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A Maximum-Likelihood Approach

In voting, the joint decision is made based on the agents’ preferences. Therefore,

in some sense, this means that the agents’ preferences are the “causes” of the joint

decision. However, there is a different (and almost reversed) point of view: there is

a “correct” joint decision, but the agents may have different perceptions (estimates)

of what this correct decision is. Thus, the agents’ preferences can be viewed as noisy

reports on the correct joint decision. Even in this framework, the agents still need to

make a joint decision based on their preferences, and it makes sense to choose their

best estimate of the correct decision. Given a noise model, one natural approach is

to choose the maximum likelihood estimate of the correct decision. The maximum

likelihood estimator is a function from profiles to alternatives (more accurately, sub-

sets of alternatives, since there may be ties), and as such is a voting rule (more

accurately, a correspondence).

This maximum likelihood approach was first studied by Condorcet (1785) for the

cases of two and three alternatives. Much later, Young (1995) and Young (1988)

showed that for arbitrary numbers of alternatives, the MLE rule derived from Con-

dorcet’s noise model coincides with Kemeny’s rule (Kemeny, 1959). The approach
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was further pursued by Drissi-Bakhkhat and Truchon (2004). More recently, Conitzer

and Sandholm (2005a) studied whether and how common voting correspondences can

be represented as maximum likelihood estimators. Truchon (2008) studied a differ-

ent way of viewing Borda as an MLE. We studied the relationship between MLEs

and ranking scoring rules (Conitzer et al., 2009b). Conitzer (2011) took an MLE

approach towards voting in social networks. We studied an MLE approach towards

voting with partial orders Xia and Conitzer (2011b). The related notion of dis-

tance rationalizability has also received attention in the computational social choice

community recently (Elkind et al., 2009a).

All of the above work does not assume any structure on the set of alternatives.

In this chapter, we take an MLE approach to preference aggregation in multi-issue

domains, when the voters’ preferences are represented by (not necessarily acyclic)

CP-nets. Considering the structure of CP-nets, we focus on probabilistic models

that are very weakly decomposable. That is, given the “correct” winner, a voter’s

local preferences over an issue are independent from her local preferences over other

issues, and as well as from her local preferences over the same issue given a different

setting of (at least some of) the other issues.

After reviewing some background, we start with the general case in which the

issues are not necessarily binary. The goal here is to investigate when issue-by-

issue or sequential voting rules can be modeled as maximum likelihood estimators.

When the input profile is separable, we completely characterize the set of all voting

correspondences that can be modeled as an MLE for a noise model satisfying a weak

decomposability (respectively, strong decomposability) property. Then, when the

input profile of CP-nets is compatible with a common order over issues, we prove

that no sequential voting rule satisfying unanimity can be represented by an MLE,

provided the noise model satisfies very weak decomposability. We show that this

impossibility result no longer holds if the number of voters is bounded above by a
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constant.

Then, we move to the special case in which each issue has only two possible

values. For such domains, we introduce distance-based noise models, in which the

local distribution over any issue i under some setting of the other issues depends only

on the Hamming distance from this setting to the restriction of the “correct” winner

to the issues other than i. We characterize distance-based noise models axiomatically.

Then we focus on distance-based threshold noise models in which there is a threshold

such that if the distance is smaller than the threshold, then a fixed nonuniform local

distribution is used, whereas if the distance is at least as large as the threshold, then

a uniform local distribution is used. We show that when the threshold is one, it is

NP-hard to compute the winner, but that when it is equal to the number of issues,

the winner can be computed in polynomial time.

10.1 Maximum-Likelihood Approach to Voting in Unstructured Do-
mains

In the maximum likelihood approach to voting, it is assumed that there is a correct

winner d � C, and each vote V is drawn conditionally independently given d, accord-

ing to a conditional probability distribution π�V �d�. The independence structure of

the noise model is illustrated in Figure 10.1. The use of this independence structure

is standard. Moreover, if conditional independence among votes is not required, then

any voting rule can be represented by an MLE for some noise model (Conitzer and

Sandholm, 2005a), which trivializes the question.

Under this independence assumption, the probability of a profile P � �V1, . . . , Vn�

given the correct winner d is π�P �d� �
�n

i�1 π�Vi�d�. Then, the maximum likelihood

estimate of the correct winner is MLEπ�P � � arg maxd�C π�P �d�.

MLEπ is a voting correspondence, as there may be several alternatives d that

maximize π�P �d�. Of course we can turn it into a voting rule by using a tie-breaking

184



“correct” outcome

Voter 1 Voter 2 Voter n. . .

Figure 10.1: The noise model.

mechanism, but for most part of this chapter, we will study the properties of MLE

correspondences. Another model that has been studied assumes that there is a

correct ranking of the alternatives. Here, the model is defined similarly: given the

correct linear order V �, each vote V is drawn conditionally independently according

to π�V �V ��. The maximum likelihood estimate is defined as follows.

MLEπ�P � � arg max
V ��L�C�

�

V �P

π�V �V ��

In this chapter, we require that all such conditional probabilities to be positive

for technical reasons.

Definition 10.1.1. (Conitzer and Sandholm, 2005a). A voting rule (correspon-

dence) r is a maximum likelihood estimator for winners under i.i.d. votes (MLEWIV)

if there exists a noise model π such that for any profile P , we have that MLEπ�P � �

r�P �.

Conitzer and Sandholm (2005a) studied which common voting rules/correspondences

are MLEWIVs.

10.2 Multi-Issue Domain Noise Models

In this section, we extend the maximum-likelihood estimation approach to multi-

issue domains (where X � D1 � . . . � Dp). For now, we consider the case where

there is a correct winner, �d � X . We let the voting language to be the set of all
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(possibly cyclic) CP-nets, that is, votes are given by CP-nets and are conditionally

independent, given �d. Let CPnet�X � denote the set of all (possibly cyclic) CP-nets

over X . The probability of drawing CP-net N given that the correct winner is �d is

π�N ��d�, where π is some noise model. We note that π is a conditional probability

distribution over all CP-nets (in contrast to all linear orders in previous studies).

Given this noise model, for any profile of CP-nets PCP � �N1, . . . ,Nn�, the maximum

likelihood estimate of the correct winner is

MLEπ�P � � arg max
�d�X

n�

j�1

π�Nj��d�

Again, MLEπ is a voting correspondence.

Even if for all i, �Di� � 2, the number of CP-nets (including cyclic ones) is 2p�2p�1

(2 options for each entry of each CPT, and the CPT of any issue i has 2p�1 entries,

one for each setting of the issues other than i). Hence, to specify a probability

distribution over CP-nets, we will assume some structure in this distribution so that

it can be compactly represented. Throughout the chapter, we will assume that the

local preferences for individual issues (given the setting of the other issues) are drawn

conditionally independently, both across issues and across settings of the other issues,

given the correct winner. More precisely:

Definition 10.2.1. A noise model is very weakly decomposable if for every �d � X ,

every i � p, and every �a�i � D�i, there is a probability distribution π
�a
�i

�d
over L�Di�,

so that for every �d � X and every N � CPnet�X �, π�N ��d� �
�

i�p,�a
�i�D�i

π
�a
�i

�d
�N �Xi:�a�i

�

For instance, if Di � �0i, 1i, 2i�, π
�a
�i

�d
�0i � 2i � 1i� is the probability that the

CP-net of a given voter contains �a�i : 0i � 2i � 1i, given that the correct winner is �d.

Then, the probability of CP-net N is the product of the probabilities of all its local

preferences N �Xi:�a�i
over specific Xi given specific �a�i (which contains the setting
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for Xi’s parents as a sub-vector), when the correct winner is �d. (We will introduce

stronger decomposability notions soon.)

Assuming very weak decomposability is reasonable in the sense that a voter’s

preferences for one issue are not directly linked to her preferences for another issue.

We note that this is completely different from saying that the voter’s preferences

for an issue do not depend on the values of the other issues. Indeed, the voter’s

preferences for an issue can, at least in principle, change drastically depending on

the values of the other issues. For instance, in Example 8.2.2, the event “the voter

prefers white to pink to red wine when the main course is fish” is probabilistically

independent (conditional on the correct outcome) of the event “the voter prefers beef

to salad to fish when the wine is red.”

However, we do not want to argue that such a distribution always generates

realistic preferences. In fact, with some probability, such a distribution generates

cyclic preferences. This is not a problem, in the sense that the purpose of the

maximum likelihood approach is to find a natural voting rule that maps profiles to

outcomes. The fact that this rule is also defined for cyclic preferences does not hinder

its application to acyclic preferences. Similarly, Condorcet’s original noise model for

the single-issue setting also generates cyclic preferences with some probability, but

this does not prevent us from applying the corresponding (Kemeny) rule (Kemeny,

1959) to acyclic preferences.

Even assuming very weak decomposability, we still need to define exponentially

many probabilities. We will now introduce some successive strengthenings of the

decomposability notion. First, we introduce weak decomposability, which removes

the dependence of an issue’s local distribution on the settings of the other issues in

the correct winner.

Definition 10.2.2. A very weakly decomposable noise model π is weakly decompos-
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able if for any i � p, any �d1, �d2 � X such that �d1�Xi
� �d2�Xi

, we must have that for

any �a
�i � D

�i, π
�a
�i

�d1

� π
�a
�i

�d2

. Here �d1�Xi
is the Xi-component of �d1.

Next, we introduce an even stronger notion, namely strong decomposability, which

removes all dependence of an issue’s distribution on the settings of the other issues.

That is, the local distribution only depends on the value of that issue in the correct

winner.

Definition 10.2.3. A very weakly decomposable noise model π is strongly decom-

posable if it is weakly decomposable, and for any i � p, any �a
�i,�b�i � D

�i, any

�d � X , we must have that π
�a
�i

�d
� π

�b
�i

�d
.

10.3 Characterizations of MLE correspondences

It seems that the MLE approaches are quite different from the voting rules that

have previously been studied in the context of multi-issue domains, such as issue-

by-issue voting and sequential voting. This may imply that the maximum likelihood

approach can generate sensible new rules for multi-issue domains. Nevertheless, we

may wonder whether previously studied rules also fit under the MLE framework.

In this section, we study whether or not issue-by-issue and sequential voting

correspondences can be modeled as the MLEs for very weakly decomposable noise

models. We note that even though MLEs for very weakly decomposable noise models

are defined over profiles of CP-nets, they can be easily extended to deal with profiles

of linear orders in the following way. For each linear order Vj in the input profile P ,

let Nj denote the CP-net (possibly cyclic) that Vj extends. Then, we apply the MLE

rule to select winner(s) from �N1, . . . ,Nn�. We recall that voting rules (which always

output a unique winner) are a special case of voting correspondences. Therefore,

our results easily extend to the case of voting rules. First, we restrict the domain

to separable profiles, and characterize the set of all correspondences that can be
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modeled as the MLEs for strongly/weakly decomposable noise models.

Theorem 10.3.1. Over the domain of separable profiles, a voting correspondence rc

can be modeled as the MLE for a strongly decomposable noise model if and only if rc

is an issue-by-issue voting correspondence composed of MLEWIVs.

Proof of Theorem 10.3.1: First we prove the “if” part. Let rc be an issue-by-

issue voting correspondence that is composed of rc
1, . . . , r

c
p, in which for any i � p, rc

i

is an MLEWIV over Di of the noise model Pr�V i�di�, where V i � L�Di� and di � Di.

Let π be a noise model over X defined as follows: for any i � p, any �d � X , any

�a
�i � D

�i and any V i � L�Di�, we have that π�a
�d
�Vi� � Pr�V i�di�. We next prove that

for any separable profile P , we must have that MLEπ�P � � rc�P �.

MLEπ�P � � arg max
�d

�

i�p,�a
�i�D

�i

n�

j�1

π
�a
�i

�d
�Vj�

� arg max
�d

�

i�p

n�

j�1

Pr��Vi�Xi
��di�

�D
�i�

Therefore, �b � MLEπ�P � if and only if for any i � p, we have

bi � arg max
di

n�

j�1

Pr��Vi�Xi
��bi�

We note that for any �d� � r�P �, we must have that d�i � arg max
di

�n

j�1 Pr��Vi�Xi
��di�.

Therefore, �d� � MLEπ�P �.

Next, we prove the “only if” part. For any MLEπ where π is strongly decom-

posable, we define an issue-by-issue voting rule as follows: for any i � p, let rc
i be

the MLEWIV that corresponds to the noise model in which for any di � Di, we have

that Pr�V i�di� � π
�a
�i

�d
�V i�. Similar to the proof for the “if” part, we have that rc

and MLEπ are equivalent over the domain of separable profiles. �
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A candidate scoring correspondence c is a correspondence defined by a scoring

function s : L�X � � X � R in the following way: for any profile P , c�P � �

arg maxd�X

�
V �P s�V, d�.

Theorem 10.3.2. Over the domain of separable profiles, a voting correspondence rc

can be modeled as the MLE for a weakly decomposable noise model if and only if rc

is an issue-by-issue voting correspondence composed of candidate scoring correspon-

dences.

Proof of Theorem 10.3.2: First we prove the “if” part. Let rc be an issue-by-

issue voting correspondence in which the issue-wise correspondence over Di is rc
si
,

which has scoring function si. Let π
�a
�i

di
denote π

�a
�i

�d
, where the ith component of �d is

di. Because r is strongly decomposable, π
�a
�i

di
is well-defined. For any i � p, we claim

that there exists a set of probability distributions π
�a
�i

�d
, �d � X ,�a�i � D�i over L�Di�

such that for any di � Di, di � arg maxbi�Di

�n

j�1

�
�a
�i�D�i

π
�a
�i

bi
�Vj �Xi

� if and only if

di � rc
si
�P �Xi

�.

We note that for any scoring function s and any constant t, the ranking scoring

rule that corresponds to s is equivalent to the ranking scoring rule that corresponds

to s	 t. Therefore, without loss of generality we let si�V
i, di� 
 0 for any i � p, any

V i � L�Di�, and any di � Di. Let Ki � �Di�, L�Di� � �l1, . . . , lKi!�.

Claim 10.3.1. There exist ki, ti � R with ki  0, such that for any V i � L�Di� and

any di � Di, we have that ln�
�

�d
�i�D�i

π
�d
�i

di
�V i�� � kisi�V

i, di� 	 ti.

Proof of Claim 10.3.1: We let ki be a real number such that for any di � Di, we

have that
�Ki!

j�1�exp�si�lj, di���
ki 
 1; let p̂

j
di
� exp�si�lj, di��. For any di � Di, any
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1 � α �
Ki!

Ki!� 1
, we let

fdi
�α� � ln��1�

Ki!�1�

j�1

p̂
j
di

α
��1� �Ki � 1�

α

Ki!
��

Because
�Ki!

j�1 p̂
j
di
� 1, we have that ln�1 �

�Ki!�1
j�1 p̂

j
di
� � ln p̂Ki!

di
� kisi�lKi!, di�.

Therefore, fdi
�1� � kisi�lKi!, di� � ln�Ki!�. We note that lim

α�
Ki!

Ki!�1

fdi
�α� � �	. It

follows that there exists 1 � αdi
�

Ki!

Ki!� 1
such that fdi

�αdi
� � kisi�lKi!, di��ln�Ki!�.

For any i � p, any di 
 Di, we let �a�
�i,�a

�

�i 
 D�i such that �a�
�i �

��a�
�i. We define

π
�d
�i

di
as follows.

• for any j � Ki!� 1, π
�a�
�i

di
�lj� �

1

αdi

�exp�si�lj , di���
ki, π

�a�
�i

di
�lj� �

αdi

Ki!
.

• for any j � Ki!, any �d�i 
 D�i such that �d�i � �a�
�i and �d�i � �a�

�i, we have

that π
�d�i

di
�lj� �

1
Ki!

.

For any �di 
 Di and any j � Ki!� 1, we have that

ln�
�

�d�i�D�i

π
�d�i

di
�lj��

� ln�π
�a�
�i

di
�lj� � π

�a�
�i

di
�lj��  ��D�i� � 2� ln�

1

Ki!
�

� ln�
1

αdi

�exp�si�lj, di���
ki �

αdi

Ki!
� � ��D�i� � 2� ln�Ki!�

�kisi�lj , di� � ��D�i� � 1� ln�Ki!�
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For j � Ki!, we have the following calculation.

ln�
�

�d
�i�D�i

π
�d
�i

di
�lKi!��

� ln�π
�a�
�i

di
�lKi!� � π

�a�
�i

di
�lKi!�� � ��D�i� � 2� ln�

1

Ki!
�

�fdi
�αi� � ��D�i� � 2� ln�Ki!�

�kisi�lKi!, di� � ��D�i� � 1� ln�Ki!�

Therefore, let ti � ���D�i� � 1� ln�Ki!�. It follows that for any V i � L�Di�, and any

di � Di, we must have that ln�
�

�d�i�D�i
π

�d�i

di
�V i�� � kisi�V

i, di� � ti. �

Next, we show that for any separable profile P , rc�P � � MLEπ�P �. Simi-

lar to in the proof of Theorem 10.3.1, it suffices to prove that for any i 	 p,

arg maxdi�Di

�
j�n

�
�d�i�D�i

π
�d�i

di
�Vj �Xi

� � rc
si
�P �Xi

�.

arg max
di�Di

�

j�n

�

�d�i�D�i

π
�d�i

di
�Vj �Xi

�

� arg max
di�Di

ln�
�

j�n

�

�d�i�D�i

π
�d�i

di
�Vj �Xi

��

� arg max
di�Di

�

j�n

�

�d�i�D�i

ln�π
�d�i

di
�Vj �Xi

��

� arg max
di�Di

�

j�n

�

�d�i�D�i

�kisi�Vj �Xi
, di� � ti�

� arg max
di�Di

�

j�n

�

�d�i�D�i

si�Vj�Xi
, di�

�rc
si
�P �Xi

�

Next, we prove the “only if” part. Let π be a weakly decomposable noise

model. For any i 	 p, any di � Di, and any V i � L�Di�, we let si�V
i, di� �

ln
�

�a�i�D�i
π

�a�i

di
�V i�. Then, we have that di maximizes si�P �Xi

, di� if and only if di
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maximizes
�

N�P

�
�a
�i�D�i

π
�a
�i

di
�N �Xi

�, which means that rc�P � � MLEπ�P �.

(End of the proof of Theorem 10.3.2). �

However, for sequential voting correspondences, we have the following negative

result. A voting correspondence rc satisfies unanimity if for any profile P in which

each vote ranks an alternative �d first, we have r�P � � ��d�. In the remainder of this

section, w.l.o.g. we let O � X1 � � � � � Xp.

Theorem 10.3.3. Let Seq�rc
1, . . . , r

c
p� be a sequential voting correspondence that sat-

isfies unanimity. Over the domain of O-legal profiles, there is no very weakly decom-

posable noise model such that Seq�rc
1, . . . , r

c
p� is the MLE.

This theorem tells us that even assuming the weakest conditional independence

of the noise model, the voting correspondence defined by the MLE of that noise

model is different from any sequential voting correspondence satisfying unanimity.

This suggests that the MLE approach gives us new voting rules/correspondences.

Proof of Theorem 10.3.3: For the sake of contradiction, we let Seq�rc
1, . . . , r

c
p�

be a sequential voting correspondence and MLEπ be an MLE model equivalent

to it. A voting correspondence c satisfies consistency, if for any profiles P1, P2, if

rc�P1� � rc�P2�, then rc�P1 	 P2� � rc�P1�; c satisfies anonymity, if it is indifferent

with the name of the voters. Because MLEπ satisfies consistency and anonymity,

we have the following claim.

Claim 10.3.2. For any i 
 p, rc
i satisfies consistency, anonymity (see Lang and Xia

(2009)) and unanimity.

For any �d � X , any O-legal CP-net N , we let

πX1

�d
�N � �

�

�a
�1�D�1

π
�a
�1

�d
�N �X1

�

π
X
�1

�d
�N � �

�

2�i�p,�a
�i�D�i

π
�a
�i

�d
�N �Xi:a1...ai�1

�
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Let N1,N2 be CP-nets. We note that if N1�X1
� N2�X1

, then πX1

�d
�N1� � πX1

�d
�N2�;

if for any d1 � D1, N1�X
�1:d1

� N2�X
�1:d1

, then we must have that π
X
�1

�d
�N1� �

π
X
�1

�d
�N2�, where N1�X

�1:d1
is the sub-CP-net of N1 given X1 � d1. For any O-

legal vote V that extends a CP-net N , we write πX1

�d
�V � � πX1

�d
�N � and π

X
�1

�d
�V � �

π
X
�1

�d
�N �; for any O-legal profile P , we write πX1

�d
�P � �

�
V �P πX1

�d
�V � and π

X
�1

�d
�P � �

�
V �P π

X
�1

�d
�V �. It follows that for any O-legal profile P , we have that

MLEπ�P � � arg max
�d�X

�πX1

�d
�P � � π

X
�1

�d
�P ��

For any linear order V , let top�V � � Alt�V, 1�. That is, top�V � is the alternative

that is ranked in the top position of V . For any V 1
1 , V 1

2 � L�D1� with top�V 1
1 � 	

top�V 1
2 �, and any n � N, we let P 1

1,n be the profile that is composed of n copies of

V 1
1 ; let P 1

2,n be the profile that is composed of n copies of V 1
2 . Because rc

1 satisfies

unanimity, we must have that rc
1�P

1
1,n� � 
top�V 1

1 �� and rc
1�P

1
2,n� � 
top�V 1

2 ��. For

any j � n, we let Qj,n be the profile in which the preferences of the first j voters

are V 1
1 , and the preferences of the remaining n  j voters are V 1

2 . We have that

Q1,n � P 1
1,n and Qn,n � P 1

2,n. Therefore, there exists j � n  1 and b1 � D1 with

b1 	 top�V 1
1 �, such that top�V 1

1 � � rc
1�Qj,n� and b1 � rc

1�Qj�1,n�. For any n � N, we

let Cn denote the set of pairs �a1, b1� such that

• a1, b1 � D1, a1 	 b1.

• There exists two profiles W 1
1 , W 1

2 over D1 such that a1 � rc
1�W

1
1 �, b1 � rc

1�W
1
2 �,

and W 1
1 differs from W 1

2 only on one vote.

That is, Cn is composed of the pairs �a1, b1� such that there exists a profile Q over D1

that consists of n votes, a1 � rc
1�Q�, and by changing one vote of Q, there is another

alternative b1 who is one of the winners. We note that for any n � N, �a1, b1� � Cn if

and only if �b1, a1� � Cn. It follows that for any n � N, Cn 	 �. Because �D1� � �,
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there exists �a1, b1� � �D1�
2 such that for any k � N, there exists n � k such that

�a1, b1� � Cn.

Claim 10.3.3. For any �a
�1,�b�1 � D

�1, and any pair of CP-nets N �,N �, we must

have that
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

�
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

, where �a � �a1,�a�1�, �b � �b1,�b�1�.

Proof of Claim 10.3.3: Suppose for the sake of contradiction there exist �a�1,�b�1,

and N �,N � so that
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

�
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

. Without loss of generality we let

π
X
�1

�a �N ��

π
X
�1

�b
�N ��

�
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

. We next claim that there exits a natural number k such

that for any i � p and any profile P i composed of k votes, if at least k 	 1 votes in

P i rank the same alternative di in the top position, then rc
i �P

i� � 
di�.

Claim 10.3.4. There exists k � N such that for any i � p, any di � Di, and

any profile P i � �V i
1 , . . . , V i

k � with di � top�V i
1 � � . . . � top�V i

k�1�, we have that

rc
i �P � � 
di�.

Proof of Claim 10.3.4: Let U � max
�d1,�d2,N

Pr�N ��d1�

Pr�N ��d2�
. Let u � min

�d1��d2,N :top�N ���d1

Pr�N ��d1�

Pr�N ��d2�
.

Because MLEπ�N � satisfies unanimity, for any �d1 and N such that top�N � � �d1,

we must have that MLEπ�N � � 
�d1�, which means that u � 1. Let k be a natural

number such that uk�1 � U . We arbitrarily choose �d�i � D�i, and let �d � �di, �d�i�.

We define k CP-nets N1, . . . ,Nk as follows.

• For any j � k, top�Nj� � ��d�i, top�V
i��.

• For any j � k, Nj�Xi:d1,...,di�1
� V i.

• Other conditional preferences are defined arbitrarily.
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Because Seq�rc
1, . . . , r

c
p� satisfies unanimity, we have that Seq�rc

1, . . . , r
c
p��N1, . . . ,Nk�1� �

��d�. Therefore, for any �d� � X and any CP-net N , we have the following calculation:

Pr��N1, . . . ,Nk���d�

Pr��N1, . . . ,Nk���d��
�

�k�1
j�1 Pr�Nj��d�

�k�1
j�1 Pr�Nj��d��

�
Pr�Nk��d�

Pr�Nk��d��

�u�k�1� 1

U
� 1

Therefore rc
i �V

1, . . . , V k� � �di�.

(End of proof of Claim 10.3.4.) �

Let N�a be a CP-net such that top�N�a� � �a and top�N �X
�1:b1� � �b�1. That

is, N�a is a CP-net in which �a is ranked in the top position, and given X1 �

b1, �b�1 is ranked in the top position. Next, we show that for any CP-net N ,

π
X
�1

�a �N �

π
X
�1

�b
�N �

�
π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

. Suppose for the sake of contradiction, there exists N such

that
π

X
�1

�a �N �

π
X
�1

�b
�N �

	
π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

. We next show contradiction in the case
π

X
�1

�a �N �

π
X
�1

�b
�N �

�

π
X
�1

�a �N�a�

π
X
�1

�b
�N�a�

. Let UX1
� max

�d1,�d2,N

πX1

�d1

�N �

πX1

�d2

�N �
. Let K be a natural number such that

�
π

X
�1

�a �N �

π
X
�1

�b
�N �



π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

�K � U2
X1

. Let n � N be such that n � kK and �a1, b1� � Cn. It

follows that there exist �V 1
1 , . . . , V 1

n � and W 1
1 such that a1 � rc

1�V
1
1 , . . . , V 1

n � and b1 �

rc
1�W

1
1 , V 1

2 , . . . , V 1
n �. We define 2n� 1 CP-nets N �

1,N1,N2, . . . ,Nn, N̂1, N̂2, . . . , N̂n as

follows.

• For any j  n, Nj�X1
� N̂j �X1

� V 1
j ; N �

1�X1
� W 1

1 .

• For any j1  K, 1  j2  k�1, and any d1 � D1, N�j1�1�k�j2�X�1:d1
� N�a�X

�1:d1

and Nj1k�X
�1:d1

� N �X
�1:d1

; for any j  n and any d1 � D1, Nj�X
�1:d1

�

N�a�X
�1:d1

.
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• For any kK � 1 � j � n, Nj � N̂j � N�a.

• For any d1 � D1, N �

1�X�1:d1
� N�a�X

�1:d1
.

For any j � n, we let Vj (V̂j) be an arbitrary linear order that extends Nj (N̂j);

let V �

1 be an arbitrary linear order that extends N �

1; let P � �V1, . . . , Vn�, P � �

�V �

1 , V2, . . . , Vn�, P̂ � �V̂1, . . . , V̂n�, P̂ � � �V̂ �

1 , V̂2, . . . , V̂n�. We make the following

observations.

• a1 � rc
1�P �X1

�, a1 � rc
1�P̂ �X1

�, b1 � rc
1�P

��X1
�, b1 � rc

1�P̂
��X1

�.

• For any 1 � i � p� 1, P �Xi:a1...ai�1
� K��k � 1�N�a�Xi:a1...ai�1

	N ��Xi:a1...ai�1
� 	

�n�kK�N�a�Xi:a1...ai�1
. From Claim 10.3.4 we have that rc

i ��k�1�N�a�Xi:a1...ai�1
	

N ��Xi:a1...ai�1
� � 
ai�. Because rc

i satisfies unanimity and consistency, and for

any i � p, top�N�a�Xi:a1...ai�1
� � ai, we have that for any i � p, rc

i �P �Xi:a1...ai�1
� �


ai�. Similarly for any i � p, rc
i �P̂ �Xi:a1...ai�1

� � 
ai�.

• For any 1 � i � p�1, P �Xi:b1...bi�1
� K��k�1�N�a�Xi:b1...bi�1

	N ��Xi:b1...bi�1
�	�n�

kK�N�a�Xi:b1...bi�1
. Similarly, we have that for any 1 � i � p, rc

i �P
��Xi:b1...bi�1

� �

rc
i �P̂

��Xi:b1...bi�1
� � 
bi�.

Therefore, we have that �a � Seq�rc
1, . . . , r

c
p��P �,�a � Seq�rc

1, . . . , r
c
p��P̂ �, and �b �

Seq�rc
1, . . . , r

c
p��P

��,�b � Seq�rc
1, . . . , r

c
p��P̂

��. That is,
Pr�P ���b�

Pr�P ���a�
� 1,

Pr�P̂ ���b�

Pr�P̂ ���a�
� 1.

We note that P and P � differ only on the first vote. Therefore, we have the following
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calculation.

1 �
Pr�P ���b�

Pr�P ���a�

�
πX1

�b
�V �

1� � π
X
�1

�b
�V �

1�
�

2�j�n�π
X1

�b
�Vj� � π

X
�1

�b
�Vj��

πX1

�a �V �

1� � π
X
�1

�a �V �

1�
�

2�j�n�π
X1

�a �Vj� � π
X
�1

�a �Vj��

�
πX1

�b
�V �

1�

πX1

�a �V �

1�
�
πX1

�a �V1�

πX1

�b
�V1�

�
Pr�P ��b�

Pr�P ��a�

�U2
X1

Pr�P ��b�

Pr�P ��a�

Therefore,
Pr�P ��a�

Pr�P ��b�
� U2

X1
. We note that P and P � differ on K votes.

�
Pr�P ��a�

Pr�P ��b�
���

Pr�P̂ ��a�

Pr�P̂ ��b�
�

��
K�

j�1

πX1

�a �Vjk� � π
X
�1

�a �Vjk�

πX1

�b
�Vjk� � π

X
�1

�b
�Vjk�

���
K�

j�1

πX1

�a �V̂jk� � π
X
�1

�a �V̂jk�

πX1

�b
�V̂jk� � π

X
�1

�b
�V̂jk�

�

��
π

X
�1

�a �N �

π
X
�1

�b
�N �

�
π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

�K

�U2
X1

We note that �
Pr�P̂ ��a�

Pr�P̂ ��b�
� 	 1. Therefore,

Pr�P ��a�

Pr�P ��b�
� U2

X1
, which is a contradiction.

Similarly, for the case of
π

X
�1

�a �N �

π
X
�1

�b
�N �



π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

we still have a contradiction.

Hence,
π

X
�1

�a �N �

π
X
�1

�b
�N �

�
π

X
�1

�a �N�a�

π
X
�1

�b
�N�a�

for all N , which means that for any N � and N �, we

must have that
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

�
π

X
�1

�a �N ��

π
X
�1

�b
�N ��

.

(End of proof of Claim 10.3.3.) �
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By Claim 10.3.3, for any CP-net N , any �b
�1,�b

�
�1 � D�1, we must have that

π
X
�1

�b1,�b
�1�

�N �

π
X
�1

�b1,�b
�1�

�N�a�
�

π
X
�1

�a �N �

π
X
�1

�a �N�a�
�

π
X
�1

�b1,�b�
�1

�
�N �

π
X�1

�b1,�b�
�1

�
�N�a�

, which means that
π

X�1

�b1,�b�1�
�N �

π
X�1

�b1,�b�
�1

�
�N �

�
π

X�1

�b1,�b�1�
�N�a�

π
X�1

�b1,�b�
�1

�
�N�a�

.

Let N1 be a CP-net such that top�N1� � �b1,�b
�
�1�, N2 be a CP-net such that

top�N2� � �b1,�b�1� and N1�X1
� N2�X1

. Because Seq�rc
1, . . . , r

c
p� satisfies unanim-

ity, we have that
Pr�N1��b1,�b

�
�1��

Pr�N1��b1,�b�1��
� 1 and

Pr�N2��b1,�b
�
�1��

Pr�N2��b1,�b�1��
� 1. However, we have

the following calculation.

1 �
Pr�N1��b1,�b

�
�1��

Pr�N1��b1,�b�1��

�
πX1

�b1,�b�
�1

�
�N1� � π

X�1

�b1,�b�
�1

�
�N1�

πX1

�b1,�b�1�
�N1� � π

X�1

�b1,�b�1�
�N1�

�
πX1

�b1,�b�
�1

�
�N2� � π

X�1

�b1,�b�
�1

�
�N�a�

πX1

�b1,�b�1�
�N2� � π

X�1

�b1,�b�1�
�N�a�

�Because N1�X1
� N2�X1

�

�
πX1

�b1,�b�
�1

�
�N2� � π

X�1

�b1,�b�
�1

�
�N2�

πX1

�b1,�b�1�
�N2� � π

X�1

�b1,�b�1�
�N2�

�
Pr�N2��b1,�b

�
�1��

Pr�N2��b1,�b�1��

�1

Therefore, we have a contradiction. (End of proof of Theorem 10.3.3.) �

However, a connection between MLEs for very weakly decomposable noise models

and sequential voting correspondences can be obtained if there is an upper bound on

the number of voters. The next theorem states that for any natural number n and any

sequential composition of MLEWIVs, there exists a very weakly decomposable noise

model such that for any profile of no more than n O-legal votes, the set of winners
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under the MLE for that noise model is always a subset of the set of winners under

the sequential correspondence. That is, if the local correspondences can be justified

by a noise model, then, to some extent, so can the sequential voting correspondence

that uses these local rules.

Theorem 10.3.4. For any n � N and any sequential voting correspondence Seq�rc
1, . . . , r

c
p�

where for each i � p, rc
i is an MLEWIV, there exists a very weakly decomposable

noise model π such that for any O-legal profile P composed of no more than n votes,

we have that MLEπ�P � � Seq�rc
1, . . . , r

c
p��P �.

Proof of Theorem 10.3.4: Let ri be the MLEWIV with the conditional probability

distribution Pri�V
i�di�, where V i � L�Di�, di � Di. For any i � p, we let Ri,n

max �

maxPi,P
�

i ,di,d
�

i

�
Pri�Pi�di�

Pri�P �

i �d
�

i�

�
, where di, d

�

i � Di, and Pi and P �

i are profiles with the

same number (but no more than n) of linear orders over Di. We let R
i,n
min � 1 if

ri is the trivial correspondence that always outputs the whole domain; and R
i,n
min �

minPi,�di,�d
�

i

�
Pri�Pi�di�

Pri�Pi�d�

i�
:
Pri�Pi�di�

Pri�Pi�d�

i�
� 1

�
, where di, d

�

i � Di, and Pi is a profile of no

more than n linear orders over Di. We note that for any i � p, any n � N, we have

that Ri,n
max 	 R

i,n
min 	 1.

For any V i � L�Di�, any �d � X , and any �a�i � D�1, we let

π
�a�i

�d
�V i� �

��
�

Pri�V
i�di�

ki
Zi if �a�i � �d�i

1

�Di�!
otherwise

,

where Zi �
�

V i�L�Di�
Pri�V

i�di�
ki is a normalizing factor, and 1 � k1 � k2 � � � � �

kp � 0 are chosen in the following way: for any i� � i � p, any V i, W i � L�Di�, and

any di, d
�
i � Di, if R

i,n
min � 1, then we must have that �Ri,n

max�
ki � �Ri�,n

min�
ki��2

i�i�

.

We next prove that for any profile PCP of no more than n CP-nets, we must have

that MLEπ�PCP � � Seq�rc
1, . . . , r

c
p��PCP �. For the sake of contradiction, let PCP be a

profile of no more than n CP-nets with MLEπ�PCP �  Seq�rc
1, . . . , r

c
p��PCP �. Let �d �
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MLEπ�PCP �, and i� be the number such that there exists �d� � Seq�rc
1, . . . , r

c
p��PCP �

such that for all i� � i�, di� � d�i�, and di� � rc
i��PCP �Xi� :d1...di��1

�. Because

rc
i��PCP �Xi� :d1...di��1

� � Di� , we must have that R
i�,n
min 	 1. Because �d � MLEπ�PCP �,

we must have that
π�PCP ��d�

π�PCP ��d��

 1. However, we have the following calculation that

leads to a contradiction.

1 �
π�PCP ��d�

π�PCP ��d��
�

�p

i�1 Pri�PCP �Xi:d1...di�1
�di�

�p

i�1 Pri�PCP �Xi:d
�

1
...d�i�1

�d�i �

�

�p

i�i� Pri�PCP �Xi:d1...di�1
�di��p

i�i� Pri�PCP �Xi:d
�

1
...d�i�1

�d�i �

�
1

�Ri�,n
min�

ki�

�
p�

i�i��1

�Ri,n
max�

ki

�
1

�Ri�,n
min�

ki�

�
p�

i�i��1

�Ri�,n
min�

ki��2
i�i�

� 1

Therefore, we must have that MLEπ�P �  Seq�rc
1, . . . , r

c
p��P � for all profiles P that

consist of no more than n CP-nets. �

10.4 Distance-Based Models

We have shown in the previous section that the MLE approach may give us new

voting rules in multi-issue domains. However, assuming very weak decomposability,

there are too many (exponentially many) parameters in the noise model, which makes

it very hard to implement a rule based on the MLE approach. In this section, we

focus on a family of maximum likelihood estimators that are based on noise models

defined over multi-binary-issue domains (domains composed of binary issues), and

that need only a few parameters to be specified. We recall that a CP-net on a

multi-binary-issue domain corresponds to a directed hypercube in which each edge

has a direction representing the local preference. A very weakly decomposable noise
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model π can be represented by a collection of weighted directed hypercubes, one for

each correct winner, in which the weight of each directed edge is the probability of

the local preference represented by the directed edge. For any outcome �d � X , any

issue Xi, any �e
�i � D

�i, and any di � d�i � Di, the weight on the directed edge

���e�i, di�, ��e�i, d
�

i�� of the weighted hypercube corresponding to the correct winner

�d is denoted by π
�e
�i

�d
�di � d�i�, and represents the probability that a given voter

reports the preference �e�i : di � d�i in her CP-net, given that the correct winner is

�d.1 For example, when the correct winner is 010203, the weight on the directed edge

�011203, 011213� is the probability π0112

010203
�03 � 13�. We now propose and study very

weakly decomposable noise models in which the weight of each edge depends only

on the Hamming distance between the edge and the correct winner.

For any pair of alternatives �d, �d� � X , the Hamming distance between �d and �d�,

denoted by ��d� �d��, is the number of components in which �d is different from �d�, that

is, ��d� �d�� � #�i 	 p : di � d�i
. Let e � ��d1, �d2� be a pair of alternatives such that

��d1 � �d2� � 1 (equivalently, an edge in the hypercube). The distance between e and

an alternative �d � X , denoted by �e � �d�, is the smaller Hamming distance between

�d and the two ends of e, that is, �e � �d� � min���d1 � �d�, ��d2 � �d�
. For example,

�011203 � 010203� � 1, �011213 � 010203� � 2, and ��011203, 011213� � 010203� � 1.

We next introduce distance-based noise models in which the probability distri-

bution π
�a
�i

�d
only depends on di and the Hamming distance between �a�i and �d�i.

Definition 10.4.1. Let X be a multi-binary-issue domain. For any �q � �q0, . . . , qp�1�

such that 1 � q0, . . . , qp�1 � 0, a distance-based (noise) model π�q is a very weakly

decomposable noise model such that for any �d � X , any i 	 p, and any �a�i � D�i

1 For every pair of alternatives differing on exactly one issue, there is exactly one weighted edge between them; the
direction of the edge only says that we are going further from the correct winner. This will be made more precise
after Definition 10.4.1.
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with ��a
�i � �d

�i� � k � p� 1, we have that π
�a
�i

�d
�di � d̄i� � qk.

The intuition behind the notion of a distance-based model is as follows. First, it is

plausible to assume that the “closer” two alternatives are to the correct alternative,

the more likely a given voter will order them in the “correct” way, that is, will prefer

the one which is closer to the correct alternative. The family of distance-based voting

rules is actually more general than this, because we do not impose q1 � . . . � qp�1,

but we may of course add this restriction if we wish to. Moreover, the choice of the

Hamming distance is not necessary, and other intuitive distance-based models can be

defined, using other distances – for instance, domain-dependent distances. But, the

Hamming distance is a natural starting point (most works in distance-based belief

base merging and distance-based belief revision also focus on the Hamming distance).

Given the correct winner �d, a distance-based model π�q can be visualized by the

following weighted directed graph built on the hypercube:

• For any undirected edge e � ��d1, �d2� in the hypercube, where �d1, �d2 differ only

on the value assigned to Xi for some i � p, if �d1�Xi
� di, then the direction of e

is from �d1 to �d2; if �d2�Xi
� di, then the direction of e is from �d2 to �d1. That is,

the direction of the edge is always from the alternative whose Xi component

is the same as the Xi component of the correct winner to the other end of the

edge.

• For any edge e with �e� �d� � l, the weight of e is ql.

For example, given that 010203 is the correct winner, the distance-based model is

illustrated in Figure 10.2.
We are especially interested in a special type of distance-based models in which

there exists a threshold 1 � k � p and q � 1
2
, such that for any i 	 k, we have that

qi � q, and for any k � i � p � 1, we have that qi �
1
2
. Such a model is denoted
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Figure 10.2: The distance-based model π�q0,q1,q2� when the correct winner is 000.

by πk,q. We call πk,q a distance-based threshold noise model with threshold k. We

say that a noise model π has threshold k � p if and only if there exists q � 1
2

such

that π � πk,q. The MLE for a distance-based threshold model πk,q is denoted by

MLEπk,q
.

Example 10.4.2. Let p � 3. π1,q and π2,q are illustrated in Figure 10.3 (when the

correct winner is 000).
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110 111

q

q

q
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q

q

q

q

q

q

q

q

(a) The threshold is 1. (b) The threshold is 2.

Figure 10.3: Distance-based threshold models. The weight of the bold edges is
q � 1

2
; the weight of all other edges is 1

2
.

We next present a direct method for computing winners under the MLE corre-

spondences of distance-based threshold models. For any 1 � k � p, any �d � X , and
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any CP-net N , we define the consistency of degree k between �d and N , denoted by

Nk��d,N �, as follows. Nk��d,N � is the number of triples ��a,�b, i� such that �a
�i � �b

�i,

ai � di, bi � d̄i, ��ai, bi�� �d� � k�1, and N contains a
�i : di � d̄i. That is, Nk��d,N �

is the number of local preferences (over any issue Xi, given any �a
�i � D

�i) in N that

are di � d̄i, where the distance between �d and the edge ��di,�a�i�, �d̄i,�a�i�� is at most

k � 1. For any profile PCP of CP-nets, we let Nk��d, PCP � �
�

N�PCP
Nk��d,N �.

Theorem 10.4.3. For any k � p, any q � 1
2
, and any profile PCP of CP-nets, we

have that MLEπk,q
�PCP � � arg max�d

Nk��d, PCP �.

That is, the winner for any profile of CP-nets under any MLE for a distance-based

threshold model πk,q maximizes the sum of the consistencies of degree k between the

winning alternative and all CP-nets in the profile.

Proof of Theorem 10.4.3: For any k � p, any �d � X , we let Lk � #	e : �e� �d� �

k � 1
. That is, Lk is the number of edges in the hypercube whose distance from a

given alternative �d is no more than k � 1. For any �d � X and any CP-net N , we

have that
ln π�PCP ��d�

�
�

N�PCP

ln
�

i,�a
�i�D�i

π
�a
�i

di
�N �Xi:�a�i

�

�
�

N�PCP

�Nk��d,N � ln q � �Lk �Nk��d,N �� ln�1� q��

�
�

N�PCP

�Nk��d,N � ln
q

1� q
� Lk ln�1� q��

Therefore, MLEπk,q
�PCP � � arg max�d

π�PCP ��d�

� arg max�d

�
N�PCP

�Nk��d,N � ln q

1�q
� Lk ln�1� q��

� arg max�d
Nk��d, PCP �. �

Therefore, we have the following corollary, which states that the winners for any

profile under MLEπk,q
do not depend on q, provided that q � 1

2
.
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Corollary 10.4.4. For any k � p, any q1 � 1
2
, q2 � 1

2
, and any profile PCP of

CP-nets, we have MLEπk,q1
�PCP � � MLEπk,q2

�PCP �.

Example 10.4.5. Consider two binary issues X1, X2, and three voters, who report

the following CP-nets:

� N1 has an edge from X1 to X2, and the following local preferences: �01 � 11, 01 :

02 � 12, 11 : 12 � 02�.

� N2 has an edge from X1 to X2 and an edge from X2 to X1, and the following

local preferences: �02 : 11 � 01, 12 : 01 � 11, 01 : 12 � 02, 11 : 02 � 12�.

� N3 has no edge, and the following local preferences: �11 � 01, 12 � 02�.

Let PCP � �N1,N2,N3�.

First, consider k � 1. Let us compute N1�1112,N1�. There are two edges whose

distance to 1112 is 0: one from 1112 to 1102 and one from 1112 to 0112. The first

one is in the preference relation induced from N1; the second one is not. There-

fore, N1�1112,N1� � 1. Similarly, we get N1�1112,N2� � 0 and N1�1112,N3� � 2,

henceforth, N1�1112, PCP � � 3. Similar calculations lead to N1�1102, PCP � � 3,

N1�0112, PCP � � 4 and N1�0102, PCP � � 2, hence MLEπ1,q
�PCP � � �0112� (for any

value of q � 1
2
).

Now, consider k � 2. Let us compute N1�1112,N1�. Now, we have to consider all

four edges, since all of them are at a distance 0 or 1 to 1112. The two edges not

considered for the case k � 1 are the edge from 0112 to 0102 and one from 1102 to

0112. In both cases, voter 1 prefers the alternative which is further from 1112, there-

fore, N2�1112,N1� � 1. Similarly, we get N2�1112,N2� � 2 and N2�1112,N3� � 4,

henceforth, N2�1112, PCP � � 7. Similar calculations lead to N2�1102, PCP � � 5,

N2�0112, PCP � � 7 and N1�0102, PCP � � 5, hence MLEπ2,q
�PCP � � �0112, 1112�.

We next investigate the computational complexity of applying MLE rules with

distance-based threshold models. First, we present a polynomial-time algorithm that
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computes the winners and outputs the winners in a compact way, under MLEπp,q ,

where p is the number of issues. This algorithm computes the correct value(s) of

each issue separately: for any issue Xi, the algorithm counts the number of tuples

��a
�i,N �, where �a

�i � D
�i and N is a CP-net in the input profile PCP , such that

N contains a
�i : 0i � 1i. If there are more tuples ��a

�i,N � in which N contains

a
�i : 0i � 1i than there are tuples in which N contains a

�i : 1i � 0i, then we select

0i to be the ith component of the winning alternative, and vice versa. We note that

the time required to count tuples ��a
�i,N � depends on the size of N . Therefore, even

though computing the value for Xi takes time that is exponential in �ParG�Xi�� (the

number of parents of Xi in the directed graph of N ), the CPT of Xi in N itself is

also exponential in �ParG�Xi�� (for each setting of ParG�Xi�, there is an entry in

CPT �Xi�). This explains why the algorithm runs in polynomial time.

Algorithm 10.4.1. INPUT: p � N, 1
2
� q � 1, and a profile of CP-nets PCP over

a binary domain consisting of p issues.

1. For each i � p:

1a. Let Si � 0, Wi � �.

1b. For each CP-net N � PCP : let ParG�Xi� � 	Xi1 , . . . , Xip�

 be the parents of Xi

in the directed graph of N . Let l be the number of settings �y of ParG�Xi� for which

N �Xi:�y � 0i � 1i. Let Si � Si � l2p�p�

 2p�1. Here, p� is the number of parents of

Xi, and l2p�p�

 2p�1 is the number of edges in the CP-net where 0i � 1i, minus the

number of edges where 1i � 0i.

1c. At this point, let Wi �

��
�

	0i
 if Si � 0
	1i
 if Si � 0
	0i, 1i
 if Si � 0

2.Output W1 � . . .�Wp.

Proposition 10.4.6. The output of Algorithm 10.4.1 is MLEπp,q�PCP �, and the

algorithm runs in polynomial time.
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Proof of Proposition 10.4.6: First we prove that the output of Algorithm 10.4.1

is MLEπp,q�PCP �. For any �d � X , Np��d, PCP � �
�

i�p, #��a�1 � D�1 : �di,�a�i� �N

�d̄i,�a�i�,N � PCP �. We note that di � Wi if and only if #��a�1 � D�1 : �di,�a�i� �N

�d̄i,�a�i�,N � PCP � � #��a�1 � D�1 : �d̄i,�a�i� �N �di,�a�i�,N � PCP �. Therefore,

�d � MLEπp,q�PCP � if and only if for all i � p, we have that di � Wi.

Next we prove that the algorithm runs in polynomial time. We note that in step

1b, the complexity of computing l is O�2�ParG�Xi���, and CPT �Xi� of the CP-net N

has exactly 2�ParG�Xi�� entries, which means that the complexity of computing l is in

polynomial of the size of CPT �Xi� of the input. Therefore, Algorithm 10.4.1 is a

polynomial-time algorithm. �

The next example shows how to compute the winners under MLEπp,q for the

profile defined in Example 10.4.5.

Example 10.4.5, continued Let us first compute S1. In N1 (respectively, N1 and

N3), the table for x1 contributes to 2 edges (respectively, one edge and no edge)

from 01 to 11, and to no edge (respectively, one edge and two edge) from 11 to 01,

therefore S1 � ��2� � 0� �	2� � 0. Similarly, S2 � 0� 0� �	2� � 	2. Therefore,

W1 � �01, 11� and W2 � �12�, which gives us MLEπ2,q
�PCP � � �0112, 1112�.

However, when the threshold is one, computing the winners is NP-hard, and the

associated decision problem, namely checking whether there exists an alternative �d

such that N1��d, PCP � 
 T , is NP-complete.

Theorem 10.4.7. It is NP-complete to find a winner under MLEπ1,q
. More pre-

cisely, it is NP-complete to decide whether there exists an alternative �d such that

N1��d, PCP � 
 T .

Proof of Theorem 10.4.7: By Theorem 10.4.3, the decision problem of finding

a winner under MLEπ1,q
is the following: for any profile P that consists of n CP-

nets, and any T � pn, we are asked whether or not there exists �d � X such that
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N1��d, P � � T .

We prove the NP-hardness by reduction from the decision problem of max2sat.

The inputs of an instance of the decision problem of max2sat consists of (1) a set

of t atomic propositions x1, . . . , xt; (2) a formula F � C1 � . . . � Cm represented in

conjunctive normal form, in which for any i � m, Ci � li1 � li2 , and there exists

j1, j2 � t such that li1 is xj1 or �xj1, and li2 is xj2 or �xj2; (3) T � m. We are asked

whether or not there exists a valuation �x for the atomic propositions x1, . . . , xt such

that at least T clauses are satisfied under �x.

Given any instance of max2sat, we construct a decision problem instance of

computing a winner under MLEπ1,q
as follows.

� Let X be composed of t issues X1, . . . , Xt.

� Let T � � 16T 	 12m.

� For any i � m, we let vi1 be the valuation of xi1 under which li1 is true; let vi2 be

the valuation of xi2 under which li2 is true. For any j � t, we let 0j corresponds to Xj

being false, and 1j corresponds to Xj being true. Then, any valuation of the atomic

propositions is uniquely identified by an alternative. We next define six CP-nets as

follows:

– Ni,1: the DAG of Ni,1 has only one directed edge 
Xi1 , Xi2�. In Ni,1, vi1 � v̄i1 ,

vi1 : vi2 � v̄i2 , v̄i1 : vi2 � v̄i2 , and for any j � i1 and j � i2, we have that 0j � 1j.

– Ni,2: the DAG of Ni,2 has only one directed edge 
Xi1 , Xi2�. In Ni,2, vi1 � v̄i1 ,

vi1 : v̄i2 � vi2 , v̄i1 : vi2 � v̄i2 , and for any j � i1 and j � i2, we have that 0j � 1j.

– Ni,3: the DAG of Ni,3 has only one directed edge 
Xi2 , Xi1�. In Ni,1, vi2 � v̄i2 ,

vi2 : v̄i1 � vi1 , v̄i2 : vi1 � v̄i1 , and for any j � i1 and j � i2, we have that 0j � 1j.

We next obtain N �

i,1, N
�

i,2, and N �

i,3 from Ni,1, Ni,2, and Ni,3, respectively, by let-

ting 1j � 0j for any j with j � i1 and j � i2. Let �Ni � 
Ni,1,N �

i,1,Ni,2,N �

i,2,Ni,3,N �

i,3�.

We let the profile of CP-nets be PCP � 
 �N1, . . . , �Nm�.
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We make the following claim about the number of consistent edges between an

alternative �d and �Ni.

Claim 10.4.1. For any �d � X and any i � m,

N1��d, �Ni� �

�
4 if �di1 � vi1 or di2 � vi2

�12 if �di1 � v̄i1 and di2 � v̄i2

Claim 10.4.1 states that the number of consistent edges between �d and �Ni within

distance 1 is 4 if the clause Ci is true under the valuation represented by �d; otherwise

it is �12. For any �d � X , we let T�d
denote the number of clauses in C1, . . . , Cm

that are true under �d. Then, we have that N1��d, PCP � � 4T�d
� 12�m � T�d

� �

16T�d
� 12m. It follows from Theorem 10.4.3 that for any q � 1

2
, MLEπ1,q

�PCP � �

arg max�d
N1��d, PCP � � arg max�d

T�d
. Therefore, a winner of PCP under MLEπ1,q

corresponds to a valuation under which the number of satisfied clauses is maximized;

and any valuation that maximizes the number of satisfied clauses corresponds to a

winner of PCP under MLEπ1,q
. We note that the size of PCP is O�mt�. It follows

that computing a winner under MLEπ1,q
is NP-hard.

Clearly the decision problem is in NP. Therefore, the decision problem is NP-

complete to compute a winner under MLEπ1,q
. �

As we have seen (cf. Corollary 10.4.4), for a given multi-issue domain composed

of p binary issues, there are exactly p voting correspondences defined by distance-

based threshold models. As far as we know, these voting correspondences are entirely

novel, and are tailored especially for multi-issue domains. Now, among these p voting

correspondences, two are even more natural and interesting: MLEπ1,q
and MLEπp,q .

MLEπ1,q
proceeds by electing the alternatives which maximize the sum, over all

voters, of the number of neighboring alternatives in the voter’s hypercube to which

she prefers �x. Now, recall that the Borda correspondence can be characterized as
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the correspondence where candidate x is a winner if it maximizes the sum, over all

voters, of the number of candidates the voter prefers to x. Therefore, MLEπ1,q
is

somewhat reminiscent of Borda—except, of course, that we do not count all alter-

natives defeated by �x but only defeated alternatives that are one of its neighbors in

the hypercube. MLEπp,q is even more intuitive: for each issue Xi, the winning value

maximizes the number of edges (summing over all voters) that are in favor of it, that

is, it is somewhat reminiscent of Kemeny.

So, MLEπ1,q
and MLEπp,q are genuinely new voting correspondences for multi-

issue binary domains, which can be characterized in terms of maximum likelihood

estimators and are quite intuitive; lastly, MLEπp,q can be computed in polynomial

time. We conjecture that for any 2 � k � p � 1, winner determination for MLEπk,q

is NP-hard.

10.5 Summary

In this chapter, we considered the maximum likelihood estimation (MLE) approach

to voting, and generalized it to multi-issue domains, assuming that the voters’ pref-

erences are expressed by CP-nets. We first studied whether issue-by-issue voting

rules and sequential voting rules can be represented by the MLE of some noise

model. For separable input profiles, we characterized MLEs of strongly/weakly

decomposable models as issue-by-issue voting correspondences composed of local

MLEWIVs/candidate scoring correspondences. Although we showed that no se-

quential voting correspondence can be represented as the MLE for a very weakly

decomposable model, we did obtain a positive result here under the assumption that

the number of voters is bounded above by a constant.

In the case where all issues are binary, we proposed a class of distance-based noise

models; then, we focused on a specific subclass of such models, parameterized by a

threshold. We identified the computational complexity of winner determination for
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the two most relevant values of the threshold.

We note that, whereas Section 10.3 has a non-constructive flavor because we stud-

ied existing voting mechanisms and Theorem 10.3.3 is an impossibility theorem, quite

the opposite is the case for Section 10.4. Indeed, the MLE principle led us to define

genuinely new families of voting rules and correspondences for multi-issue domains.

These rules are radically different from the rules that had previously been proposed

and studied for these domains. Unlike sequential or issue-by-issue rules, they do not

require any domain restriction, and yet their computational complexity is not that

bad (the decision problem is NP-complete at worst, and sometimes polynomial in

the size of the CP-nets). We believe that these new rules are promising.
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