
[18][19], a model simpler than the NG, which improves the [20], especially the ER network).
basic mean field approximation by taking account of the cor-
relation between the nearest neighbors. Their analysasisd 2. The opinion of a node and its degree are mutually inde-
on the master equation of the active links, the links between pendent. Suppose the node indéxa random variable
nodes with different opinions. Although it shows a spurious which labels arandom node. Interms of the opinionand
transition point, it captures most features of the dynarains degree of node denoted respectively a§ andk;, this

works very accurately on most uncorrelated networks suchas  assumption meang[ki|X] =< k >, P(Xi|k) = P(X)
Erdos-Renyi (ER) and scale-free (SF) networks. andP(X|X;,ki,kj) = P(Xi|X;) wherej is a neighbor of
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i. This assumption is obviously satisfied for the net-holds opinion A while speaker has opinion B, and denote this
works in which every node has the same degree (regease byw = (B — A). The probability for this type of com-
ular geometry), but it is also valid for the network munication is

whose degree distribution is concentrated around its 1

average (for example, Gaussian distribution with rela- P(B— A) = pgP(A|B) = mLA,B.

tively small variance or Poisson distribution with not

too small< k >). It can be shown that this assumption The direct consequence of this communication is that the lin
is good enough for ER network. between the listener and speaker changes from A-B into AB-
B, solLa_pg decrgases by 1 ands_ag increases by 1. This

In other words, in typical mean field language, the prob-y; ot change of L is represented by

ability distribution of the neighboring opinions of a spfeci

node is an effective field. This field is however not uniform 0

over the network but depends only on the opinion of the given -1

node. For an uncorrelated random network with N nodes and _ 0

average degree k >, the number of links in this network is DB—A) = 0

M =N < k> /2. We denote the numbers of nodes taking 1

opinions A,B and AB a®ip, ng, nag, their fractions apa,ps, 0

pas. We also denote the numbers of different types of links

asL = [La_a;La_B,La_aB,Le_B,Lp_nas, LAszB]T, and their Furthermore, since the listener changes opinions from A to

AB, all his other related links change. The number of these
links is on average< k > —1 (here we use the assumption 2,
E[ki|Xi] =< k >.). The probabilities for each link to be A-

fractions are given bj_/': E/M. We takel or [ as the coarse
grained macrostate vector. The global mean field is given by

. Pa 1 [ <k>m A, A-B, A-AB before the communication is given b¥(-|A)
pL) =1 pe | = ml = k>ng (here we use assumption 1). After the communication, these
PaB <k>nag links will change into AB-A, AB-B, AB-AB correspondingly.
2La a+La g+La ag Thisrelated change of Lis represented by
= oM La-s+2lg_g+Lg aB
La-aB+Le-aB+2Lag AB -1 0 O
0 -1 0 P(AJA)
SupposeX;, X; are the opinions of two neighboring nodes. (<k>—1) 1 0 -1 ( P(BIA) )
We simply writeP(X; = A|X; = B), for example, a$(AB). 0 0 O ‘
We also represent the effective fields for all these types of 0O 1 O P(ABIA)
node in terms of.: 0 0 1
*S " P(AIA) 1 2La-A The 6-by-3 matrix in the above expression indicates the link
POIAL) = | P(BIA) | = 2laat+Lamtla La-g | correspondence between A-A, A-B, A-AB and AB-A, AB-B,
P(ABIA) ATATTATE AT \Laap AB-AB when a “A node” changes into * ”
ges into “AB node”, we denote

it by

P(AB) La-B
P(|B)(L) = P(B|B)) ! (ZLBB), 10 o

" Last2setleas

P(AB|B) Le-aB 0 -1 0

1 1 0 -1

B P(A|AB) 1 La-AB Q=10 0 o
P(-|AB)(L)=| P(B|AB) | = 0 L oL Le_aB |- 0O 1 0
P(AB|AB) A-ABTLB-ABT2LAB-AB \ 2| \p A 0o 0 1

_ To derive the averaged nonlinear QDE for NG dynam- | ot R(B— A) :QAW,WG obtain:

ics, we calculate the expected changd_ah one time step,

E[AL|L]. In the following equation, we add up the expecta-  E[AL|L,B — Al = B(B — A) + (< k> —~1)R(B — A).

tion E[AL|L, w] conditioned by each type of nodes communi- _ _ _ _
cations (), and weighted by the probability of this type of ~ On the right hand side of the above equation, the first term

nodes communicationB/( w). represents theirect change and the second term represents
therelated change.
Similarly, we analyze all the other terms in equation (1) for
E[AL|L] = Y P(w)E[AL|L, ). (1) differentw (the listener and speaker’s opinions), and write the
@ weighted sum in matrix form, we obtain;

For brevity, we display the calculation of one term in the o 1 .
above summation as example. Consider the case: listener E[ALL] = & [D+(<k>-1)RIL,
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whereD is a constant matrix whose column vectors comelf in matrix Rwe further requird®(-|A) = P(-|B) = P(-|AB) =

from linear combinations db(w)’s:

00 300 1
0-1 000 O
o2 -100 o0
D_oooog%’
03 00-10
1 1
00 % 03% -1

and matrixR is a function ofL, given by column vectors
which come fronR(w)’s:

(QuPC1A) + QsP([B]], QalzP( 1A — SP(IAB]]
6, Qsl;P(1B) — 3 P(1AB]], ~ (Qa+ Qs PIAB).

Here Qg, similar to Qa defined above, indicates the link
correspondence between B-A, B-B, B-AB and AB-A, AB-B,
AB-AB when a “B node” changes into “AB”,

R= (0,

NI =

0 0 0
10 0
1 0 0
Q=1 o -1 0
0 1 -1
0 0 1

When “AB node” changes into “A” or “B”, the link corre-
spondence is given byQa or —Qg respectively.

Then we normalizé. by the total number of link$1 and
normalize time by the number of nodigo obtain:

d- N - N .
aI_ME[AL|L]_M[D+(<k>—1)R]I
1 <k>-1 -
=2 D R|I. 2
<k> +( <k> ) )

Thus, we derived the new mean field ODEslifand the aver-
age degree k > of the underlying social network on which
the NG is played is explicit in the formula. In the last lineet
first term is linear and comes from tldérect change of the

link between the listener and the speaker. The second term is

nonlinear and comes from thelated changes.

p and transform the coordinates hy— p(L), this ODE re-
verts to the one we have under the basic mean field assumption
in [14].

IV. NUMERICAL RESULTSWITHOUT COMMITTED
AGENTS

In this section, we show the numerical results of solving our
ODEs by Runge-Kutta method and compare the phase trajec-
tories with those of the basic mean field theory and also with
the stochastic dynamical trajectories of the simulated MG o
random networks of varying average degree. Fig.1 shows the
comparison between our theoretical prediction (colordjne
and the simulation on ER networks (black solid lines). The
dotted lines are theoretical prediction by basic mean fipld a
proximation. We calculate the evolution of the fractions of
nodes with A, B and AB opinions respectively and show that
the prediction of the older basic mean field approximation
deviates from the simulations significantly while that oé th
homogeneous pair approximation matches simulations very
well.
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FIG. 1. Fractions of A, B and AB nodes as function of time. The
three color lines are the averages of 50 runs of NG (withoortrod-

ted agents) on ER network with = 500 and< k >= 5. The black

lid lines are solved from the ODE above with the same>. The
black dotted lines are from the ODE using mean field assumptio

Under the previous basic mean field assumptions in [14],
the first term does not exist because there is no specific ) )
“speaker” and every one receives messages from the effectiv Fig.2 shows the trajectories of the macrostate mapped onto

mean field. When< k >— 1, the new ODE becomes: two dimensional spaceph,ps), the black line is the trajec-
tory predicted by the mean field approximation. We find

E”, oD that when< k > is large enough, say 50, the homogeneous

dt ’ pair approximation is very close to the mean field approxima-

L . . tion. When< k > decreases, the trajectory tends to the line

which is a linear system. Whea k >— o, this ODE be- Ppag = 1— pa— ps = O, which means there are fewer nodes

comes: with mixed opinions than predicted by the mean field. In this
d P R situation, opinions of neighbors are highly correlateafimg

dt the “opinion blocks”, and mixed opinion (AB) nodes can only
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appear on the boundary between the “A opinion block” andnacrostate now contains three more dimension§. =

“B opinion block”.

0.8

0.7r

0.6

Pg

o

«»
T

0.4

0.3

0.2

0.1r

mean field
<k>=3
<k>=4
<k>=5
<k>=10
<k>=50

FIG. 2. The trajectories of NG (no committed agents)solvethfthe
ODE with different< k > mapped onto 2D macrostate space. When
< k >— o, the trajectory tends to that of the mean field equation.
When< k >— 1, the trajectory get close to the lipgg = 1— pa —

pg = 0.

In the ODE models, it is hard to identify a proper cutoff for

0.8

[La—c.Le—c,LaB-c,La-A.La-B,La-AB LB B,Le_AB,LAB-Ag],
whereC denotes the committed A opinion aAdtself denotes

the non-committed one. Hence we have a nine dimensional
ODE which has the same form as equation (2), but with
different details irD andR given below:
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“total consensus”. Therefore, to make a comparison between
the theoretical prediction and the simulation, we consigler

consensusTy) which is the first timepa or pg achieves;.

Fig.3 shows the comparison @} (n = 0.95) for different
system sizé\ and average degreesk >. According to this

figure, we find that wheN grows, the relative standard devia-
tion of Tp 95 (ATo.95/ To.05 = Aln(Tp 95)) decreases, which val-
idates the pair approximation in the sense of thermodynami
limit. Further more, whenrc< k > grows, the pair approxima-

tion tends to the simple mean field assumption.

V. COMMITTED AGENTS

In this section, we consider the asymmetric case of the NC
on large random networks with (fraction) committed agents
(nodes that never change their opinions) of opinion A. Ini-
tially, all the other nodes are of opinion B. The main questio
considered here is under what conditions it is possibletfer t

11

105

10

951

In(Ty g5)

O <k>=5 simulation
<k>=5 pair approx
O <k>=10 simulation
<k>=10 pair appro
simple mean field B

committed nodes to persuade the others and achieve a glot 45 5 55 6 65 7 75 8
consensus. Previous studies found there is a robust ¢ritic:

value ofp called the tipping point. Above this value, it is pos-

sible and the persuasion takes a short time, while below thig|G. 3. Comparison ofj-consensus timeE, g5 of NG (no commit-
value, it is nearly impossible as it takes exponentiallyglon ted agent) between the simulation and theoretical predidtr dif-

time with respect to the system sizes[13, 14].

ferent system sizeN and average degreesk >. The straight lines

Similar to what we did in the previous section, we are from theoretical analysis under simple mean field assampr
derive the new mean field ODE for the macrostatePair approximation. The cycles and error bars show the maads

in the NG with committed agents,

although

the the relative standard deviations Tifgs by simulation of dynamics
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-1 3 1 : <k>=50
R= (0, ;QsP(B), , QaP(AB),. , [QaP(:/A) + QsP([B]. aimple mean i | |
1 3 - 1 3

QalzPCIA) - 5P(1AB)].0,Qel;P([B) - P(1AB]] .

*(QA+QB)P("ABS)~ 0o 0.62 0.64 o.bé ‘ 0.6‘8 ‘ o.‘1 0.12

FIG. 4. Fraction of B nodes of the stable poipg] as a function of
the fraction of nodes committed to A (p). The color lines ésinsf
stable points obtained by tracking the ODE of NG on ER for aylon
enough time. The black lines are the stable points solved the
mean field ODE.
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Finally, we show the change of the critical tipping frac-
tion with respect to the average degreé > of the under- °
lying random networks in Fig.4. Starting from the state that
ps = 1— p, the new ODE system will go to a stable state

.95/N

2000 -

T

1500

for which pg = pg. pg is O if the committed agents finally 1000k
achieve the global consensus. The sharp drop of each cur
indicates the tipping point transition with the correspiogd so0l
< k>. Fig.5 shows the normalized consensus tifyes/N

around the tipping poinp. for different system sizes. When 0

P > pe, Togs/N is logarithmic withN; whenp < pe, To.gs5/N
grows very fast (since it takes to much time, we stop the simu
lation whenTo g5/N exceeds 1%). Fig.5 confirms the tipping
point found in Fig.4 is consistent with the transition pdiet ~ FIG. 5. Normalized consensus tinTe,gs/N around the tipping point
tween the region of the logarithmic consensus time and expd? = 0-8205 (vertical dash line) wher k >= 10. Each data point

nential consensus time, and when the system size grows tﬁeobtained by average of 100 runs of NG simulation with cottedi
transition becomes Sha,rper ' “agents on ER network. The simulation stops wiiggs/N exceed

10%, since it almost never achieve consensus whenpe.
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