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To overcome the communicational and computational barriers in allocation problems of indivisible items,
we propose a novel and general class of allocation problems called categorized domain allocation problems
(CDAPs), where the indivisible items are partitioned into multiple categories and we must allocate the items
to the agents without monetary transfer, such that each agent gets at least one item from each category.

We focus on the design and analysis of allocation mechanisms for basic CDAPs, where the number of
items in each category is exactly the same as the number of agents. We start with serial dictatorships
and characterize them by a minimal set of three properties: strategy-proofness, non-bossiness, and category-
wise neutrality. Then, we design and analyze a natural extension of serial dictatorships called categorical
sequential allocation mechanisms, which allocate the items in multiple rounds so that in each round, the
active agent chooses an item from the designated category. We characterize the worst-case ordinal efficiency
of categorical sequential allocation mechanisms for optimistic and pessimistic agents, and use computer
simulations to study the expected efficiency of these mechanisms.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—Eco-
nomics; I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms: Algorithms, Economics, Theory

1. INTRODUCTION
Suppose we must allocate 10 discussion topics and 10 dates to 10 students to organize a
seminar. Students may have different and combinatorial preferences over (topic, date)
bundles, and their preferences over one component may depend on the other compo-
nent. For example, it is quite possible that if a student gets an easy topic, then she
would prefer to take an early date to better enjoy the rest of the seminar; but if she
gets a hard topic, then she would prefer to take a late date for better preparation.

This example illustrates a novel setting of allocating multiple indivisible items,
which we call categorized domains. A categorized domain contains multiple indivis-
ible items and each item belongs to one of the p ≥ 1 categories. In categorized domain
allocation problems (CDAPs), we want to design a mechanism to allocate items in a
categorized domain to agents, such that each agent gets at least one item from each
category, and no monetary transfer is allowed. In the above example, there are two
categories of items: topics and dates, and each agent (student) must get a topic and a
date to lead the discussion.

Let us give a more complicated example of CDAP. Consider a generic multi-agent
setting of allocating tasks and equipments to agents, e.g. allocating anti-terror tasks
and equipments to a group of SWAT troopers. There are two categories of “items”: the
tasks and the equipments, and it is possible that a trooper gets more than one task
or more than one equipment. Moreover, both tasks and equipments may be further
divided into multiple sub-categories, so that the number of categories may be well
beyond a few. For example, it is often the case that each trooper must get at least one
of firearms, body armors, ballistic shields, entry tools, etc.

In general, non-categorized domains, the design and analysis of mechanisms to allo-
cate indivisible items without money have constituted an active research area at the
interface of computer science and economics. On the computer science side, allocation
problems have been studied under the active research area known as centralized mul-
tiagent resource allocation [Chevaleyre et al. 2006], where the number of items can be
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much larger than the number of agents. The main research agenda is to tackle compu-
tational challenges in preference representation and communication, and the compu-
tation of allocations that maximize various kinds of social welfare and fairness. On the
economics side, the allocation problems have been studied under the research stream
called one-sided matching, also known as assignment problems [Sönmez and Ünver
2011]. Most previous research focused on simple, nicely structured, and practical do-
mains, for example assigning n houses to n families. The main objective is to design
allocation mechanisms with desired economic properties, especially strategy-proofness
and good welfare properties.

Nevertheless, previous research has been challenged and hindered by the following
barriers.
• Preference bottleneck: When the number of items is not too small, it is impractical

for the agents to explicitly report their preferences over all 2m bundles of m items, ei-
ther ordinally by a full ranking over all 2m bundles, or cardinally by giving one number
(utility) for each of the 2m bundles.
• Computational bottleneck: Even if the agents can report their preferences com-

pactly, computing an “optimal” allocation is often a hard combinatorial optimization
problem [Papadimitriou and Steiglitz 1998].
• Threats of agents’ strategic behavior: An agent may have incentive to report un-

truthful preferences to make her own allocation better off. This may lead to a socially
undesirable allocation.

1.1. Our Contributions
We propose to work towards breaking the three aforementioned barriers in the novel
setting of categorized domain allocation problems. CDAPs are a general setting since
many real-world allocation problems are CDAPs as we showed in the examples above,
and non-categorized allocation problems can be seen as CDAPs with just one category.
CDAPs are our main conceptual contribution.

As an illustration of the viability of the CDAP framework, in this paper we focus
on the design and analysis of novel mechanisms for a special yet still quite general
class of CDAPs, called basic categorized domain allocation problems (basic CDAPs). In
a basic CDAP, the number of items in each category is exactly the same as the number
of agents, as in the seminar-organization example shown in the beginning. Agents’
preferences are represented by linear orders over bundles of items. Hence, we want to
find an allocation so that each agent gets exactly one item from each category.

To analyze and overcome the threats of agents’ strategic behavior, we investigate the
possibility of strategy-proof mechanisms from a classical mechanism design point of
view, by ignoring the communicational complexity for the moment, and allowing agents
to report their preferences in full to the center. For basic CDAPs with at least two
categories, we give a characterization of serial dictatorships by a minimal set of three
normative properties: strategy-proofness, non-bossiness, and category-wise neutrality.

To overcome the preference bottleneck and the computational bottleneck and go be-
yond serial dictatorships, we move on to design indirect mechanisms, where agents
do not directly report their preferences (linear orders over all bundles) to the cen-
ter in full. We propose and analyze a class of indirect, distributed mechanisms called
categorical sequential allocation mechanisms, which are natural extensions of serial
dictatorships, sequential allocation protocols [Bouveret and Lang 2011], and the draft
mechanism [Budish and Cantillon 2012] for non-categorized domains. For n agents
and p categories, a categorical sequential mechanism is defined by an ordering over all
(agent,category) pairs, such that in each round t = 1, . . . , np, the active agent picks an
item from the designated category. We analyze the worst-case ordinal efficiency of cate-
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gorical sequential mechanisms for two types of altruistic and myopic agents: optimistic
agents, who always choose the item in their top-ranked bundle that is still available,
and pessimistic agents, who always choose the item that gives her optimal worst-case
guarantee.1 We then apply this characterization to compare various categorical se-
quential allocations, and observe that while serial dictatorships with all-optimistic
agents have the best worst-case utilitarian rank, they have the worst worst-case egal-
itarian rank. On the other hand, the balanced mechanisms with all-pessimistic agents
have good worst-case utilitarian rank.

We use computer simulations to compare various categorical sequential allocation
mechanisms w.r.t. the expected utilitarian rank and expected egalitarian rank. We use
the Mallows model [Mallows 1957] with different dispersion parameters to generate
agents’ preferences. Our results indicate that among the mechanisms we choose to
compare, serial dictatorships with optimistic agents have the best expected utilitar-
ian rank, and balanced mechanisms with pessimistic agents have the best expected
egalitarian rank.

1.2. Discussions and Related Work
We are not aware of previous work studying allocation problems in categorized do-
mains. On the modeling level, CDAPs can be seen as standard centralized multi-agent
resource allocation problems without the categorical information. However, directly
applying generic techniques in centralized multi-agent resource allocation and one-
sided matching does not help with overcoming the three barriers, especially the pref-
erence bottleneck and computational bottleneck. As we will see later in this paper, con-
sidering the categorical information creates more possibilities of design, including the
categorical sequential mechanisms we study in this paper. More importantly, we be-
lieve that CDAPs are a natural and general framework to apply techniques and ideas
developed in other fields on preference representation and aggregation. For example,
the categorical information facilitates the design of richer and more natural ordinal
preference language that captures agents’ conditional preferences between categories
as in CP-nets [Boutilier et al. 2004]. It also bridges CDAPs and combinatorial vot-
ing [Brandt et al. 2013].

On the technical level, typical one-sided matching problems are basic CDAPs with
one category. Our characterization of serial dictatorships for basic CDAPs may look
similar to some characterizations of serial dictatorships and similar mechanisms for
different models studied in one-sided matching. However, we do not see a way to ex-
tend previous characterization to the novel setting of categorized domains, and the
categorical information plays a critical role in our characterization and proofs. Below
we briefly discuss other characterizations and show how ours is different.

Svensson [1999] characterized serial dictatorships for non-categorized domains,
where each agent must gets exactly one item. This setting can be seen as the basic
CDAP with one category, and our characterization is for basic CDAP with p ≥ 2 cat-
egories. The setting of [Pápai 2000a] is also restricted to each agent getting exactly
one item. Pápai [2000b, 2001] studied the setting where each agent can get multiple
items, but there is no categorical constraints on the bundles allocated to the agents,
and agents are allowed to get nothing. The setting of [Ehlers and Klaus 2003] as-
sumes that agents’ preferences over bundles are induced by their preferences over sin-
gle items. The characterization by Hatfield [2009] assumes that agents’s preferences

1Similar types of agents have been studied to analyze mechanisms in other social choice setting. For ex-
ample, paradoxes in multiple elections arise when agents are optimistic and vote for their top-ranked alter-
native [Brams et al. 1998; Lacy and Niou 2000]. Pessimistic agents naturally correspond to the maximin
agents studied by Brams et al. [2006].
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over bundles are represented by additive utilities over single items. Our focus of this
paper (basic CDAPs with multiple categories) is not a generalization of all aforemen-
tioned settings, since none of them can model the categorical constraint: each agent
must get exactly p items, one from each category. This makes directly extending previ-
ous characterizations to basic CDAPs hard, if not impossible.

Our analysis of the worst-case ordinal efficiency of categorical sequential allocation
mechanisms resembles the price of anarchy [Koutsoupias and Papadimitriou 1999],
which is defined for strategic and self-interested agents, with the presence of a social
welfare function to numerically evaluate the outcomes. Our theorem is also related to
the notion of distortion in the voting setting [Procaccia and Rosenschein 2006; Boutilier
et al. 2012], which concerns the social welfare loss by reporting a ranking instead of
a utility function. However, our theorem is significantly different because we focus on
allocation problems, and we do not need to assume the existence of agents’ cardinal
utilities and a social welfare function, even though our theorem can be easily extended
to study worst-case social welfare loss given a social welfare function, as we will see in
Proposition 2 through Proposition 5.

2. CATEGORIZED DOMAINS AND THE ALLOCATION PROBLEMS
We start with the definitions of general categorized domains, the corresponding allo-
cation problems, and the special cases which we will focus on in the rest of this paper.

Definition 1 A categorized domain is a set of indivisible items partitioned into p ≥ 1
categories {D1, . . . , Dp}. In a categorized domain allocation problem (CDAP), we want
to allocate the items to the agents, such that each agent gets at least one item from each
category, and no monetary transfer is allowed.

In a basic categorized domain for n agents, for each i ≤ p, Di = {1i, . . . , ni}, D =
D1 × · · · × Dp, and each agent’s preferences are represented by a linear order over D.
In a basic categorized domain allocation problem (basic CDAP), we want to allocate all
items to the agents, such that every agent gets exactly one bundle in D.

In the rest of this paper we focus on basic categorized domains and basic CDAPs. For
simplicity, the subscripts in {1i, . . . , ni} are often omitted and we write Di = {1, . . . , n}.
For any j ≤ n, let Rj denote a linear order over D and let P = (R1, . . . , Rn) denote
a preference profile. An allocation A is a mapping from {1, . . . , n} to D, such that for
every j ≤ n, A(j) is the bundle assigned to agent j, which means that for any i ≤ p, we
have ∪nj=1[A(j)]i = Di, where [A(j)]i is the i-th component of the bundle allocated to
agent j, i.e., the item in category i in the allocation to agent j. An allocation mechanism
(or mechanism for short) f is a mapping that takes a preference profile as input, and
outputs an allocation. In this paper we sometimes use f j(P ) to denote (f(P ))(j), that
is, the bundle allocated to agent j when the preference profile is P .

We say a direct mechanism f satisfies strategy-proofness, if no self-interested agent
can benefit from misreporting her preferences. f satisfies non-bossiness, if no agent
is bossy in f . An agent is bossy if she can report differently to change the bundles
allocated to some other agents, while keeping her own allocation unchanged. f satis-
fies category-wise neutrality, if after applying any permutation that only permutes the
names of items within the same category, the allocation is also permuted in the same
way. Formally, we have the following definition.

Definition 2 A mechanism f satisfies strategy-proofness, if for any preference profile
P , any agent j, and any linear order R′j over D, f j(P ) �Rj

f j(R′j , R−j). f satisfies non-
bossiness, if for any preference profile P , any agent j, and any linear order R′j over D,
[f j(P ) = f j(R′j , R−j)] ⇒ [f(P ) = f(R′j , R−j)]. f satisfies category-wise neutrality, if
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for any preference profile P , any category i, and any permutation Mi over Di, we have
f(Mi(P )) = Mi(f(P )), where for any bundle ~d ∈ D, Mi(~d) = (Mi([~d]i), [~d]−i).

When there is only one category, category-wise neutrality degenerates to the tradi-
tional neutrality used in characterizations of strategy-proof allocation mechanisms for
non-categorized domains, e.g. by Svensson [1999]. When the number of categories is
more than one, category-wise neutrality is much weaker than the traditional neutral-
ity.

A mechanism is a serial dictatorship, if there exists a linear order K over {1, . . . , n}
such that for any preference profile P , agents choose their top-ranked available bundle
sequentially according to K. We note that any serial dictatorship can be viewed as
a distributed protocol, where agents do not explicitly report their preferences to the
center. In this section and the next section, we still view serial dictatorships as direct
mechanisms.

Example 1 Suppose there are 3 agents and 2 categories. D = {1, 2, 3}×{1, 2, 3}. Agents’
preferences over the 9 bundles are the following.

Agent 1: R1 = 12 � 21 � 32 � 33 � 31 � 22 � 23 � 13 � 11
Agent 2: R2 = 32 � 12 � 21 � 13 � 33 � 11 � 31 � 23 � 22
Agent 3: R3 = 13 � 12 � 11 � 22 � 32 � 21 � 33 � 31 � 23

Let us apply the serial dictatorship with K = 1 � 2 � 3.2 Suppose agents report their
preferences truthfully. In the first round, 12 is allocated to agent 1. In the second round,
agent 2 cannot get 32 or 12 since item 2 is unavailable. So 21 is allocated to agent 2. In
the final round, agent 3 is left with 33.

3. AN AXIOMATIC CHARACTERIZATION OF SERIAL DICTATORSHIPS FOR BASIC
CATEGORIZED DOMAINS

In this section we characterize serial dictatorship by strategy-proofness, non-bossiness,
and category-wise neutrality, for basic categorized domains with at least two cate-
gories. We also show that the three properties are minimal for characterizing serial
dictatorships in basic categorized domains.

Theorem 1 For any p ≥ 2 and n ≥ 2, an allocation mechanism for basic categorized
domain is strategy-proof, non-bossy, and category-wise neutral if and only if it is a serial
dictatorship. Moreover, strategy-proofness, non-bossiness and category-wise neutrality
are a minimal set of properties that characterize serial dictatorships.

Proof: The proof is inspired by proofs in [Pápai 2000b, 2001; Hatfield 2009] but we do
not see an easy way to extend their proofs to categorized domains. We first prove four
lemmas. The first three lemmas are standard in proving characterizations for serial
dictatorships and their proofs can be found in the Appendix. The last one (Lemma 4) is
new, whose proof is the most involved and heavily relies on the categorical information.

The first lemma (roughly) says that for all strategy-proof and non-bossy mechanism
f and all preference profile P , if every agent j reports a different ranking without en-
larging the set of bundles ranked above f j(P ) (and she can shuffle the bundles ranked
above f j(P ) and she can shuffle the bundles ranked below f j(P )), then the allocation
to all agents does not change in the new preference profile. This resembles (strong)
monotonicity in social choice.

2In this paper we use � to denote a linear order over agents or a linear order over (agent,category) pairs to
distinguish from agents’ preferences � over bundles.
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Lemma 1 Let f be a strategy-proof and non-bossy allocation mechanism over a basic
categorized domain with p ≥ 2. For any pair of preference profiles P and P ′ such that
for all j ≤ n, {~d ∈ D : ~d �R′j

f j(P )} ⊆ {~d ∈ D : ~d �Rj
f j(P )}, we have f(P ′) = f(P ).

For any linear order R over D and any bundle ~d ∈ D, we say a linear order R′ is
a pushup of ~d from R, if R′ can be obtained from R by raising the position of ~d while
keeping the relative positions of other bundles unchanged. The next lemma states that
for any strategy-proof and non-bossy mechanism f , if an agent reports her preferences
differently by only pushing up a bundle ~d, then either the allocation to all agents does
not change, or she gets ~d.

Lemma 2 Let f be a strategy-proof and non-bossy allocation mechanism over a basic
categorized domain with p ≥ 2. For any profile P , any j ≤ n, any bundle ~d, and any R′j
that is a pushup of ~d from Rj , either (1) f(R′j , R−j) = f(R) or (2) f j(R′j , R−j) = ~d.

We next prove that strategy-proofness, non-bossiness, and category-wise neutral-
ity altogether imply Pareto-optimality, which states that for any preference profile P ,
there does not exists an allocation A such that all agents prefer their bundles in A
than their bundles in f(P ), and some of them strictly prefer their bundles in A.

Lemma 3 For any basic categorized domains with p ≥ 2, any strategy-proof, non-bossy,
and category-wise neutral allocation mechanism is Pareto optimal.

The next lemma states that for any strategy-proof and non-bossy allocation mecha-
nism f , any preference profile P , and any pair of agents j1, j2, there is no bundle ~c that
only contains items allocated to agent j1 and j2 by f , such that both j1 and j2 prefer ~c
to their bundles allocated by f .

Lemma 4 Let f be a strategy-proof and non-bossy allocation mechanism over a basic
categorized domain with p ≥ 2. For any preference profile P and any j1 6= j2 ≤ n, let
~a = f j1(P ) and~b = f j2(P ), there does not exist ~c ∈ {a1, b1}×{a2, b2}× · · ·× {ap, bp} such
that ~c �Rj1

~a and ~c �Rj2

~b, where ai is the i-th component of ~a.

Proof: Suppose for the sake of contradiction that such a bundle ~c exists. Let ~d denote
the bundle such that ~c ∪ ~d = ~a ∪~b. More precisely, for all i ≤ m, {ci, di} = {ai, bi}. For
example, if ~a = 1213, ~b = 2431, and ~c = 1211, then ~d = 2433.

The rest of the proof derives a contradiction by proving the a series of observations
as illustrated in Table I. In each step, we prove that the boxed bundles are allocated to
agent j1 and agent j2 respectively, and all other agents get their top-ranked bundles.

Table I. Proof sketch of Lemma 4.

R̂j1 : ~c � ~a � ~d � ~b � others
R̂j2 : ~c � ~b � ~a � ~d � others
Other j : fj(P ) � others

Step 1

R̂j1 : ~c � ~a � ~d � ~b � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : fj(P ) � others

Step 2

R̄j1 : ~c � ~b � ~a � ~d � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : fj(P ) � others

Step 3

R̄j1 : ~c � ~b � ~a � ~d � others
R̊j2 : ~c � ~a � ~d � ~b � others
Other j : fj(P ) � others

Step 4

R̊j1 : ~c � ~a � ~b � ~d � others
R̊j2 : ~c � ~a � ~d � ~b � others
Other j : fj(P ) � others

Step 5

R̊j1 : ~c � ~a � ~b � ~d � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : fj(P ) � others

Step 6
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Step 1. Let R̂j1 = [~c � ~a � ~d � ~b � others], R̂j2 = [~c � ~b � ~a � ~d � others], where
“others” represents an arbitrary linear order over the remaining bundles, and for any
j 6= j1, j2, let R̂j = [f j(P ) � others]. By Lemma 1, f(P̂ ) = f(P ).
Step 2. Let R̄j2 = [~c � ~a � ~b � ~d � others] be a pushup of ~a from R̂j2 . We will prove
that f(R̄j2 , R̂−j2) = f(P̂ ) = f(P ). Since R̄j2 is a pushup of ~a from R̂j2 , by Lemma 2,
f j2(R̄j2 , R̂−j2) is either ~a or~b. We now show that the former case is impossible. Suppose
for the sake of contradiction f j2(R̄j2 , R̂−j2) = ~a, then f j1(R̄j2 , R̂−j2) cannot be ~c, ~a, or
~d since otherwise some item will be allocated twice. This means that f(R̄j2 , R̂−j2) is
Pareto dominated by the allocation where j1 gets ~d, j2 gets ~c, and all other agents
get their top-ranked bundles. This contradicts the Pareto-optimality of f (Lemma 3).
Hence f j2(R̄j2 , R̂−j2) = ~b = f j2(P̂ ). By non-bossiness we have f(R̄j2 , R̂−j2) = f(P̂ ) =
f(P ).
Step 3. Let R̄j1 = [~c � ~b � ~a � ~d � others] be a pushup of~b from R̂j1 . We will prove that
in f(R̄j1 , R̄j2 , R̂−{j1,j2}), j1 gets~b, j2 gets ~a, and all other agents get the same items as in
f(P ). Since R̄j1 is a pushup of ~b from R̂j1 , by Lemma 2, f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) is either
~a or ~b. We now show that the former case is impossible. Suppose for the sake of contra-
diction that f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~a. By non-bossiness, f j2(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~b.
This means that f(R̄j1 , R̄j2 , R̂−{j1,j2}) is Pareto-dominated by the allocation where j1

gets~b, j2 gets ~a, and all other agents get their top-ranked bundles. This contradicts the
Pareto-optimality of f (Lemma 3).
Step 4. Let R̊j2 = [~c � ~a � ~d � ~b � others] be a pushup of ~d from R̄j2 . By Lemma 1,
f(R̄j1 , R̊j2 , R̂−{j1,j2}) = f(R̄j1 , R̄j2 , R̂−{j1,j2}).
Step 5. Let R̊j1 = [~c � ~a � ~b � ~d � others] be a pushup of ~a from R̄j1 . We
will prove that f(R̊j1 , R̊j2 , R̂−{j1,j2}) = f(R̄j1 , R̊j2 , R̂−{j1,j2}). Since R̊j1 is a pushup
of ~a from R̄j1 , by Lemma 2, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) is either ~a or ~b. We now show
that the former case is impossible. Suppose for the sake of contradiction that
f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) = ~a. Then in f(R̊j1 , R̊j2 , R̂−{j1,j2}), agent j2 cannot get ~c, ~a, or
~d, which means that f(R̊j1 , R̊j2 , R̂−{j1,j2}) is Pareto-dominated by the allocation where
j1 gets ~c, j2 gets ~d, and all other agents get their top-ranked bundles. This contra-
dicts the Pareto-optimality of f . Hence, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) = ~b. By non-bossiness
f(R̊j1 , R̊j2 , R̂−{j1,j2}) = f(R̄j1 , R̊j2 , R̂−{j1,j2}).
Step 6. We note that R̊j1 is a pushup of~b from R̂j1 (and~b is still below ~a). By Lemma 1,
f(R̊j1 , R̄j2 , R̂−{j1,j2}) = f(R̂j1 , R̄j2 , R̂−{j1,j2}). We note that the right hand side is the
profile in Step 2.
Contradiction. Finally, the observations in Step 5 and Step 6 imply that when agents’
preferences are as in Step 6, agent j2 has incentive to report R̊j2 in Step 5 to improve
the bundle allocated to her (from ~b to ~a). This contradicts the strategy-proofness of f
and completes the proof of Lemma 4. �

(Continuing the proof of Theorem 1). It is easy to check that any serial dictatorship
satisfies strategy-proofness, non-bossiness and category-wise neutrality. We now prove
that any mechanism satisfying the three properties must be a serial dictatorship. Let
R be a linear order over D that satisfies the following conditions.
• (1, . . . , 1) � (2, . . . , 2) � · · · � (n, . . . , n).
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• For any j < n, the bundles ranked between (j, . . . , j) and (j + 1, . . . , j + 1) are
those satisfying the following two conditions: 1) at least one component is j, and 2) all
components are in {j, j + 1, . . . , n}. Let Bj denote these bundles. That is, Bj ⊆ D and
Bj = {~d : ∀l, dl ≥ j and ∃l′, dl′ = j}.
• For any i and any ~d,~e ∈ Bj , if the number of j’s in ~d is strictly larger than the

number of j’s in ~e, then ~d � ~e.
Let P = (R, . . . , R). We prove the following claim.

Claim 1 For any l ≤ n, there exists jl ≤ n such that f jl(P ) = (l, . . . , l).

Proof: The claim is proved by induction on l. When l = 1. For the sake of contradiction
suppose there is no jl with f jl(P ) = (1, . . . , 1). Then there exist a pair of agents j and
j′ such that both ~a = f j(P ) and ~b = f j′(P ) contain 1 in at least one category.

Let ~c be the bundle obtained from ~a by replacing items in categories where ~b takes 1

to 1. More precisely, we let ~c = (c1, . . . , cp) s.t. ci =

{
1 if ai = 1 or bi = 1
ai otherwise .

It follows that in R, ~c �R ~a and ~c �R
~b since the number of 1’s in ~c is strictly larger

than the number of 1’s in ~a or ~b. By Lemma 4, this contradicts the assumption that f
is strategy-proof and non-bossy. Hence there exists j1 ≤ n with f j1(P ) = (1, . . . , 1).

Suppose the claim is true for l ≤ l′. We next prove that there exists jl′+1 such that
f jl′+1(P ) = (l′ + 1, . . . , l′ + 1). This follows after a similar reasoning to the l = 1 case.
Formally, suppose for the sake of contradiction there does not exist such a jl′+1. Then,
there exist two agents who get ~a and~b in f(P ) such that both ~a and~b contain l′+1 in at
least one category. By the induction hypothesis, items {1, . . . , l′} in all categories have
been allocated, which means that all components of ~a and ~b are at least as large as
l′ + 1. Let ~c be the bundle obtained from ~a by replacing items in all categories where ~b
takes l′+ 1 to l′+ 1. We have ~c �R ~a and ~c �R

~b, leading to a contradiction by Lemma 4.
Therefore, the claim holds for l = l′ + 1. This completes the proof of Claim 1. �

Back to the proof of the theorem, w.l.o.g. we let j1 = 1, j2 = 2, . . ., jn = n denote the
agents in Claim 1. For any profile P ′ = (R′1, . . . , R

′
n), we define n bundles as follows.

Let ~d1 denote the top-ranked bundle in R′1, and for any l ≥ 2, let ~dl denote agent l’s top-
ranked available bundle given that items in ~d1, . . . , ~dl−1 have already been allocated.
That is, ~dl is the most preferred bundle in {~d : ∀l′ < l, ~d ∩ ~dl′ = ∅} according to R′l.
Then, for any i ≤ m, we define a category-wise permutation Mi such that for all l ≤ n,
Mi(l) = [~dl]i, where we recall that [~dl]i is the item in the i-th category in ~dl. Let M =

(M1, . . . ,Mm). It follows that for all l ≤ n, M(l, . . . , l) = ~dl. By category-wise neutrality
and Claim 1, in f(M(P )) agent l gets M(f l(P )) = ~dl.

Comparing M(P ) with P ′, we notice that for all l ≤ n and all bundle ~e, if ~dl �M(R) ~e

then ~dl �R′l
~e. This is because if there exists ~e such that ~dl �M(R) ~e but ~e �R′l

~dl, then ~e

is still available after { ~d1, . . . , ~dl−1} have been allocated, and ~e is ranked higher than ~dl

in R′l. This contradicts the selection of ~dl. By Lemma 1, f(P ′) = f(M(P )) = M(f(P )),
which proves that f is the serial dictatorship w.r.t. the order 1 � 2 � · · ·� n.

Next, we show that strategy-proofness, non-bossiness, and category-wise neutrality
are a minimal set of properties that characterize serial dictatorships.
strategy-proofness is necessary: Consider the allocation mechanism that maxi-
mizes the social welfare w.r.t. the following utility functions. For any i ≤ np and j ≤ n,
the bundle ranked at the i-th position in agent j’s preferences gets (np − i)(1 + ( 1

2np )j)
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points.3 It is not hard to check that for any pair of different allocations, the social wel-
fares are different. It follows that this allocation mechanism satisfies non-bossiness.
This is because if agent j’s allocation is the same when only she reports differently,
then the set of items left to the other agents is the same, which means that the allo-
cation to the other agents by the mechanism is the same. Since the utility of a bundle
only depends on its position in the agents’ preferences rather than the name of the
bundle, the allocation mechanism satisfies category-wise neutrality. This mechanism
is not a serial dictatorship. To see this, consider the basic categorized domain with
p = n = 2, R′1 = [11 � 12 � 22 � 21], and R′2 = [12 � 21 � 11 � 22]. A serial dictatorship
will either give 11 to agent 1 and give 22 to agent 2, or give 21 to agent 1 and give 12
to agent 2, but the allocation that maximizes social welfare w.r.t. the utility function
described above is to give 12 to agent 1 and give 21 to agent 2.
non-bossiness is necessary: Consider the following “conditional serial dictatorship”:
agent 1 always chooses her favorite bundle in the first round, and the order over the re-
maining agents {2, . . . , n} depends on agent 1’s preferences in the following way: if the
first component of agent 1’s second-ranked bundle is the same as the first component
of her top choice, then the order over the rest of agents is 2� 3� · · ·�n; otherwise it is
n�n−1�· · ·�2. It is not hard to verify that this mechanism satisfies strategy-proofness
and category-wise neutrality, and is not a serial dictatorship (where the order must be
fixed before seeing the preference profile).
category-wise neutrality is necessary: Consider the following “conditional serial
dictatorship”: agent 1 always chooses her favorite bundle in the first round, and the
order over agents {2, . . . , n} depends on the allocation of agent 1 in the following way:
if agent 1 gets (1, . . . , 1), then the order over the rest of agents is 2�3�· · ·�n; otherwise
it is n� n− 1 � · · ·� 2. It is not hard to verify that this mechanism satisfies strategy-
proofness and non-bossiness, and is not a serial dictatorship. �

4. CATEGORICAL SEQUENTIAL ALLOCATION MECHANISMS
In this section we extend serial dictatorships to define categorical sequential alloca-
tion mechanisms (categorical sequential mechanisms for short) for basic categorized
domains.

Given a linear order O over {1, . . . , n} × {1, . . . , p}, the categorical sequential mech-
anism fO allocates the items in np steps as illustrated in Algorithm 1. In each step t,
suppose the t-th element in O is (j, i), (equivalently, t = O−1(j, i)). Agent j is called the
active agent in step t and she must choose an available item from Di (meaning that no
agent has chosen that item before round t), denoted by dj,i. Then, dj,i is broadcast to
all agents and we move on to the next step.

We emphasize that in categorical sequential mechanisms, in each step the active
agent must choose an item from the designated category. Hence, categorical sequen-
tial mechanism are different from sequential allocation protocols [Bouveret and Lang
2011] and the draft mechanism [Budish and Cantillon 2012], where in each step the
active agent can choose any single available item. We now give an example of two
categorical sequential mechanisms.

Example 2 Any serial dictatorship with orderK = j1�· · ·�jn is a categorial sequential
mechanism with the following order: (j1, 1)� (j1, 2)� · · ·� (j1, p)� · · ·� (jn, 1)� (jn, 2)�
· · ·� (jn, p).

3The ( 1
2np )j terms in the utility functions are only used to avoid ties in allocations. In fact, any utility

functions where there are no ties satisfy non-bossiness and category-wise neutrality, but some of them are
equivalent to serial dictatorships, which are the cases we want to avoid in our proof.
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Algorithm 1: Categorical sequential mechanism fO.
Input: An order O over {1, . . . , n} × {1, . . . , p}.
1 Broadcast O to all agents.
2 for t = 1 to np do
3 Let (j, i) be the t-th element in O.
4 Agent j chooses an available item dj,i from Di.
5 Broadcast dj,i to all agents.
6 end

For any even number p, given any linear order K = j1 � · · · � jn over the
agents, we define the balanced categorical sequential mechanism (balanced mecha-
nism for short) to be the mechanism with the following order: for any i ≤ p, the
elements between the ((i − 1)n + 1)-th position and the (i × n)-th position in O is{

(j1, i) � (j2, i) � · · ·� (jn, i) if i is odd
(jn, i) � (jn−1, i) � · · ·� (j1, i) if i is even . For example, when n = 3, p = 2, and K =

1�2�3, the balanced mechanism uses the order (1, 1)�(2, 1)�(3, 1)�(3, 2)�(2, 2)�(1, 2).

Categorical sequential mechanisms have the following advantages over direct, cen-
tralized mechanisms.
• In terms of overcoming the preference bottleneck, categorical sequential mech-

anisms have low communication cost. Reporting a linear order over D requires
Θ(npp log n) bits for each agent, so the total communication cost is Θ(np+1p log n).
For categorical sequential mechanisms, broadcasting O in Step 1 in Algorithm 1 uses
Θ(n(np log np)) = Θ(n2p log np) bits, then in each round broadcasting the choice of the
active agent uses Θ(n log n) bits. Since there are totally np rounds, the total communi-
cation complexity of Algorithm 1 is Θ(n2p log n+np(n log n)) = Θ(n2p log np), which has
a Θ(np−2 · logn

logn+log p ) multiplicative saving compared to direct mechanisms. In light of
this, categorical sequential mechanisms preserve more privacy as well.
• In terms of overcoming the computational bottleneck, categorical sequential mech-

anisms are easy to compute. Moreover, we feel that agents are more comfortable with
choosing an item from a given category per step, compared to reporting a full ranking
over all np bundles in D. Hence, categorical sequential mechanisms may also impose a
lighter psychological burden to the agents for them to figure our their preferences.

To predict the outcomes of categorical sequential mechanisms, we must make some
assumptions about agents’ behavior. Since categorical sequential mechanisms are in-
direct mechanisms, truthfulness is not well-defined, which means that it is not clear
what an altruistic agent will do (unlike in direct mechanisms, an altruistic agent natu-
rally reports her true preferences). In this paper, we investigate two types of altruistic
and myopic agents. For any l with 1 ≤ l ≤ p, we let Dl,t denote the set of remaining
items in Dl at the beginning of round t. That is, Dl,t consists of the items that have not
been chosen by any agents in previous rounds.

— Type 1: optimistic agents. When an optimistic agent j is active in round t and is about
to choose an item from Di,t, she will choose the i-th component of her top-ranked
bundle that is still available, conditioned on the items she has chosen in previous
steps.

— Type 2: pessimistic agents. When a pessimistic agent j is active in round t and is
about to choose an item from Di,t, she will choose an item dj,i such that for all d′i ∈ Di,t

with d′i 6= dj,i, there exists an available bundle ~d′ whose i-th component is d′i and
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agent j prefers all available bundles whose i-th component is dj,i to ~d′, conditioned
on the items she has chosen in previous steps.

Example 3 Let n = 3, p = 2. Suppose there are three agents whose preferences are the
same as in Example 1, and are simplified as follows, where “others” represents an order
over the remaining bundles (and this order will not affect the outcome of the categorical
sequential mechanism in this example).

Agent 1 (optimistic): 12 � 21 � others � 11
Agent 2 (optimistic): 32 � others � 22

Agent 3 (pessimistic): 13 � others � 33 � 31 � 23

Let O = [(1, 1) � (2, 2) � (3, 1) � (3, 2) � (2, 1) � (1, 2)]. Suppose agent 1 and agent 2 are
optimistic and agent 3 is pessimistic.

When t = 1, 12 is the top-ranked available bundle for agent 1. Since agent 1 is op-
timistic, she chooses 1 from D1. When t = 2, 32 is the top-ranked available bundle for
agent 2. Since agent 2 is optimistic, she chooses 2 from D2. When t = 3, the available
bundles are {2, 3} × {1, 3}. If agent 3 chooses 2 from D1, then the worst-case available
bundle is 23, and if agent 3 chooses 3, then the worst-case available bundle is 31. Since
agent 3 prefers 31 to 23, she will choose 3 from D1. When t = 4, the available bundles
are {3} × {1, 3}, and agent 3 will choose 3 from D2. Then, when t = 5, agent 2 choses 2
from D1 and when t = 6, agent 1 choses 1 from D2. The final allocation is: agent 1 gets
11, agent 2 gets 22, and agent 3 gets 33.

We emphasize that in this paper it is assumed that whether an agent is optimistic or
pessimistic is determined before the allocation process, and each agent is myopic and
stays optimistic (respectively, pessimistic) throughout the allocation process. In the
above example, since agent 3 chooses items in t = 3 and t = 4, if she is strategic and
willing to look ahead for one step, then her dominant strategy is to choose the items in
her top-ranked available bundle. Analysis of such strategic and self-interested agents
is beyond the scope of this paper and is left for future research.

5. ORDINAL EFFICIENCY OF CATEGORICAL SEQUENTIAL ALLOCATION PROTOCOLS
In this section, we focus on the ordinal efficiency of categorical sequential mechanisms
by evaluating the outcome of an allocation mechanism by the vector composed of indi-
vidual agents’ ranks of the bundles allocated to them.4 Due to the space constraint, we
only present proof sketches for Proposition 1 and Theorem 2. Full proofs for all propo-
sitions and the theorem can be found in the appendix. Given a categorical sequential
mechanism fO, we introduce the following notation for any j ≤ n.
• Let Oj denote the linear order over {1, . . . , p} according to which agent j chooses

items in O.
• For any i ≤ p, let kj,i denote the number of items in Di that have not been chosen

by other agents before agent j chooses an item from Di. Formally, kj,i = 1 + |{(j′, i) :
(j, i) �O (j′, i)}|. Equivalently kj,i = n− |{(j′, i) : (j′, i) �O (j, i)}|.
• Let Kj denote the smallest natural number such that no agent can “interrupt”

agent j from choosing all items in her top-ranked bundle that is available in round
(j,Ok(j)). Formally, Kj is the smallest number such that for any l with Kj < l ≤ p,
between the round when agent j chooses an item from category Oj(Kj) and the round
when agent j chooses an item from category Oj(l), no agent chooses an item from
category Oj(l). We note that Kj is defined solely by O, which means that it does not

4We note that this definition is different from the ordinal efficiency for randomized allocation mecha-
nisms [Bogomolnaia and Moulin 2001].
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depend on the agents’ preferences. Agents’ preferences will be considered in the worst-
case analysis soon. We also note that Kj represents the category ranked at the Kj-th
position in Oj , which is not necessarily the category Kj .

Example 4 Let O∗ = [(1, 1)� (1, 2)� (1, 3)� (2, 1)� (2, 2)� (2, 3)� (3, 1)� (3, 2)� (3, 3)].
That is, fO∗ is a serial dictatorship. Then O∗1 = O∗2 = O∗3 = 1�2�3. K1 = K2 = K3 = 1.
k1,1 = k1,2 = k1,3 = 3, k2,1 = k2,2 = k2,3 = 2, k3,1 = k3,2 = k3,3 = 1.

LetO be the order in Example 3, that is,O = [(1, 1)�(2, 2)�(3, 1)�(3, 2)�(2, 1)�(1, 2)].
O1 = 1 � 2. K1 = 2 since (2, 2) is between (1, 1) and (1, 2) in O. k1,1 = 3, k1,2 = 1.
O2 = 2 � 1. K2 = 2 since (3, 1) is between (2, 2) and (2, 1). k2,1 = 1, k2,2 = 3.
O3 = 1 � 2. K3 = 1 since between (3, 1) and (3, 2) in O, no agent chooses an item from

D2. k3,1 = k3,2 = 2.

Proposition 1 For any categorical sequential mechanism fO, any combination of op-
timistic and pessimistic agents, and any j ≤ n, we have the following upper bounds.

— Upper bound for any optimistic agent: if j is optimistic, then the rank of the
bundle allocated to her is at most np + 1−

∏p
l=Kj

kj,Oj(l).
— Upper bound for any pessimistic agent: if j is pessimistic, then the rank of the

bundle allocated to her is at most np −
∑p

l=1(kj,Oj(l) − 1).

Proof sketch: W.l.o.g. let Oj = 1 � 2 � · · · � p. If j is optimistic, then we let
tj = O−1(j,Kj) and let (dj,1, . . . , dj,Kj−1) ∈ D1 × · · · ×DKj−1 denote the items agent j
chose in the previous rounds. It follows that at the beginning of round tj , the following∏p

l=Kj
kj,l bundles are available for agent j: Dj = (dj,1, . . . , dj,Kj−1) ×

∏p
l=Kj

Dl,tj . By
the definition of Kj , no agent can interrupt agent j from choosing the items in her
top-ranked bundle in Dj , and |Dj | =

∏p
l=Kj

kj,l.
If j is pessimistic, then we let ~dj = (dj,1, . . . , dj,p) = f j

O(P ) denote her allocation by
fO. By the definition of pessimism and the assumption that for any 1 ≤ l ≤ p, in round
t∗ = O−1(j, l) agent j chose dj,l from Dl,t∗ , we must have that for all d′l ∈ Dl,t∗ with
d′l 6= dj,l, there exists an bundle (dj,1, . . . , dj,l−1, d

′
l, . . . , d

′
p) that is ranked below ~dj . Such

bundles are all different and the number of them is
∑p

l=1(kj,l − 1), which proves the
proposition for pessimistic agents. �

We note that in Proposition 1 applies to any combination of optimistic and pes-
simistic agents (e.g. in Example 3), which is much more general than the setting
with all-optimistic agents and setting with all-pessimistic agents. Kj ’s are only used
to present the upper bounds for optimistic agents, and kj,Oj(l) for all l < Kj are only
used to present the upper bounds for pessimistic agents.

Our main theorem in this section states that for all combinations of optimistic and
pessimistic agents, all upper bounds described in Proposition 1 can be matched in one
preference profile. Surprisingly, for the same profile there exists an allocation where
almost all agents get their top-ranked bundle (and the only agent who may not get her
top-ranked bundle gets her second-ranked bundle). Therefore, the theorem is not only
a worst-case analysis in the absolute sense (just considering the bounds themselves),
but also in the comparative sense (the bounds are compared to the optimal allocation
of the same profile, which has almost optimal ordinal efficiency for every agent).

Theorem 2 For any categorical sequential mechanism fO and any combination of op-
timistic and pessimistic agents, there exists a preference profile P such that for all j ≤ n:

(1) if agent j is optimistic, then the rank of the bundle allocated to her is np + 1 −∏p
l=Kj

kj,Oj(l);
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(2) if agent j is pessimistic, then the rank of the bundle allocated to her is np −∑p
l=1(kj,Oj(l) − 1);

(3) there exists an allocation where at least n − 1 agents get their top-ranked bundles,
and the remaining agent gets her top-ranked or second-ranked bundle. Moreover, if
the first agent in O is pessimistic, then there exists an allocation where all agents
get their top-ranked bundle.

Proof sketch: We prove the theorem by constructing a preference profile P such that
in fO(P ), for all j ≤ n, agent j gets (j, . . . , j). For all i and t, define D∗i,t to be the subset
of Di = {1, . . . , n} such that q ∈ D∗i,t if and only if agent q has not chosen an item
from Di before the t-th round. By definition, if O(t) = (j, i) then j ∈ D∗i,t. Formally,
D∗i,t = {q ≤ n : O−1(q, i) ≥ t}. Then, we let t∗j,l = O−1(j,Oj(l)) denote the round when
j chooses from category Oj(l). Let O(1) = (j1, i1). That is, agent j1 is the first agent to
choose an item in fO, and she chooses from category Di1 . Let Li1 denote the order over
{1, . . . , n} representing the order for the agents to choose items from Di1 in O. That is,
j�Li1

j′ if and only if (j, i1)�O (j′, i1). By definition we have j1 = Li1(1). For any j ≤ n,
we let Predi1(j) = Li1(L−1i1

(j)− 1) denote the predecessor of agent j in Li1 , that is, the
latest agent who chose an item from category i1 before agent j chooses from category i1.
If j = 1, then we let the last agent in Li1 be her predecessor, that is, Predi1(1) = Li1(n).

If agent j is optimistic, then we let the following bundles be ranked in the bottom of
her preferences: BottomBundlesOpt

j = (jOj(1), . . . , jOj(Kj−1)) ×
∏p

l=Kj
D∗Oj(l),t∗j,l

, and let
agent j’s preferences be any linear order compatible with the partial order specified in
Table II.

Table II. Partial preferences for an optimistic agent j.

Optimistic agent Order

j 6= j1
case 1: Kj = 1 ([Predi1 (j)]i1 , [j]−i1 ) � · · · � (j, . . . , j) � others in BottomBundlesOpt

j

case 2: Kj > 1
([Predi1 (j)]i1 , [j]−i1 ) � ([PredOj(Kj)

(j)]Oj(Kj)
, [j]−Oj(Kj)

)

� · · · � (j, . . . , j) � others in BottomBundlesOpt
j

j = j1
case 1: Kj = 1 (j1, . . . , j1) � ([Li1 (n)]i1 , [j1]−i1 ) � others

case 2: Kj > 1
([PredOj(Kj)

(j1)]Oj(Kj)
, [j1]−Oj(Kj)

) � ([Li1 (n)]i1 , [j1]−i1 )

� · · · � (j1, . . . , j1) � others in BottomBundlesOpt
j1

If agent j is pessimistic, then we first define the following bundles:
BottomBundlesPes

j =
⋃p

l=1

⋃
d∈D∗Oj(l),t

∗
j,l

{([d]Oj(l), [j]−Oj(l))}, where [j]−Oj(l) means that

all components except the Oj(l)-th component is j. Bundles in BottomBundlesPes
j are

(partially) ranked as follows: first, (j, . . . , j) is ranked on the top of them; then, for
any 1 ≤ l1 < l2 ≤ p, any d1 ∈ D∗Oj(l1),t∗j,l1

with d1 6= j, and any d2 ∈ D∗Oj(l2),t∗j,l2
with

d2 6= j, we rank ([d1]Oj(l1), [j]−Oj(l1)) below ([d2]Oj(l2), [j]−Oj(l2)). Then, we let agent j’s
preferences be any linear order compatible of the partial order specified in Table III.

Table III. Partial preferences for a pessimistic agent j.

Pessimistic agent Order
j 6= j1 ([Predi1 (j)]i1 , [j]−i1 ) � · · · � (j, . . . , j) � others in BottomBundlesPes

j

j = j1
([Li1 (n)]i1 , [j1]−i1 ) � · · · � (j1, . . . , j1) � others in BottomBundlesPes

j1
� (Li1 (n), . . . , Li1 (n))
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For the constructed preference profile, we then prove by induction on the round in
the execution of fO that the active (optimistic or pessimistic) agent j always chooses
item j from the designated category. This proves part (1) and part (2) of the theorem.
For part (3), we consider the allocation where agent j gets ([Predi1(j)]i1 , [j]−i1). In this
allocation, all agents except j1 get their top-ranked bundle, and j1 gets her top-ranked
bundle (if j1 is pessimistic) or second-ranked bundle (if j1 is optimistic). �

Example 5 Let O be the order in Example 3. Suppose agent 1 and 2 are optimistic and
agent 3 is pessimistic. By Theorem 2 and Example 4, there exists a profile P such that
after applying fO, the bundle allocated to agent 1 is ranked at the last position (K1 = 2
and k1,2 = 1); the bundle allocated to agent 2 is ranked at the last position (K2 = 2
and k2,1 = 1); and the bundle allocated to agent 3 is ranked at the 3rd position from
the bottom (k3,1 = k3,2 = 2). Moreover, there exists an allocation where agent 2 and 3
get their top-ranked bundles and agent 1 gets her second-ranked bundle. In fact, the
preference profile described in Example 3 satisfies all these conditions.

We emphasize that in Theorem 2, whether an agent is optimistic or pessimistic is
fixed before we know their preferences. The theorem provides a useful tool to compare
various categorical sequential mechanisms with optimistic and pessimistic agents in
the utilitarian sense and egalitarian sense, as we will show in the propositions in the
rest of this section. We recall that for any allocation mechanism f , any j ≤ n, and
any preference profile P , f j(P ) is the bundle allocated to agent j. For any linear order
R over D and any bundle ~d, we let Rank(R, ~d) denote the rank of ~d in R, where the
highest position has rank 1 and the lowest position has rank np.

Definition 3 Given any categorical sequential mechanism fO, any n, and any com-
bination of optimistic and pessimistic agents, we let the worst-case utilitarian
rank be maxPn

∑
Rj∈Pn

Rank(Rj , f
j
O(Pn)), and the worst-case egalitarian rank be

maxPn
maxRj∈Pn

Rank(Rj , f
j
O(Pn)), where Pn is a preference profile of n agents.

In words, the worst-case utilitarian rank is the worst (largest) total rank of the allo-
cation by fO w.r.t. agents’ preferences. The worst-case egalitarian rank is the worst
(largest) rank of the least-satisfied agent. In both notions the worst-case is taken over
all preference profiles of n agents. The negation of utilitarian rank naturally corre-
sponds to utilitarian social welfare w.r.t. the Borda utility function, where for all l ≤ np,
an agent’s utility for the l-th ranked alternative is np − l. Similarly, the negation of
egalitarian rank naturally corresponds to egalitarian social welfare.

Proposition 2 Among all categorical sequential mechanisms, serial dictatorships
with all-optimistic agents have the best (smallest) worst-case utilitarian rank and the
worst (largest) worst-case egalitarian rank.

Proposition 3 Any categorical sequential mechanisms with all-optimistic agents has
the worst (largest) worst-case egalitarian rank, which is np.

Proposition 4 For any even number p, the worst-case egalitarian rank of any balanced
mechanism with all-pessimistic agents (see Example 2) is np− (n− 1)p/2. These are the
mechanisms with the best worst-case egalitarian rank among categorical sequential
mechanisms with all-pessimistic agents.

A natural question after Proposition 4 is: when p is even, are the balanced mech-
anisms with all-pessimistic agents optimal in terms of worst-case egalitarian rank,
among all categorical sequential mechanisms for any combination of optimistic and
pessimistic agents? The answer is negative due to the following proposition.
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Proposition 5 For any even number p with 2p > 1+(n−1)p/2, there exists a categorical
sequential mechanism with both optimistic and pessimistic agents, whose worst-case
egalitarian rank is strictly better (smaller) than np − (n− 1)p/2.

Concluding remarks for Section 5: Our main theorem in this section (Theorem 2)
and the following propositions shed some light on applications of categorical sequential
mechanisms for altruistic agents. For example, Proposition 2 tells us that if our goal
is to achieve good worst-case utilitarian rank (i.e. optimal worst-case utilitarian social
welfare w.r.t. the Borda utility function), then the optimal categorical sequential mech-
anisms are serial dictatorships, and in this case we should advise the altruistic agents
to be optimistic. However, all categorical sequential mechanisms with all-optimistic
agents have the worst worst-case egalitarian rank (Proposition 3), which means that
we should avoid advising all agents to be optimistic if worst-case egalitarian rank is
our concern. If we want to achieve good worst-case egalitarian rank, then the balanced
categorical sequential mechanisms are much better options, for which we can advise
the altruistic agents to be pessimistic (Proposition 4). And it is possible to achieve even
better worst-case egalitarian rank by a categorical sequential mechanism where some
agents are optimistic and others are pessimistic, depending on their positions in the
order O (Proposition 5).

6. SIMULATION RESULTS
In this section, we use computer simulations to evaluate expected efficiency of cate-
gorical sequential mechanisms, when agents’ preferences are generated i.i.d. from a
well-known statistical model called the Mallows model [Mallows 1957]. Similarly to
the worst-case analysis in the previous section, we evaluate two types of expected
ranks: the expected utilitarian rank and the expected egalitarian rank. We first recall
the definition of the Mallows model.

Definition 4 Let C denote a set of alternatives and let L(C) denote the set of all linear
orders over C. In a Mallows model, each parameter consists of a ground truth linear
order W over C and a dispersion parameter 0 < ϕ ≤ 1. Given (W,ϕ), the probability to
generate a linear order V over C is Pr(V |W,ϕ) = 1

Z ·ϕ
Kendall(V,W ), where Kendall(V,W ) is

the Kendall-tau distance between V and W , defined to be the number of different pair-
wise comparisons between alternatives. Z =

∑
V ∈L(C) ϕ

Kendall(V,W ) is the normalization
factor.

In the Mallows model, the dispersion parameter measures the centrality of the gen-
erated linear orders. The smaller ϕ is, the more centralized the randomly generated
linear orders are (around the ground truth linear order). When ϕ = 1, the Mallows
model degenerates to the uniform distribution for any ground truth linear order W .
Data generation. In our experiments, we fix p = 2, let n range from 2 to 11, and let
ϕ be 0.1, 0.5, and 1. For each setting, we first randomly generate a linear order W over
D, and then use it as the ground truth linear order in the Mallows model to generate
n agents’ preferences. For each setting we generate 2000 datasets and use them to ap-
proximately compute the expected utilitarian rank and the expected egalitarian rank,
defined by replacing maxPn by EPn in Definition 3.5 We evaluate serial dictatorships
and balanced mechanisms with two configurations of agents: all-optimistic agents and
all-pessimistic agents. All computations were done on a 1.8 GHz Intel Core i7 laptop
with 4GB memory.

5The expected egalitarian rank should be distinguished from the egalitarian expected rank, which first
computes the expected rank for every agent, then chooses the largest (expected) rank.
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Fig. 1. The data are generated from the Mallows model with ϕ = 0.1.

2 4 6 8 10
number of agents

0

50

100

150

200

250

300

E
xp

ec
te

d
 u

ti
lit

ar
ia

n
 r

an
k

SD_opt

SD_pes

Balanced_opt

Balanced_pes

2 4 6 8 10
number of agents

0

10

20

30

40

50

60

70

80

90

E
xp

ec
te

d
 e

g
al

it
ar

ia
n
 r

an
k

SD_opt

SD_pes

Balanced_opt

Balanced_pes

Expected utilitarian rank. Expected egalitarian rank.

Fig. 2. The data are generated from the Mallows model with ϕ = 0.5.
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Fig. 3. The data are generated from the uniform distribution (the Mallows model with ϕ = 1).
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Results. Our results are summarized in Figure 1, 2, and 3. In each figure we also plot
95% confidence intervals. It can be seen from the figures that in general, serial dictator-
ships with all-optimistic agents have the best (smallest) expected utilitarian rank, and
balanced mechanisms with all-pessimistic agents have the best (smallest) expected
egalitarian rank. All these comparisons are statistically significant at the 0.05 level,
except for the case of expected egalitarian rank when ϕ = 1 (namely, the uniform
distribution), where the performance of serial dictatorships with all-optimistic agents
and the performance of the balanced mechanisms with all-pessimistic agents are too
close to draw informative statistical conclusions. These observations complement and
are (incidentally) consistent with the worst-case results obtained in the previous sec-
tion, which tell us that among the four types of mechanisms, serial dictatorships with
all-optimistic agents have the best worst-case utilitarian rank, and the balanced mech-
anisms with all-pessimistic agents have the best worst-case egalitarian rank.

7. FUTURE WORK
There are many immediate open questions, including analyzing the outcomes and or-
dinal efficiency for categorical sequential mechanisms for other types of agents, in-
cluding strategic and self-interested agents, and minimax-regret agents. We also plan
to work on theoretical analysis of expected utilitarian rank and egalitarian rank, and
randomized allocation mechanisms.

More excitingly, we feel that CDAPs provide a natural framework for applying tech-
niques in many other fields to overcome the preference bottleneck, computational bot-
tleneck, and threats of agents’ strategic behavior discussed in the Introduction. For
example, we plan to design preference representation languages and mechanisms for
general CDAPs, including natural generalizations of CP-nets [Boutilier et al. 2004],
LP-trees [Booth et al. 2010], and soft constraints [Pozza et al. 2011]. We also plan
to evaluate new mechanisms w.r.t. fairness and computational resistance to various
kinds of malicious behavior, including manipulation, bribery, and control. In this pa-
per, we implicitly assumed that all items are non-sharable, meaning that each item
can only be exclusively allocated to one agent. Designing mechanisms for CDAPs with
both sharable and non-sharable items is also a natural and promising next step.
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Appendix: Full Proofs
Lemma 1. Let f be a strategy-proof and non-bossy allocation mechanism over a basic
categorized domain with p ≥ 2. For any pair of preference profiles P and P ′ such that
for all j ≤ n, {~d ∈ D : ~d �R′j

f j(P )} ⊆ {~d ∈ D : ~d �Rj
f j(P )}, we have f(P ′) = f(P ).

Proof: We first prove the lemma for the special case where P and P ′ only differ on
one agent’s preferences. Let j be an agent with R′j 6= Rj and {~d ∈ D : ~d �R′j

f j(P )} ⊆
{~d ∈ D : ~d �Rj

f j(P )}. We will prove that f j(R′j , R−j) = f j(Rj , R−j).
Suppose for the sake of contradiction f j(R′j , R−j) 6= f j(Rj , R−j). If f j(R′j , R−j) �Rj

f j(Rj , R−j) then it means that f is not strategy-proof since j has incentive to report R′j
when her true preferences are Rj . If f j(Rj , R−j) �Rj

f j(R′j , R−j) then f j(Rj , R−j) �R′j

f j(R′j , R−j), which means that when agent j’s preferences are R′j she has incentive to
report Rj ,. This again contradicts the assumption that f is strategy-proof. Therefore
f j(Rj , R−j) = f j(R′j , R−j).

By non-bossiness, f(Rj , R−j) = f(R′j , R−j). The lemma is proved by recursively ap-
plying this argument to j = 1, . . . , n. �

Lemma 2. Let f be a strategy-proof and non-bossy allocation mechanism over a basic
categorized domain with p ≥ 2. For any profile P , any j ≤ n, any bundle ~d, and any R′j
that is a pushup of ~d from Rj , either (1) f(R′j , R−j) = f(R) or (2) f j(R′j , R−j) = ~d.
Proof: We first prove that f j(R′j , R−j) = f j(R) or f j(R′j , R−j) = ~d. Suppose on the
contrary that f j(R′j , R−j) is neither f j(R) nor ~d. If f j(R′j , R−j) �Rj

f j(R), then f
is not strategy-proof since when agent j’s true preferences are Rj and other agents’
preferences are R−j , she has incentive to report R′j to make her allocation better. If
f j(R) �Rj

f j(R′j , R−j), then since ~d 6= f j(R′j , R−j), we have f j(R) �R′j
f j(R′j , R−j).

In this case when agent j’s true preferences are R′j and other agents’ preferences
are R−j , she has incentive to report Rj to make her allocation better, which means
that f is not strategy-proof. Therefore, f j(R′j , R−j) = f j(R) or f j(R′j , R−j) = ~d. If
f j(R′j , R−j) = f j(Rj , R−j), then by non-bossiness f(R′j , R−j) = f(R). This completes
the proof. �

Lemma 3. For any basic categorized domains with p ≥ 2, any strategy-proof, non-bossy,
and category-wise neutral allocation mechanism is Pareto optimal.
Proof: We prove the lemma by contradiction. Let f be a strategy-proof, non-
bossy, category-wise neutral, but non-(Pareto optimal) allocation mechanism. Let
P = (R1, . . . , Rn) denote a profile such that f(P ) is Pareto dominated by an alloca-
tion A. For any i ≤ m, let Mi denote the permutation over Di so that for every j ≤ n,
[f j(P )]i is permuted to [A(j)]i. Let M = (M1, . . . ,Mm). It follows that for all j ≤ n,
M(f j(P )) = A(j).

Let R′j denote an arbitrary ranking where A(j) is ranked at the top place, and f j(P )
is ranked at the second place if it is different from A(j). Let R∗j denote an arbitrary
ranking where f j(P ) is ranked at the top place, and A(j) is ranked at the second place
if it is different from f j(P ). Let P ′ = (R′1, . . . , R

′
n) and P ∗ = (R∗1, . . . , R

∗
n). P ′ and P ∗ are

illustrated as follows.
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P ′ =


R′1 : A1 � f1(P ) � Others

...
R′n : An � fn(P ) � Others

 , P ∗ =


R∗1 : f1(P ) � A1 � Others

...
R∗n : fn(P ) � An � Others


Since A Pareto dominates f(P ), by Lemma 1 we have f(P ′) = f(P ), because for any

j ≤ n, in R′j the only bundle ranked ahead of f j(P ) is A(j), if it is different from f j(P ),
and A(j) is also ranked ahead of f j(P ) in Rj . By Lemma 1 again we have f(P ∗) =
f(P ). Comparing M(P ′) and P ∗, we observe that the only differences are the orderings
among D\{A(j), f j(P )}. Applying Lemma 1 to P ∗ and M(P ′), we have that f(M(P ′)) =
f(P ∗) = f(P ). However, by category-wise neutrality f(M(P ′)) = M(f(P ′)) = A, which
is a contradiction. �

Proposition 1. For any categorical sequential mechanism fO, any combination of op-
timistic and pessimistic agents, and any j ≤ n, we have the following upper bounds.

— Upper bound for any optimistic agent: if j is optimistic, then the rank of the
bundle allocated to her is at most np + 1−

∏p
l=Kj

kj,Oj(l).
— Upper bound for any pessimistic agent: if j is pessimistic, then the rank of the

bundle allocated to her is at most np −
∑p

l=1(kj,Oj(l) − 1).

Proof: Equivalently, we need to prove that for any optimistic agent, the bundle allo-
cated to her is ranked no lower than the (

∏p
l=Kj

kj,Oj(l))-th position from the bottom,
and for any pessimistic agent, the bundle allocated to her is ranked no lower than the
(1 +

∑p
l=1(kj,Oj(l) − 1))-th position from the bottom.

W.l.o.g. let Oj = 1 � 2 � · · · � p. That is, agent j chooses items from categories
1, . . . , p in sequence in the sequential allocation. This means that in this proof, for
any l ≤ p, Oj(l) = l. We first prove the proposition for an optimistic agent j. In the
beginning of round tj = O−1(j,Kj) in Algorithm 1, agent j has already chosen items
from D1, . . . , DKj−1, and is ready to choose an item from DKj

. We recall that Dl,t is the
set of remaining items in Dl at the beginning of round t. By definition, kj,l = |Dl,tj |. Let
(dj,1, . . . , dj,Kj−1) ∈ D1 × · · · ×DKj−1 denote the items agent j has chosen in previous
rounds. It follows that at the beginning of the round tj , the following

∏p
l=Kj

kj,l bundles
are available for agent j:

Dj = (dj,1, . . . , dj,Kj−1)×
p∏

l=Kj

Dl,tj

We now show that an optimistic agent j is guaranteed to obtain her top-ranked
bundle in Dj . Intuitively this holds because by the definition of Kj , for any l ≥ Kj ,
when it is agent j’s round to choose an item from Dl, the l-th component of her top-
ranked bundle in Dj is always available. Formally, let ~dj = (dj,1, . . . , dj,p) denote agent
j’s top-ranked bundle in Dj . We prove that agent j will choose dj,l from Dl in round
O−1(j, l) by induction on l. The base case l = Kj is straightforward. Suppose she has
chosen dKj , dKj+1, . . . , dl′ for some l′ ≥ Kj . Then in round O−1(j, l′ + 1) when agent j is
about to choose an item from Dl′+1, the following bundles are available:

(dj,1, . . . , dj,l′)×
p∏

l=l′+1

Dl,tj

This is because by the induction hypothesis, (dj,1, . . . , dj,l′) have been chosen by agent
j in previous rounds. Then, by the definition of Kj , for any l ≥ l′+ 1 no agent choses an
item from Dl between round tj = O−1(j,Kj) and round O−1(j, l′). Hence the remaining
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items in Dl is still the same as that in round tj . This means that ~dj ∈ (dj,1, . . . , dj,l′)×∏p
l=l′+1 Dl,tj ⊆ Dj . Therefore, ~dj is still agent j’s top-ranked available bundle in the

beginning of round O−1(j, l′), when she is about to choose an item from Dl′+1. Hence
agent j will choose dj,l′+1. This proves the claim for l = l′+1, which means that it holds
for all l ≤ p. Therefore, agent j is allocated ~dj by the sequential allocation protocol. We
note that |Dj | =

∏p
l=Kj

kj,l. This proves the proposition for optimistic agents.
We next prove the proposition for an pessimistic agent j. Let ~dj = (dj,1, . . . , dj,p)

denote her allocation by the sequential allocation protocol. Since agent j is pessimistic,
for any 1 ≤ l ≤ p, in round t∗ = O−1(j, l) agent j chose dj,l from Dl,t∗ , we must have
that for all d′l ∈ Dl,t∗ with d′l 6= dj,l, there exists an bundle (dj,1, . . . , dj,l−1, d

′
l, . . . , d

′
p)

that is ranked below ~dj . These bundles are all different and the number of all such
bundles is

∑p
l=1(kj,l − 1), which proves the proposition for pessimistic agents. �

Theorem 2. For any categorical sequential mechanism fO and any combination of
optimistic and pessimistic agents, there exists a preference profile P such that for all
j ≤ n:

(1) if agent j is optimistic, then the rank of the bundle allocated to her is np + 1 −∏p
l=Kj

kj,Oj(l);
(2) if agent j is pessimistic, then the rank of the bundle allocated to her is np −∑p

l=1(kj,Oj(l) − 1);
(3) there exists an allocation where at least n − 1 agents get their top-ranked bundles,

and the remaining agent gets her top-ranked or second-ranked bundle. Moreover, if
the first agent in O is pessimistic, then there exists an allocation where all agents
get their top-ranked bundle.

Proof: Given O and the information on whether each agent j is optimistic or pes-
simistic, we will construct a preference profile P such that in O(P ), for all j ≤ n, agent
j obtains (j, . . . , j).

We prove the theorem in the following three steps: in Step 1: define bottom bun-
dles, we specify a set of bundles that are ranked in the bottom positions for each agent
j, and require (j, . . . , j) to be ranked on the top of them. In Step 2: define top bun-
dles, we specify top-1 and sometimes also top-2 bundles for each agent. Finally in Step
3: extend to full preference profile, we take any preference profile that extends the
partial orders constructed in the first two steps, and then show that it satisfies all
three properties in the theorem. The construction is summarized in Table IV (for opti-
mistic agents) and Table V (for pessimistic agents), which are replications of Table II
and Table III, respectively.

Table IV. Partial preferences for an optimistic agent j. BottomBundlesOpt
j is defined in (1). “Others in

BottomBundlesOpt
j ” refers to [BottomBundlesOpt

j \ {(j, . . . , j)}].

Optimistic agent Order

j 6= j1
case 1: Kj = 1 ([Predi1 (j)]i1 , [j]−i1 ) � · · · � (j, . . . , j) � others in BottomBundlesOpt

j

case 2: Kj > 1
([Predi1 (j)]i1 , [j]−i1 ) � ([PredOj(Kj)

(j)]Oj(Kj)
, [j]−Oj(Kj)

)

� · · · � (j, . . . , j) � others in BottomBundlesOpt
j

j = j1
case 1: Kj = 1 (j1, . . . , j1) � ([Li1 (n)]i1 , [j1]−i1 ) � others

case 2: Kj > 1
([PredOj(Kj)

(j1)]Oj(Kj)
, [j1]−Oj(Kj)

) � ([Li1 (n)]i1 , [j1]−i1 )

� · · · � (j1, . . . , j1) � others in BottomBundlesOpt
j1
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Table V. Partial preferences for a pessimistic agent j. BottomBundlesPes
j is defined in (2). For j 6=

j1, “others in BottomBundlesPes
j ” refers to (BottomBundlesPes

j1
\ {(j, . . . , j)}). For j = j1, “others in

BottomBundlesPes
j1

” refers to (BottomBundlesPes
j1
\ {(j1, . . . , j1), ([Li1 (n)]i1 , [j1]−i1 )}).

Pessimistic agent Order
j 6= j1 ([Predi1 (j)]i1 , [j]−i1 ) � · · · � (j, . . . , j) � others in BottomBundlesPes

j

j = j1
([Li1 (n)]i1 , [j1]−i1 ) � · · · � (j1, . . . , j1) � others in BottomBundlesPes

j1
� (Li1 (n), . . . , Li1 (n))

We first introduce some notation that will be useful to define the preference profile
in Step 1 and Step 2. Let O(1) = (j1, i1). That is, agent j1 is the first to choose an
item in the sequential allocation, and she chooses from category Di1 . Let Li1 denote
the order over {1, . . . , n} representing the order for the agents to choose items from Di1
in O. That is, j �Li1

j′ if and only if (j, i1) �O (j′, i1). By definition we have j1 = Li1(1).
For any j ≤ n, we let Predi1(j) = Li1(L−1i1

(j) − 1) denote the predecessor of agent j in
Li1 , that is, the latest agent who chose an item from category i1 before agent j chooses
from category i1. If j = 1, then we let the last agent in Li1 be her predecessor, that is,
Predi1(1) = Li1(n).
Step 1: define bottom bundles. In order to match the upper bounds shown in the
proof of Proposition 1, the bundles described in the proof of Proposition 1 must be
the only bundles that are ranked below (j, . . . , j) by agent j. This is the part of the
preference profile we will construct in the first step.

For all i and t, we first define D∗i,t to be the subset of Di = {1, . . . , n} such that
q ∈ D∗i,t if and only if agent q has not chosen an item from Di before the t-th round. By
definition, if O(t) = (j, i) then j ∈ D∗i,t. Formally,

D∗i,t = {q ≤ n : O−1(q, i) ≥ t}
We note that D∗i,t is defined solely by i, t, and O, which means that it does not depend
on agents’ preferences and behavior in previous rounds. Later in this proof we will
show that for our constructed preference profile, in each round (j, i) the active agent j
will choose j from Di, so that D∗i,t is the remaining items for category i at the beginning
of round t of the sequential allocation.

For any 1 ≤ l ≤ p, we let t∗j,l = O−1(j,Oj(l)). That is, t∗j,l is the round where agent j
chooses an item from the l-th category in Oj , which is not necessarily category l. For
each agent j we specify their bottom bundles as follows.

— If agent j is optimistic, then we let the following bundles be ranked in the bottom of
her preferences:

BottomBundlesOpt
j = (jOj(1), . . . , jOj(Kj−1))×

p∏
l=Kj

D∗Oj(l),t∗j,l
, (1)

where (j, . . . , j) is ranked on the top of these bundles, and the order over the re-
maining bundles is defined arbitrarily. It follows that (j, . . . , j) is ranked in the
(
∏p

l=Kj
kj,Oj(l))-th position from the bottom by agent j.

— If agent j is pessimistic, then we first define the following bundles:

BottomBundlesPes
j =

p⋃
l=1

⋃
d∈D∗Oj(l),t

∗
j,l

{([d]Oj(l), [j]−Oj(l))}, (2)

where [j]−Oj(l) means that all components except the Oj(l)-th component is j. Bun-
dles in BottomBundlesPes

j are (partially) ranked as follows: first, (j, . . . , j) is ranked
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on the top; then, for any 1 ≤ l1 < l2 ≤ p and any d1 ∈ D∗Oj(l1),t∗j,l1
and d2 ∈ D∗Oj(l2),t∗j,l2

with d1 6= j and d2 6= j, we rank ([d1]Oj(l1), [j]−Oj(l1)) below ([d2]Oj(l2), [j]−Oj(l2)).
— If j 6= j1, then we simply let BottomBundlesPes

j (with the partial orders specified
above) be the bundles ranked in the bottom position.

— If j = j1, then we move ([Predi1(j)]i1 , [j]−i1) = ([Li1(n)]i1 , [j1]−i1) to the bottom
place and replace it by (Predi1(j), . . . , P redi1(j)) = (Li1(n), . . . , Li1(n)), and then
let these be ranked in the bottom positions of agent j’s preferences. That is, the
bottom bundles are:

(j1, . . . , j1) � (BottomBundlesPes
j \ {(j1, . . . , j1), ([Li1(n)]i1 , [j1]−i1)})
� (Li1(n), . . . , Li1(n))

In both cases (j, . . . , j) is ranked at the (1 +
∏p

l=Kj
(kj,Oj(l) − 1))-th position from the

bottom.

Step 2: define top bundles. We now specify the top two bundles (sometimes only
the top bundle) for optimistic agents, and show that they are compatible with our
constructions in Step 1. For any optimistic agent j:

— When j 6= j1, there are following two cases:
— case 1: Kj = 1. We let ([Predi1(j)]i1 , [j]−i1) be the top-ranked bundle of agent j.
— case 2: Kj > 1. We let ([Predi1(j)]i1 , [j]−i1) be the top-ranked bundle of agent j.

Moreover, if i1 6= Oj(Kj), then we rank ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) at the
second position. We recall that PredOj(Kj)(j) is the predecessor of j in LOj(Kj),
the order for the agents to choose items from DOj(Kj).

These do not conflict the preferences specified in Step 1 because item Predi1(j) in
Di1 is not available for agent j when she is about to choose an item in Di1 , and item
PredOj(Kj)(j) in DOj(Kj) is not available for agent j when she is about to choose an
item in DOj(Kj). Hence, none of these bundles are in BottomBundlesOpt

j .
— When j = j1, there are following two cases:

— case 1: Kj = 1. Since (j1, i1) = O(1), for all i, D∗i,O−1(j,i) = Di, which means
that agent j is guaranteed to get her top-ranked bundle after the sequential
allocation. In this case we let (j, . . . , j) be agent j’s top-ranked bundle and let
([Li1(n)]i1 , [j]−i1) be ranked in agent j’s second position. These do not conflict the
preferences specified in Step 1 because in this case Step 1 only specifies that
(j, . . . , j) be ranked in the top position.

— case 2: Kj > 1. We rank ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) at the top position.
We then rank ([Li1(n)]i1 , [j]−i1) at the second position. Since i1 = Oj(1), we
have Oj(Kj) 6= i1, otherwise Kj = 1. Hence, ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) 6=
([Li1(n)]i1 , [j]−i1). These do not conflict the preferences specified in Step 1 be-
cause category i1 is agent j1’s first category in Oj1 , which means that i1 < Kj ,
thus ([Li1(n)]i1 , [j]−i1) 6∈ BottomBundlesOpt

j1
; also PredOj(Kj)(j) is not available

when agent j1 is about to choose an item for category Oj(Kj), which means that
([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) 6∈ BottomBundlesOpt

j1
.

For any pessimistic agent j, we simply let her top-ranked bundle be
([Predi1(j)]i1 , [j]−i1) (we recall that Predi1(j1) = Li1(n)). We claim that preferences
specified in the second step do not conflict preferences specified in the first step for
bottom bundles.
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— If j 6= j1, then we need to show that ([Predi1(j)]i1 , [j]−i1) 6∈ BottomBundlesPes
j . When

agent j is about to choose her item from Di1 , agent Predi1(j) has already chosen her
item from Di1 , which means that Predi1(j) is unavailable for agent j. This means
that ([Predi1(j)]i1 , j−i1) 6∈ BottomBundlesPes

j .
— If j = j1, then by definition (see Table III) ([Li1(n)]i1 , [j1]−i1) is replaced by

(Li1(n), . . . , Li1(n)) in BottomBundlesPes
j1

, which means that it can be ranked in the
top.

Step 3: extend to full preference profile. For any j, let Rj be an arbitrary linear or-
der over D that satisfies all constraints defined in the previous two steps (see Table IV
and V). Let P = (R1, . . . , Rn).

We now show by induction on the round in the sequential allocation mechanism,
denoted by t, that if we apply the sequential allocation O to P , then for all j ≤ n, agent
j gets (j, . . . , j).

When t = 1, agent j1 chooses an item from Di1 . If j1 is optimistic, then it is not
hard to check that the i1-th component of the top-ranked bundle of Rj1 is j1 (the top-
ranked bundles are (j, . . . , j) and ([j′]Oj(Kj), [j]−Oj(Kj)), for case 1 (Kj1 = 1) and case
2 (Kj1 > 1), respectively. If agent j1 is pessimistic, then for any d ∈ Di1 with d 6= j1,
there exists a bundle whose i1th component is d and is ranked below any bundle whose
i1th component is j1. More precisely, if d 6= Predi1(j1) = Li1(n), then such a bundle is
([d]i1 , [j]−i1); if d = Predi1(j1) = Li1(n), then such an bundle is (Li1(n), . . . , Li1(n)). In
both cases a pessimistic agent j1 will choose item j1 from Di1 .

Suppose in every round before round t, the active agent j chose item j from the
designated category. Let O(t) = (j, i). If j is optimistic, then we show in the following
four cases that she will choose item j from Di in round t.

— j 6= j1, Kj = 1. In this case j is guaranteed to get her top-ranked available bundle.
It is not hard to check that the available bundles are a subset of BottomBundlesOpt

j ,
where (j, . . . , j) is available and is ranked in the top. Therefore agent j will choose
item j.

— j 6= j1, Kj > 1. There are following cases:
(1) Agent Predi1(j) has not chosen her item from Di1 . In this case the top-ranked

bundle ([Predi1(j)]i1 , [j]−i1) is still available by the induction hypothesis.
(2) Agent Predi1(j) has chosen an item from Di1 and PredOj(Kj)(j) has not cho-

sen her item from DOj(Kj). By the induction hypothesis, agent Predi1(j) chose
item Predi1(j) from category Di1 , which means that ([Predi1(j)]i1 , [j]−i1) is un-
available. The bundle ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) becomes the top-ranked
available bundle due to the induction hypothesis, whose j-th component is j.

(3) Predi1(j) has chosen item Predi1(j) from Di1 and PredOj(Kj)(j) has chosen her
item from DOj(Kj). In this case, we first claim that O−1j (i) ≥ Kj . For the sake
of contradiction suppose O−1j (i) < Kj . Then, by the definition of PredOj(Kj),
no agent chooses an item from DOj(Kj) between round O−1j (i) and t∗j,Kj

. We re-
call that t∗j,Kj

is the round when agent j chooses an item from DOj(Kj). How-
ever, this violates the minimality of Kj since no agent chooses an item from
DOj(Kj) between round t∗j,Kj−1 > O−1j (i) and t∗j,Kj

. Hence, we must have that
O−1j (i) ≥ Kj . By the induction hypothesis, the available bundles are a subset of
BottomBundlesOpt

j and (j, . . . , j) is still available and is ranked at the top, which
means that agent j will choose item j from Di.
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In all three cases above, the ith component of the top-ranked available bundle is j,
which means that agent j will choose item j.

— j = j1, Kj = 1. By the induction hypothesis, the top-ranked bundle (j, . . . , j) is still
available, which means that agent j will choose item j.

— j = j1, Kj > 1. If agent PredOj(Kj)(j) has not chosen her item from DOj(Kj), then
by the induction hypothesis the top bundle ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) is still
available and i 6= Oj(Kj). If agent PredOj(Kj)(j) has chosen item PredOj(Kj)(j) from
DOj(Kj), then by the induction hypothesis the available bundles are a subset of
BottomBundlesOpt

j with (j, . . . , j) ranked at the top. In both cases the ith component
of the top-ranked available bundle is j. Therefore agent j will choose item j.

If agent j is pessimistic, then by the induction hypothesis the available items in
Di are D∗i,t, and j ∈ D∗i,t. For any d ∈ D∗i,t with d 6= j, ([d]i, [j]−i) is still avail-
able and is ranked lower than any available bundle whose i-th component is j in
BottomBundlesPes

j . Therefore, a pessimistic agent j will choose item j in this round.
It follows that after the sequential allocation, for all j ≤ n, agent j gets (j, . . . , j). It

is not hard to verify that condition 1 and 2 hold.
To show that condition 3 holds, consider the allocation where agent j gets

([Predi1(j)]i1 , [j]−i1). In this allocation, all agents except j1 get their top-ranked bun-
dle, and j1 gets her top-ranked bundle (if j1 is pessimistic) or second-ranked bundle (if
j1 is optimistic). This proves the theorem. �

Proposition 2. Among all categorical sequential mechanisms, serial dictatorships
with all-optimistic agents have the best (smallest) worst-case utilitarian rank and the
worst (largest) worst-case egalitarian rank.
Proof: The worst-case egalitarian rank of any serial dictatorship is np when all
agents have the same preferences. To prove the optimality of worst-case utilitarian
rank, given fO, we consider the multiset composed of the numbers of items in the
designated category that the active agent can choose in each step. That is, we con-
sider the multiset RI = {kj,l : ∀j ≤ n, l ≤ p}. Since in each step in the execu-
tion of fO, only one item is allocated, RI is composed of p copies of {1, . . . , n}. Since
for each agent j, (1 +

∑p
l=1(kj,Oj(l) − 1)) ≤

∏p
l=1 kj,Oj(l) (we note that in the right

hand side, l starts with 1 but not Kj), the best worst-case utilitarian rank is at least
n(np + 1) −

∑n
j=1

∏p
l=1 kj,Oj(l) ≥ n(np + 1) −

∑n
j=1 j

p. It is not hard to verify that this
lower bound is achieved by any serial dictatorship with all-optimistic agents. �

Proposition 3. Any categorical sequential mechanisms with all-optimistic agents has
the worst (largest) worst-case egalitarian rank, which is np.
Proof: By Theorem 2, the proposition is equivalent to the existence of an agent j
such that for all l ≥ Kj , kj,Oj(l) = 1. For the sake of contradiction, let us assume the
following condition:

Condition (*): for every agent j, there exists l ≥ Kj such that kj,Oj(l) > 1.
Let O(np) = (jn, ip). It follows that kjn,ip = 1 because there is only one item

left. By condition (*), there exists ip−1 with Kn ≤ O−1jn
(ip−1) such that kjn,ip−1 > 1.

Let jn−1 denote the agent who is the last to chose an item from category ip−1. We
have jn−1 6= jn, because agent n is not the last agent to choose an item from cat-
egory ip−1. By definition, we have kjn−1,ip−1

= 1. Moreover, (jn−1,Ojn−1
(Kjn−1

)) �O
(jn, ip−1) �O (jn,Ojn(Kjn)), which simply states that jn−1 chooses an item from cate-
gory Ojn−1(Kjn−1) after jn chooses an item from category ip−1 (the second half of the
inequality is due to the way we choose ip−1). This inequality holds because if agent jn−1
chooses an item from category Ojn−1(Kjn−1) before agent jn chooses an item from cat-
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egory ip−1, then agent jn “interrupts” agent jn−1 from choosing an item from category
ip−1, which contradicts the definition of Kjn−1 .

By condition (*), there exists ip−2 such that Kjn−1
≤ O−1jn−1

(ip−2) and kjn−1,ip−2
>

1. Similarly, we can define jn−2, prove that jn−2 6= jn−1 and (jn−2,Ojn−2(Kjn−2)) �O
(jn−1, ip−2) �O (jn−1,Ojn−1(Kjn−1)).

However, this process cannot continue forever, since otherwise we will obtain an
infinite sequence inO: (jn,Ojn(Kjn))�O(jn−1,Ojn−1

(Kjn−1
))�O(jn−2,Ojn−2

(Kjn−2
))�O

· · · , but np is finite. This leads to a contradiction. �

Proposition 4. For any even number p, the worst-case egalitarian rank of any balanced
mechanism with all-pessimistic agents (see Example 2) is np− (n− 1)p/2. These are the
mechanisms with the best worst-case egalitarian rank among categorical sequential
mechanisms with all-pessimistic agents.
Proof: For any balanced mechanism, it is not hard to see that for any agent j, Oj =
1 � · · · � p. For any l < p/2 and any j ≤ n, we have kj,2l−1 + kj,2l = n + 1. Since all
agents are pessimistic, by part 2 of Theorem 2, their worst-case ranks are all equal to
np − (n − 1)p/2. The optimality of balanced mechanisms come from the fact that for
any categorical sequential mechanisms

∑
j,l kj,l = (n + 1)np/2. Therefore, there must

exists an agent j∗ with
∑p

l=1 kj,l ≤ (n + 1)p/2. �

Proposition 5. For any even number p with 2p > 1+(n−1)p/2, there exists a categorical
sequential mechanism with both optimistic and pessimistic agents, whose worst-case
egalitarian rank is strictly better (smaller) than np − (n− 1)p/2.
Proof: We prove the proposition by explicitly constructing such a mechanism. The
idea is, agents {1, . . . , n − 1} choose the items as in a balanced categorial sequential
mechanism for n− 1 agents, then we let agent n “interrupt” them and choose all items
in consecutive p rounds right before their last iteration, i.e. the last (n−1) round. Then,
we let agents 1 through n−1 be optimistic and let agent n be pessimistic. For example,
when n = 3 and p = 4, the order is (1, 1) � (2, 1) � (2, 2) � (1, 2) � (1, 3) � (2, 3) � (3, 1) �
(3, 2) � (3, 3) � (3, 4) � (2, 4) � (1, 4). Agent 1 and agent 2 are optimistic and agent 3 is
pessimistic.

By part 2 of Theorem 2, for any agent j ≤ n − 1, the worst-case rank is np + 1 −
(1 + np/2). By part 1 of Theorem 2, the worst-case rank for agent n is np + 1− 2p. This
proves the proposition. �
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