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ABSTRACT

We study fair allocation of indivisible chores (i.e., items with non-

positive value) among agents with additive valuations. An alloca-

tion is deemed fair if it is (approximately) equitable, which means

that the disutilities of the agents are (approximately) equal. Our

main theoretical contribution is to show that there always exists an

allocation that is simultaneously equitable up to one chore (EQ1) and
Pareto optimal (PO), and to provide a pseudopolynomial-time algo-

rithm for computing such an allocation. In addition, we observe that

the Leximin solution—which is known to satisfy a strong form of

approximate equitability in the goods setting—fails to satisfy even

EQ1 for chores. It does, however, satisfy a novel fairness notion

that we call equitability up to any duplicated chore. Our experiments

on synthetic as well as real-world data obtained from the Spliddit
website reveal that the algorithms considered in our work satisfy

approximate fairness and efficiency properties significantly more

often than the algorithm currently deployed on Spliddit.
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1 INTRODUCTION

Imagine a group of agents who must collectively complete a set

of undesirable or costly tasks, also known as chores. For exam-

ple, household chores such as cooking, cleaning, and maintenance

need to be distributed among the members of the household. As

another example, consider the allocation of global climate change

responsibilities among the member nations in a treaty [44]. These

responsibilities could entail producing more clean energy, reduc-

ing overall emissions, research and development, etc. In both of

these cases, it is important that the allocation of chores is fair and
that it takes advantage of heterogeneity in agents’ preferences. For
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instance, someone might prefer to cook than to clean, while some-

one else might have the opposite preference. Likewise, different

countries might have competitive advantages in different areas.

Problems of this nature can be modeled mathematically as chore
division problems, first introduced by Gardner [30]. Each agent

incurs a non-positive utility, or cost (in terms of money, time, or

general dissatisfaction), from completing each chore that she re-

ports to a central mechanism. In this paper, our focus is on designing

mechanisms to divide the chores among the agents equitably. An
allocation of chores is equitable if all agents get exactly the same

(dis)utility from their allocated chores. Other fairness properties can,

of course, be considered too—for instance, envy-freeness dictates
that no agent should prefer another agent’s assigned chores to her

own. While this is not the main focus of our work, we do consider

(approximate) envy-freeness in conjunction with (approximate)

equitability.

Equitable allocations have been studied extensively in the con-

text of allocating goods (i.e., items with non-negative value). When

the goods are divisible (or, even more generally, in the cake-cutting
setting), perfectly equitable allocations are guaranteed to exist [2,

25]. For indivisible goods, though, perfect equitability might not be

possible, but approximate versions can still be achieved [28, 33].

At first glance, the problem of chore division appears similar to

the goods division problem. However, there are subtle technical

differences between the two settings. In the context of (approximate)

envy-freeness, this contrast has been noted in several works [10, 11,

17, 39]. To take one example, it is known that an allocation of goods

that is both envy-free up to one good and Pareto optimal can be found

by allocating goods so that the product of the agents’ utilities—the
Nash social welfare—is maximized [20]. However, maximizing the

product of utilities is not sensible when valuations are negative,

and no analogous procedure is known for the case of chores.

In this paper, we demonstrate a similar set of differences between

the goods and chores settings in the context of equitability. Our

focus is on equitability up to one/any chore (EQ1/EQX) which re-

quires that pairwise violations of equitability can be eliminated by

removing some/any chore from the bundle of the less happy agent.

For goods division, Freeman et al. [28] showed that equitability

up to any good and Pareto optimality are achieved simultaneously

by the Leximin algorithm.
1
However, we show that in the chores

setting, Leximin does not even guarantee equitability up to one chore

1
The Leximin algorithm maximizes the utility of the least well-off agent, and subject

to that maximizes the utility of the second-least, and so on.



EQ1 EQX DEQ1 DEQX

Without PO
Existence

Always exists Always exists Always exists Always exists
(Proposition 3.2) (Proposition 3.2) (Proposition 3.7) (Proposition 3.7)

Computation
Poly time Poly time Poly time

?
(Proposition 3.2) (Proposition 3.2) (Proposition 3.8)

With PO
Existence

Always exists Might not exist Always exists Always exists
(Theorem 3.4) (Example 3.1) (Proposition 3.7) (Proposition 3.7)

Computation
Pseudopoly time Strongly NP-hard

? ?
(Theorem 3.4) (Theorem 3.3)

Table 1: Summary of our theoretical results. Each cell contains the existence/computation results for various combinations of
fairness and e�ciency properties. Open questions are marked with `?'.

(EQ1) (Example 3.2). Further, while we are able to givean algorithm
that outputs anEQ1and POallocation in pseudopolynomial time
(Theorem 3.4), modifying a similar algorithm of Freeman et al. [28],
we show thatan allocation satisfyingEQXandPOmay not exist, in
contrast to the goods setting (Example 3.1).

The fact that EQX+PO could fail to exist and that the Leximin
allocation may not be EQ1 leads us to consider other relaxations
of perfect equitability. To this end, we de�ne theequitability up to
one/any duplicated chore(DEQ1/DEQX) properties. These proper-
ties require that pairwise equitability can be restored by duplicating
a chore from the less happy agent's bundle and adding it to the
more happy agent's bundle, rather than removing a chore from the
less happy agent's bundle. Interestingly, we �nd that the �duplicate�
relaxations are satis�ed by the Leximin allocation (Proposition 3.7),
restoring a formal justi�cation for that algorithm even in the chores
setting. Table 1 summarizes our results.

Finally, we complement our theoretical results with extensive
simulations on both simulated data and data gathered from the
popular fair division websiteSpliddit[32].2 We �nd that on a large
fraction of instances (> 80%), Leximin satis�es all of the approxi-
mate properties that we consider, in addition to Pareto optimality.
We therefore consider it to be the best choice for use in practice,
matching the observation of Freeman et al. [28] in the case of goods.
When the runtime of the Leximin algorithm is prohibitive (com-
puting the Leximin allocation is NP-hard), our simulations reveal
that our pseudopolynomial algorithm for achieving EQ1 and PO is
a reasonable choice for achieving these as well as other properties
on a large fraction of instances.

1.1 Related Work
Fair division of indivisible chores has received considerable interest
in recent years. Aziz et al. [8], Huang and Lu[34], Aziz et al. [5],
and Aziz et al. [6] study approximation algorithms for max-min
fair share (MMS) allocation of chores. Brânzei and Sandomirskiy
[17] show that an allocation that is envy-free up to the removal of
two chores (EF1

1) and Pareto optimal (PO) always exists and can be
computed in polynomial time if the number of agents is �xed. Segal-
Halevi [43] has studied competitive equilibria in the allocation of
indivisible chores with unequal budgets.

Several papers study a model withmixeditems, wherein an item
can be a good for one agent and a chore for another. Bogomolnaia

2http://www.spliddit.org/apps/tasks

et al. [10] examine this model fordivisibleitems and show that
unlike the goods-only case, the set of competitive utility pro�les [26,
45] can be multivalued; for the chores-only problem, the multiplicity
can be exponential in the number of agents/items [11]. Segal-Halevi
[42] and Meunier and Zerbib[37] study envy-free cake-cutting
with connected pieces under mixed utilities. Aziz et al. [4] study
indivisiblemixed items and provide a polynomial-time algorithm for
computing EF1 allocations even for non-additive valuations. For the
same model, Aziz et al. [7] provide a polynomial-time algorithm for
computing allocations that are Pareto optimal (PO) and proportional
up to one item (Prop1). Sandomirskiy and Segal-Halevi[41] consider
envy-free/proportional and Pareto optimal divisions that minimize
the number of fractionally assigned items. Notably, none of this
work examines equitability for indivisible items.

Equitability for indivisible chores has been studied by Bouveret
et al. [12] in a model where the items constitute the vertices of a
graph, and each agent is assigned a connected subgraph. This work
does not consider Pareto optimality, and the space of permissible
allocations in this model is di�erent from ours, making the two
sets of results incomparable. Caragiannis et al. [19]study the worst-
case welfare loss due to equitability (i.e., `price of equitability') for
indivisible chores, but do not consider approximate fairness.

For goods, equitability as a fairness notion has been studied
extensively, mostly in the context of cake-cutting [3, 14� 16, 21, 22,
24, 25, 40]. Our work bears most similarity to the work of Gourvès
et al. [33] and Freeman et al. [28], who de�ne the notions of EQX
and EQ1, respectively.

2 PRELIMINARIES
Problem instance.An instanceh»n¼; »m¼; Vi of the fair division

problem is de�ned by a set ofn 2 N agents»n¼= f 1; 2; : : : ;ng, a
set ofm 2 N chores»m¼= f 1; 2; : : : ;mg, and avaluation pro�le
V = fv1;v2; : : : ;vn g that speci�es the preferences of every agent
i 2 »n¼over each subset of the chores in»m¼via avaluation function
v i : 2»m¼! Z � 0. Note that we assume that the valuations are non-
positive integers; most of our results hold without this assumption
but Theorem 3.4 requires it.

We will also assume that the valuation functions areadditive,
i.e., for any agenti 2 »n¼and any set of choresS � »m¼, v i ¹Sº BÍ

j 2Sv i ¹f j gº, wherev i ¹;º = 0. For a singleton chorej 2 »m¼, we
will write v i ; j instead ofv i ¹f j gº. The valuation functions are said to
benormalizedif for all agentsi ; j 2 »n¼, we havev i ¹»m¼º= v j ¹»m¼º.

http://www.spliddit.org/apps/tasks


We will assume throughout, without loss of generality, that for
each chorej 2 »m¼, there exists some agenti 2 »n¼with a non-zero
valuation for it (i.e.,v i ; j < 0), and for each agenti 2 »n¼, there
exists a chorej 2 »m¼that it has non-zero value for.

Allocation.An allocationA B ¹A1; : : : ;An º is ann-partition of
the set of chores»m¼, whereAi � »m¼is the bundleallocated to
the agenti (note thatAi can be empty). Given an allocationA, the
utility of agenti 2 »n¼for the bundleAi isv i ¹Ai º =

Í
j 2Ai v i ; j .

Equitability. An allocationA is said to be (a)equitable(EQ) if
for every pair of agentsi;k 2 »n¼, we havev i ¹Ai º = vk ¹Ak º; (b)
equitable up to one chore(EQ1) if for every pair of agentsi;k 2 »n¼
such thatAi , ; , there exists a chorej 2 Ai such thatv i ¹Ai nfjgº �
vk ¹Ak º, and (c)equitable up to any chore(EQX) if for every pair
of agentsi;k 2 »n¼such thatAi , ; and for every chorej 2 Ai
such thatv i ; j < 0, we havev i ¹Ai n fjgº � vk ¹Ak º. These notions
have been previously studied for goods by Gourvès et al. [33] and
Freeman et al. [28]. Our presentation of the notions of (approximate)
equitability for chores�in particular, the idea of removing a chore
from the less-happy agent's bundle�follows the formulation used
by Aziz et al. [4] and Aleksandrov[1] in de�ning the analogous
relaxations of envy-freeness (see below).

Envy-freeness.An allocationA is said to be (a)envy-free(EF) if
for every pair of agentsi;k 2 »n¼, we havev i ¹Ai º � v i ¹Ak º; (b)
envy-free up to one chore(EF1) if for every pair of agentsi;k 2 »n¼
such thatAi , ; , there exists a chorej 2 Ai such thatv i ¹Ai nfjgº �
v i ¹Ak º, and (c)envy-free up to any chore(EFX) if for every pair of
agentsi;k 2 »n¼such thatAi , ; and for every chorej 2 Ai such
that v i ; j < 0, we havev i ¹Ai n fjgº � v i ¹Ak º. The notions of EF,
EF1, and EFX were proposed in the context of goods allocation by
Foley [27], Budish [18], and Caragiannis et al. [20], respectively.3

It is easy to see that envy-freeness and equitability (and their
corresponding relaxations) become equivalent when the valuations
areidentical, i.e., for everyj 2 »m¼,v i ; j = vk ;j for all i ;k 2 »n¼.

Proposition 2.1. When agents have identical valuations, an allo-
cation satis�esEF/EFX/EF1if and only if it satis�esEQ/EQX/EQ1.

Pareto optimality.An allocationA is Pareto dominated by alloca-
tion B if vk ¹Bk º � vk ¹Ak º for every agentk 2 »n¼with at least one
of the inequalities being strict. APareto optimal(PO) allocation is
one that is not Pareto dominated by any other allocation.

Leximin-optimal allocation.A Leximin-optimal (or Leximin) al-
location is one that maximizes the minimum utility that any agent
achieves, subject to which the second minimum utility is maximized,
and so on. The utilities induced by a Leximin allocation are unique,
although there may exist more than one such allocation [25].

3 THEORETICAL RESULTS
This section presents our theoretical contributions. We will �rst
consider equitability and its relaxations (Section 3.1), followed by
combining these notions with Pareto optimality (Section 3.2), and
subsequently also considering envy-freeness (Section 3.3). Finally,
we will discuss a novel approximation of equitability calledequi-
tability up to a duplicated chore(Section 3.4).
3An earlier work by Lipton et al. [35]studied a weaker approximation of envy-freeness
for goods, but their algorithm is known to compute an EF1 allocation.

3.1 Equitability and its Relaxations
As discussed previously, an equitable (EQ) allocation is not guar-
anteed to exist when allocating indivisible chores. In addition, the
computational problem of determining whether a given instance
has an equitable allocation turns out to be NP-complete even for
identical valuations (Proposition 3.1). The proof uses a standard
reduction from3-Partition and is therefore omitted.

Proposition 3.1. Determining whether a given fair division in-
stance admits an equitable¹EQº allocation is stronglyNP-complete
even for identical valuations.

The negative results regarding the existence and computation
of exact equitability are in complete contrast with those of its re-
laxations. Indeed, when allocating indivisible chores, there always
exists an allocation that is equitable up to any chore (EQX). Fur-
thermore, such an allocation can be computed in polynomial time
via a simple greedy procedure (Proposition 3.2). This algorithm is a
straightforward adaptation of the algorithm of Gourvès et al. [33]
for computing EQX allocations of goods.

Proposition 3.2. An EQXallocation of chores always exists and
can be computed in polynomial time.

Proof. (Sketch) Our algorithm iteratively assigns the chores to
the agents according to the following assignment rule: At each step,
the happiestagent (i.e., one whose utility is closest to zero) is asked
to select a chore from the set of available chores that itdislikesthe
most (i.e., the chore that gives it the most negative utility).

It is easy to see that the chore assigned most recently to any
agent is also its favorite (or least disliked) chore in its bundle. Thus,
if an allocation is EQX before assigning a chore, then it continues
to be EQX after it. The claim now follows by induction, since an
empty allocation is EQX to begin with. �

The positive result in Proposition 3.2 o�ers an interesting com-
parison between envy-freeness and equitability: It is not known
whether an EFX allocation is even guaranteed to exist for chores,
but an EQX allocation can always be computed in polynomial time.

3.2 Equitability and Pareto Optimality
We will now consider equitability together with Pareto optimality.
From Proposition 3.1, it is easy to see that checking the existence
of an equitable and Pareto optimal (EQ+PO) allocation is strongly
NP-hard (since every allocation is Pareto optimal under identical
valuations). Therefore, we will strive for achieving Pareto optimality
alongside approximate equitability, speci�cally EQ1 and EQX.

We will start by considering equitability up to any chore (EQX)
and Pareto optimality. For goods allocation, Freeman et al. [28]have
shown that equitability up to any good and Pareto optimality can be
simultaneously achieved using the Leximin allocation.4 By contrast,
as we show in Example 3.1, there might not exist an allocation that
is equitable up to any chore and Pareto optimal, even when there
are only two agents.

Example 3.1 (Non-existence of EQX+PO). Consider an instance
with three choresc1;c2;c3 and two agentsa1;a2 with strictly negative
(and normalized) valuations as shown below:
4This result requires the valuations to be strictly positive.



c1 c2 c3
a1 � 2 � 50 � 50
a2 � 97 � 4 � 1

Of the eight possible allocations in the above instance, the two
allocations that assign all chores to a single agent, namelyA1 B
¹fc1;c2;c3g; f;gº andA2 B ¹f;g ; fc1;c2;c3gºviolateEQXand can
be immediately ruled out. Any other allocation must assign exactly
one chore to one agent and two to the other.

Of the three allocations in whicha1 is assigned exactly one chore,
namelyA3 B ¹fc1g; fc2;c3gº, A4 B ¹fc2g; fc1;c3gº, andA5 B
¹fc3g; fc1;c2gº, none satis�esEQX. Therefore, these allocations can
be ruled out as well.

This leaves us with the three allocations in whicha2 is assigned ex-
actly one chore, namelyA6 B ¹fc1;c2g; fc3gº, A7 B ¹fc2;c3g; fc1gº,
andA8 B ¹fc1;c3g; fc2gº. Among these, onlyA7 satis�esEQX. How-
ever,A7 is Pareto dominated by the allocationA3; indeed,v1¹A7º =
� 100< v1¹A3º = � 2 andv2¹A7º = � 97 < v2¹A3º = � 5. Therefore,
the above instance does not admit anEQX+ POallocation. �

To make matters worse, determining whether a given instance
admits an EQX and PO allocation turns out to be strongly NP-hard.

Theorem 3.3 (Strong NP-hardness of EQX+PO ). Deter-
mining whether a given fair division instance admits an allocation
that is simultaneously equitable up to any chore¹EQXº and Pareto
optimal ¹POº is strongly NP-hard, even for strictly negative and
normalized valuations.

Proof. We will show a reduction from3-Partition , which is
known to be strongly NP-hard [31, Theorem 4.4]. An instance of3-
Partition consists of a setX = fb1; : : : ;b3r gof 3r positive integers
wherer 2 N, and the goal is to �nd a partition ofX into r subsets
X1; : : : ;Xr such that the sum of numbers in each subset is equal to
B B 1

r
Í

bi 2X bi .5 We will assume, without loss of generality, that
for everyi 2 »3r¼, bi is even andbi � 2. As a result, we can also
assume, without loss of generality, thatB is even.

We will construct a fair division instance withr + 1 agents and
4r + 2 chores (see Table 2). The set of agents consists ofr main
agentsa1; : : : ;ar and adummyagentd. The set of chores consists of
3r main choresC1; : : : ;C3r , r signaturechoresS1; : : : ;Sr , and two
dummychoresD1;D2. The valuations of the agents are speci�ed
as follows: For everyi 2 »r¼andj 2 »3r¼, agentai values the main
choreCj at � bj , the signature choreSi at � 1, and all other chores at
a large negative number� L, where� L < � rB� 1. The dummy agent
d values the dummy choresD1 andD2 at � 1 and� B, respectively,
and all other chores at a large negative number� L0. In the interest
of having normalized valuations, we can setL0 B ¹r � 1ºB+¹r +1ºL

4r . It
is easy to show using standard calculus that� L0 < � B for all r � 3.
Since the conditionr � 3 holds without loss of generality, we will
assume throughout that� L0 < � B.

We will now argue the equivalence of solutions.
¹)º Let X1; : : : ;Xr be a solution of3-Partition . Then, the

desired allocationA can be constructed as follows: For everyi 2 »r¼,
the main agentai gets the signature choreSi as well as the chores
corresponding to the numbers inX i . The dummy agent gets the

5Note that we do not require the setsX 1; : : : ; X r to be of cardinality three each;
3-Partition remains strongly NP-hard even without this constraint.

C1 . . . C3r S1 S2 . . . Sr D1 D2

a1 � b1 . . . � b3r � 1 � L . . . � L � L � L
a2 � b1 . . . � b3r � L � 1 . . . � L � L � L
:::

:::
:::

:::
ar � b1 . . . � b3r � L � L . . . � 1 � L � L
d � L0 . . . � L0 � L0 � L0 . . . � L0 � 1 � B

Table 2: Chores instance used in the proof of Theorem 3.3.

two dummy chores. The allocationA is Pareto optimal because each
chore is assigned to an agent that has the highest valuation for it
(thus,A maximizes social welfare). Also, each agent's valuation in
A is � B � 1, implying thatA is equitable, and hence also EQX.

¹(º Now suppose that there exists an EQX and Pareto optimal
allocationA. Below, we will make a series of observations aboutA
that will help us infer a solution of3-Partition usingA.

Claim 1. No agent gets an empty bundle inA.

Proof. (of Claim 1) If an agent gets an empty bundle, then some
other agent will get four or more chores (as more than4r chores
will need to be allocated amongr other agents). Since all valuations
are strictly negative, this results in a violation of EQX. �

Claim 2. Each main agentai gets its signature choreSi in A.

Proof. (of Claim 2) From Claim 1, we know thatai owns at
least one chore inA. Fix any chorej 2 Ai . SupposeSi is assigned
to an agentk in A. Notice that the valuation of agentk for Si is
either � L or � L0 (depending of whetherk is a main or a dummy
agent). This is also the smallest valuation that agentk has forany
chore (recall that� L < � rB � 1 and� L0 < � B). Furthermore, since
� bi � � 2 for everyi 2 »3r¼, Si is the unique favorite chore of agent
ai . Therefore, after exchanging the choresj andSi , the valuation
of agentk cannot decrease (due to additivity), and the valuation of
agentai necessarily increases. Thus, the new allocation is a Pareto
improvement overA, which is a contradiction. �

Claim 3. The choreD1 is assigned to the dummy agentd in A.

Proof. (of Claim 3) By an argument similar to that in the proof
of Claim 2, we can show that ifD1 is not assigned tod, then a Pareto
improving swap betweend and the owner ofD1 is possible. �

Claim 4. The choreD2 is assigned to the dummy agentd in A.

Proof. (of Claim 4) Suppose, for contradiction, thatD2 is as-
signed to main agentai in A. From Claim 2, we know thatai is also
assigned its signature choreSi . SinceSi is the favorite chore ofai ,
the EQX condition requires that for every other main agentak ,

vk ¹Ak º � v i ¹Ai n fSi gº � v i ¹f D2gº= � L:

Even ifak is assigned all the remaining chores whose assignment
has not been �nalized yet (this includes the3r main chores), its val-
uation will still only be � rB � 1 > � L. This would imply a violation
of EQX condition betweenai andak , which is a contradiction. �

From Claims 3 and 4, we know thatD1;D2 2 Ad . Therefore, by
EQX condition, the following must hold for every main agentai :

v i ¹Ai º � vd ¹Ad n fD1gº � vd ¹f D2gº= � B:
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