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Abstract. In this paper, we characterize strategy-proof voting ruleswhen the set
of alternatives has a multi-issue structure, and the voters’ preferences are repre-
sented by acyclic CP-nets that follow a common order over issues. Our main re-
sult is a simple full characterization of strategy-proof voting rules satisfying non-
imposition for a very natural restriction on preferences inmulti-issue domains: we
show that if the preference domain is lexicographic, then a voting rule satisfying
non-imposition is strategy-proof if and only if it can be decomposed into multiple
strategy-proof local rules, one for each issue and each setting of the issues preced-
ing it. We also obtain the following variant of Gibbard-Satterthwaite: when there
are at least two issues and each of the issues can take at leasttwo values, then
there is no non-dictatorial strategy-proof voting rule that satisfies non-imposition,
even when the domain of voters’ preferences is restricted tolinear orders that are
consistent with acyclic CP-nets following a common order over issues. This im-
possibility result follows from either one of two more general new impossibility
results we obtained, which are not included in this paper dueto the space con-
straint.

Keywords: Voting, multi-issue domains, strategy-proofness, lexicographic do-
mains

1 Introduction

When agents have conflicting preferences over a set of alternatives, and they want to
make a joint decision, a natural way to do so is byvoting. Each agent (voter) is asked
to report his or her preferences. Then, avoting rule is applied to the vector of submit-
ted preferences to select a winning alternative. However, in some cases, a voter has an
incentive to submit false preferences in order to change thewinner to a more preferable
alternative (to her). An instance of such misreporting is called amanipulation, and the
perpetrating voter is called amanipulator. If there is no manipulation under a voting
rule, then the rule is said to bestrategy-proof.

Unfortunately, there are some very natural properties thatare satisfied by no strategy-
proof voting rule, according to the Gibbard-Satterthwaitetheorem [16, 27]. The theorem
states that when there are three or more alternatives, and any voter can chooseanylinear
order over alternatives to represent her preferences, thenno non-dictatorial voting rule
that satisfies non-imposition is strategy-proof. A voting rule is dictatorial if the same
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voter’s most-preferred alternative is always chosen; it satisfies non-imposition if for ev-
ery alternative, there existsomereported preferences that make that alternative win.

There are several approaches to circumventing this impossibility result. One that
has received significant attention from computer scientists in recent years is to consider
whether finding a manipulation is computationally hard under some rules. If so, then
even though a manipulation is guaranteed to exist, it will perhaps not occur because the
manipulator(s) cannot find it. Indeed, it has been shown thatfinding a manipulation is
computationally hard (more precisely, NP-hard) for various rules, for various definitions
of the manipulation problem (e.g., [6, 5, 13, 17, 14, 36]). On the other hand, NP-hardness
is aworst-casenotion of hardness, so that it may very well be the case thatmostmanip-
ulations are easy to find. Various recent results suggest that this is indeed the case [25,
12, 24, 15, 37, 31, 30, 28, 34, 29, 18]. This paper does not fallunder this line of research.

Instead, this paper falls under another, older, line of research on circumventing the
Gibbard-Satterthwaite result. This line, which has been pursued mainly by economists,
is to restrict the domain of preferences. That is, we assume that voters’ preferences
always lie in a restricted class. An example of such a class isthat ofsingle-peakedpref-
erences [7]. For single-peaked preferences, desirable strategy-proof rules exist, such as
themedianrule. Other strategy-proof rules are also possible in this preference domain:
for example, it is possible to add some artificial (phantom) votes before running the
median rule. In fact, this characterizes all strategy-proof rules for single-peaked prefer-
ences [22]. On the other hand, preferences have to be significantly restricted to obtain
such positive results: Aswalet al. [1] extend the Gibbard-Satterthwaite theorem, show-
ing that if the preference domain islinked, then with three or more alternatives the only
strategy-proof voting rule that satisfies non-imposition is a dictatorship.

In real life, the set of alternatives often has a multi-issuestructure. That is, there
are multipleissues(or attributes), each taking values in its respective domain, and an
alternative is completely characterized by the values thatthe issues take. For example,
consider a situation where the inhabitants of a county vote to determine a government
plan. The plan is composed of multiple sub-plans for severalinterrelated issues, such as
transportation, environment, and health [10]. Clearly, a voter’s preferences for one issue
in general depend on the decisions taken on the other issues:if a new highway is con-
structed through a forest, a voter may prefer a nature reserve to be established; but if the
highway is not constructed, the voter may prefer that no nature reserve is established. As
another example, in each US presidential election year, thepresident as well as mem-
bers of the Senate and the House must be elected. In principle, a voter’s preferences for a
senator can depend on who is elected as president, for example if the voter prefers a bal-
ance of power between the Democratic and Republican parties. A straightforward way
to aggregate preferences in multi-issue domains isissue-by-issue(a.k.a.seat-by-seat)
voting, which requires that the voters explicitly express their preferences over each issue
separately, after which each issue is decided by applying issue-wise voting rules inde-
pendently. This makes sense if voters’ preferences areseparable, that is, each voter’s
preferences over a single issue are independent of her preferences over other issues.
However, if preferences are not separable, it is not clear how the voter should vote in
such an issue-by-issue election. Indeed, it is known that natural strategies for voting in
such a context can lead to very undesirable results [10, 20].
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The problem of characterizing strategy-proof voting rulesin multi-issue domains has
already received significant attention. Strategy-proof voting rules for high-dimensional
single-peaked preferences (where each dimension can be seen as an issue) have been
characterized [8, 2, 3, 23]. Barberaet al. [4] characterized strategy-proof voting rules
when the voters’ preferences are separable, and each issue is binary (that is, the domain
for each issue has two elements). Ju [19] studied multi-issue domains where each issue
can take three values: “good”, “bad”, and “null”, and characterized all strategy-proof
voting rules that satisfynull-independence, that is, if a voter votes “null” on an issuei,
then her preferences over other issues do not affect the value of issuei.

The prior research that is closest to ours was performed by LeBreton and Sen [11].
They proved that if the voters’ preferences are separable, and the restricted preference
domain of the voters satisfies arichnesscondition, then, a voting rule is strategy-proof
if and only if it is an issue-by-issue voting rule, in which each issue-wise voting rule is
strategy-proof over its respective domain.

Despite its elegance, the work by Le Breton and Sen is limitedby the restrictiveness
of separable preferences: as we have argued above, in general, a voter’s preferences on
one issue depend on the decision taken on other issues. On theother hand, one would
not necessarily expect the preferences for one issue to depend on every other issue.
CP-nets [9] were developed in the artificial intelligence community as a natural repre-
sentation language for capturing limited dependence in preferences over multiple issues.
Recent work has started to investigate using CP-nets to represent preferences in voting
contexts [26, 21, 35, 32]. If there is an order over issues such that every voter’s prefer-
ences for “later” issues depend only on the decisions made on“earlier” issues, then the
voters’ CP-nets are acyclic, and a natural approach is to apply issue-wise voting rules
sequentially[21]. While the assumption that such an order exists is stillrestrictive, it is
much less restrictive than assuming that preferences are separable (for one, the resulting
preference domain is exponentially larger [21]). Recent extensions of sequential voting
rules include order-independent sequential voting [35], as well as frameworks for voting
when preferences are modeled by general (that is, not necessarily acyclic) CP-nets [32,
33]. However, in this paper, we only study acyclic CP-nets that are consistent with a
common order over the issues.

Our results. In this paper, we focus on multi-issue domains that are composed of
at least two issues with at least two possible values each.1 We first show that over
lexicographicpreference domains (where earlier issues dominate later issues in terms
of importance to the voters), the class of strategy-proof voting rules that satisfy non-
imposition is exactly the class of voting rules that can be decomposed into multiple
strategy-proof local rules, one for each issue and each setting of the issues preceding it.
Technically, it is exactly the class of allconditional rule nets (CR-nets), defined later in
this paper but analogous to CP-nets, whose local (issue-wise) entries are strategy-proof
voting rules. CR-nets represent how the voting rule’s behavior on one issue depends on
the decisions made on all issues preceding it. Conceptually, this is similar to how acyclic

1 This is the standard assumption for studying voting in multi-issue domains, because otherwise
either the domain can be simplified (by removing issues that only take one value), or it has no
multi-issue structure (when there is only one issue).
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CP-nets represent how a voter’s preferences on one issue depend on the decisions made
on all issues preceding it.

Then, we prove an impossibility theorem, which is the following variant of Gibbard-
Satterthwaite. When there are at least two issues with at least two values each, the only
strategy-proof voting rule that satisfies non-imposition is a dictatorship. This result as-
sumes that each voter is free to choose any linear order that corresponds to an acyclic
CP-net that follows a common order over the issues. This impossibility result follows
from either one of two more general new impossibility results that we do not include in
this paper due to the space constraint.

We are not aware of any previous characterization or impossibility results for strategy-
proof voting rules when voters’ preferences display dependencies across issues (that is,
when they are modeled by CP-nets).

2 Preliminaries

In a voting setting (not necessarily one with multiple issues), letX be the set ofalter-
natives(or candidates). A linear orderV onX is a transitive, antisymmetric, and total
relation onX . The set of all linear orders onX is denoted byL(X ). An n-voter profile
P on X consists ofn linear orders onX . That is,P = (V1, . . . , Vn), where for every
1 ≤ j ≤ n, Vj ∈ L(X ). The set of all profiles onX is denoted byP (X ). In this paper,
we let n denote the number of voters. A(voting) ruler is a mapping from the set of
all profiles onX to X , that is,r : P (X ) → X . For example, theplurality rule (also
called themajority rule, when there are only two alternatives) chooses the alternative
that is ranked in the top position in the most votes (with a tie-breaking mechanism, for
example, ties are broken in alphabetical order—in this paper, it does not matter which
tie-breaking mechanism we use). A voting ruler satisfies
• unanimity, if top(V ) = c for all V ∈ P impliesr(P ) = c.
• non-imposition, if for any c ∈ X , there exists ann-voter profileP such thatr(P ) = c.
• (strong) monotonicity, if for any pair of profilesP = (V1, . . . , Vn), P ′ = (V ′

1 , . . . , V ′
n)

such that for any alternativec and any1 ≤ j ≤ n, we havec �V ′

j
r(P ) ⇒ c �Vj

r(P ),
then,r(P ′) = r(P ).
• strategy-proofness, if there does not exist a pair(P, V ′

j ), whereP is a profile, andV ′
j is

a false vote of voterj, such thatr(P−j , V
′
j ) �Vj

r(P ). That is, there is no profile where
a voter can misrepresent her preferences to make herself better off.

In this paper, the set of all alternativesX is a multi-issue domain. That is, letI =
{x1, . . . ,xp} be a set ofissues, where each issuexi takes values in alocal domain,
denoted byDi. An alternative is uniquely identified by its values on all issues, that is,
X = D1 × · · · × Dp.

Example 1 A group of people must make a joint decision on the menu for dinner (the
caterer can only serve a single menu to everyone). The menu iscomposed of two issues:
the main course (M ) and the wine (W). There are three choices for the main course:
beef (b), fish (f), or salad (s). The wine can be either red wine(r), white wine (w), or
pink wine (p). The set of alternatives is a multi-issue domain: X = {b, f, s}×{r, w, p}.

CP-nets [9] are a compact representation that captures dependencies across issues.
In this paper, we use them not for their representational compactness, but rather as useful
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M W

CPT (M)
b � f � s

CPT (W)
b : r � p � w

f : w � p � r

s : p � w � r

br bp bw

f w f p f r

sp sw sr

(a) A CP-netN . (b) The partial order induced byN .

Fig. 1.A CP-netN and its induced partial order.

mathematical notation for describing preferences in multi-issue domains, where prefer-
ences over one issue can depend on the values of earlier issues.

A CP-netN overX consists of two parts: (a) a directed graphG = (I, E) and (b)
a set of conditional linear preferences�i

d
overDi, for each settingd of the parents of

xi in G. Let CPT (xi) be the set of the conditional preferences of a voter onDi; this is
called aconditional preference table (CPT).

A CP-netN captures dependencies across issues in the following sense.N induces a
partial preorder�N over the alternativesX as follows: for anyai, bi ∈ Di, any settingd
of the set of parents ofxi (denoted byParG(xi)), and any settingz of I \ (ParG(xi)∪
{xi}), (ai, d, z) �N (bi, d, z) if and only if ai �i

d
bi. In words, the preferences over

issuexi only depend on the setting of the parents ofxi (but not on any other issues).
For any1 ≤ i ≤ p, CPT(xi) specifies conditional preferences overxi. Now, if we
obtain an alternatived′ from d by only changing the value of theith issue ofd, we
can look at CPT(xi) to conclude whether the voter prefersd′ to d, or vice versa. In
general, however, from the CP-net, we will not always be ableto conclude which of two
alternatives a voter prefers, if the alternatives differ ontwo or more issues. This is why
N usually induces a partial preorder rather than a linear order.

We note that when the graph ofN is acyclic,�N is transitive and asymmetric, that
is, a strict partial order. LetO = x1 > · · · > xp. We say that a CP-netN is compatible
with (or, follows) O, if xi being a parent ofxj in the graph implies thati < j. That
is, preferences over issues only depend on the values of earlier issues inO. A CP-net is
separableif there are no edges in its graph, which means that there are no preferential
dependencies among issues.

Example 2 LetX be the multi-issue domain defined in Example 1. We define a CP-net
N as follows:M is the parent ofW, and the CPTs consist of the following conditional
preferences:CPT (M) = {b � f � s}, CPT (W) = {b : r � p � w, f : w � p �
r, s : p � w � r}, whereb : r � p � w is interpreted as follows: “whenM is b, then,
r is the most preferred value forW, p is the second most preferred value, andw is the
least preferred value.”N and its induced partial order�N are illustrated in Figure 1.
N is compatible withM > W. N is not separable.

A linear orderV overX extendsa CP-netN , denoted byV ∼ N , if it extends
the partial order thatN induces. (This is merely saying thatV is consistent with the
preferences implied by the CP-netN .) V is separableif it extends a separable CP-net.
The set of all linear orders that extend CP-nets that are compatible withO is denoted by
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Legal(O). Throughout the paper, we make the following assumption about multi-issue
domains and the voters’ preferences.

Assumption 1 In this paper, each multi-issue domain is composed of at least two issues
(p ≥ 2), and each issue can take at least two values. Moreover, all CP-nets are compati-
ble withO = x1 > · · · > xp, and the voters’ preferences are always inLegal(O) (that
is, a voter’s preferences over an issue do not depend on the values of later issues).

To present our results, we will frequently use notations that represent the projection of a
vote/CP-net/profile to an issuexi (that is, the voter’s local preferences overxi) given the
setting of all issues precedingxi, defined as follows. For any issuexi, any settingd of
ParG(xi), and any linear orderV that extendsN , we letV |xi:d andN|xi:d denote the
the projection ofV (or, equivalentlyN ) to xi, givend. That is, each of these notations
evaluates to the linear order�i

d
in the CPT associated withxi. For example, letN be

the CP-net defined in Example 2.N|W:b = r � p � w. For anyO-legal profileP ,
P |xi:d is the profile overDi that is composed of the projections of all votes inP on
xi, givend. That is,P |xi:d = (V1|xi:d, . . . , Vn|xi:d) = (N1|xi:d, . . . ,Nn|xi:d), where
P = (V1, . . . , Vn), and for any1 ≤ i ≤ p, Vi extendsNi.

The lexicographic extensionof a CP-netN , denoted byLex(N ), is a linear order
V overX such that for any1 ≤ i ≤ p, anydi ∈ D1 × · · · × Di−1, anyai, bi ∈ Di,
and anyy, z ∈ Di+1 × · · · × Dp, if ai �N|xi:di

bi, then(di, ai, y) �V (di, bi, z).
Intuitively, in the lexicographic extension ofN , x1 is the most important issue,x2 is the
next important issue, etc; a desirable change to an earlier issue always outweighs any
changes to later issues. We note that the lexicographic extension of any CP-net is unique
w.r.t. the orderO. We say thatV ∈ L(X ) is lexicographicif it is the lexicographic
extension of a CP-netN . For example, letN be the CP-net defined in Example 2. We
haveLex(N ) = br � bp � bw � fw � fp � fr � sp � sw � sr. A profile P

is O-legal/separable/lexicographic, if each of its votes is inLegal(O)/ is separable/ is
lexicographic.

Given a vector oflocal rules(r1, . . . , rp) (that is, for any1 ≤ i ≤ p, ri is a voting
rule onDi), thesequential compositionof r1, . . . , rp w.r.t.O, denoted bySeq(r1, . . . , rp),
is defined for allO-legal profiles as follows:Seq(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈ X ,
so that for any1 ≤ i ≤ p, di = ri(P |xi:d1···di−1

). That is, the winner is selected inp
steps, one for each issue, in the following way: in stepi, di is selected by applying the
local ruleri to the preferences of voters overDi, conditioned on the valuesd1, . . . , di−1

that have already been determined for issues that precedexi. When the input profile is
separable,Seq(r1, . . . , rp) becomes anissue-by-issuevoting rule.

3 Conditional rule nets (CR-nets)
We now move on to the contributions of this paper. In a sequential voting rule, the local
voting rule that is used for a given issue is always the same, that is, the local votingrule
does not depend on the decisions made on earlier issues (though, of course, the voters’
preferencesfor this issue do depend on those decisions).

However, in many cases, it makes sense to let the local votingrules depend on the
values of preceding issues. For example, let us consider again the setting in Example 1,
and let us suppose that the caterer is collecting the votes and making the decision based
on some rule. Suppose the order of voting isM > W. Suppose the main course is
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determined to be beef. One would expect that, conditioning on beef being selected, most
voters prefer red wine (e.g., r � p � w). Still, it can happen that even conditioned on
beef being selected, surprisingly, slightly more than halfthe voters vote for white wine
(w � p � r), and slightly less than half vote for red (r � p � w). In this case, the
caterer, who knows that in the general population most people prefer red to white given
a meal of beef, may “overrule” the preference for white wine among the slight majority
of the voters, and select red wine anyway. While this may appear somewhat snobbish on
the part of the caterer, in fact she may be acting in the best interest of social welfare if
we take the non-voting agents (who are likely to prefer red given beef) into account.

In this section, we introduceconditional rule nets (CR-nets)to model voting rules
where the local rules depend on the values chosen for earlierissues. A CR-net is defined
similarly to a CP-net—the difference is that CPTs are replaced by conditional rule tables
(CRTs), which specify a local voting rule overDi for each issuexi and each setting of
the parents ofxi.2

Definition 1 An (acyclic)conditional rule net (CR-net)M overX is composed of the
following two parts.

1. Adirected acyclic graphG over{x1, . . . ,xp}.
2. A set ofconditional rule tables(CRTs) in which, for any variablexi and any

settingd of ParG(xi), there is alocal conditional voting ruleM|x:d overDi.

A CR-net encodes a voting rule over allO-legal profiles (we recall that we fixO = x1 >

· · · > xp in this paper). For any1 ≤ i ≤ p, in theith step, the valuedi is determined by
applyingM|xi:d1···di−1

(the local rule specified by the CR-net for theith issue given that
the earlier issues take the valuesd1 · · · di−1) to P |xi:d1···di−1

(the profile of preferences
over theith issue, given that the earlier issues take the valuesd1 · · · di−1). Formally, for
anyO-legal profileP , M(P ) = (d1, . . . , dp) is defined as follows:d1 = M|x1

(P |x1
),

d2 = M|x2:d1
(P |x2:d1

), etc. Finally,dp = M|xp:d1···dp−1
(P |xp:d1···dp−1

).
A CR-netM is separableif there are no edges in the graph ofM. That is, the

local voting rule for any issue is independent of the values of all other issues (which
corresponds to a sequential voting rule).

4 Restricting voters’ preferences
We now consider restrictions on preferences. A restrictionon preferences (for a single
voter) rules out some of the possible preferences inL(X ). Following the convention
of [11], apreference domainis a set of all admissible profiles, which represents the re-
stricted preferences of the voters. Usually a preference domain is the Cartesian product
of the sets of restricted preferences for individual voters. A natural way to restrict pref-
erences in a multi-issue domain is to restrict the preferences on individual issues. For
example, we may decide thatr � w � p is not a reasonable preference for wine (re-
gardless of the choice of main course), and therefore rule itout (assume it away). More
generally, which preferences are considered reasonable for one issue may depend on the
decisions for the other issues. Hence, in general, for eachi, for each settingdi of the is-
sues before issuexi, there is a set of “reasonable” (or: possible, admissible) preferences
overxi, which we callS|xi:di

. Formally,admissible conditional preference sets, which
encode all possible conditional preferences of voters, aredefined as follows.

2 It is not clear how a cyclic CR-net could be useful, so we only define acyclic CR-nets.
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Definition 2 Anadmissible conditional preference setS overX is composed of multiple
local conditional preference sets, denoted byS|xi:di

, such that for any1 ≤ i ≤ p and
anydi ∈ D1×· · ·×Di−1, S|xi:di

is a set of (not necessarily all) linear orders overDi.

That is, for any1 ≤ i ≤ p and anydi ∈ D1 × · · · × Di−1, S|xi:di
encodes the voter’s

local language over issuei, given the preceding issues taking valuesdi. In other words,
if S is the admissible conditional preference set for a voter, then we require the voter’s
preferences overxi givendi to be inS|xi:di

.
An admissible conditional preference set restricts the possible CP-nets, preferences,

and lexicographic preferences. We note that Le Breton and Sen [11] defined a similar
structure, which works specifically for separable votes.

Now we are ready to define the restricted preferences of a voter overX . Let S be
the admissible conditional preference set for the voter. A voter’s admissible vote can be
generated in the following two steps: first, a CP-netN is constructed such that for any
1 ≤ i ≤ p and anydi ∈ D1 × · · ·Di−1, the restriction ofN onxi givendi is chosen
fromS|xi:di

; second, an extension ofN is chosen as the voter’s vote. By restricting the
freedom in either of the two steps (or both), we obtain a set ofrestricted preferences for
the voter. Hence, we have the following definitions.

Definition 3 LetS be an admissible conditional preference set overX .
•CPnets(S) = {N : N is a CP-net overX , and∀i∀di ∈ D1×· · ·×Di−1,N|xi:di

∈
S|xi:di

}.
• Pref(S) = {V : V ∼ N ,N ∈ CPnets(S)}.
• LD(S) = {Lex(N ) : N ∈ CPnets(S)}.

That is, CPnets(S) is the set of all CP-nets overX corresponding to preferences
that are consistent with the admissible conditional preference setS. Pref(S) is the set
of all linear orders that are consistent with the admissibleconditional preference setS.
LD(S), which we call thelexicographic preference domain, is the subset of linear orders
in Pref(S) that are lexicographic. For anyL ⊆ Pref(S), we say thatL extendsS if for
any CP-net in CPnets(S), there exists at least one linear order inL consistent with that
CP-net. It follows thatLD(S) extendsS; in this case, for any CP-netN in CPnets(S),
there exists exactly one linear order inLD(S) that extendsN . Lexicographic preference
domains are natural extensions of admissible conditional preference sets, but they are
also quite restrictive, since any CP-net only has one lexicographic extension.

We now define a notion of richness for admissible conditionalpreference sets. This
notion says that for any issue, given any setting of the earlier issues, each value of the
current issue can be the most-preferred one.3

Definition 4 An admissible conditional preference setS is rich if for each1 ≤ i ≤ p,
each valuationdi of the preceding issues, and eachai ∈ Di, there existsV i ∈ S|xi:di

such thatai is ranked in the top position ofV i.

We remark that richness is a natural requirement, and it is also a very weak restriction
in the following sense. It only requires that when a voter is asked about her (local)
preferences overxi givendi, she should have the freedom to at least specify her most

3 This isnot the same richness notion as the one proposed by Le Breton and Sen, which applies
to preferences over all alternatives rather than to admissible conditional preference sets.
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preferred local alternative inDi at will. We note that|S|xi:di
| can be as small as|Di|

(by letting each alternative inDi be ranked in the top position exactly once), which is in
sharp contrast to|L(Di)| = |Di|! (when all local orders are allowed).

A CR-netM is locally strategy-proofif all its local conditional rules are strategy-
proof over their respective local domains (we recall that the voters’ local preferences
must be in the corresponding local conditional preference set). That is, for any1 ≤ i ≤
p, di ∈ D1 × · · · × Di−1, M|xi:di

is strategy-proof over
∏n

j=1
Sj |xi:di

.

5 Strategy-proof voting rules in lexicographic preferencedomains

In this section, we present our main theorem, which characterizes strategy-proof voting
rules that satisfy non-imposition, when the voters’ preferences are restricted to lexi-
cographic preference domains. Our main theorem states the following: if each voter’s
preferences are restricted to the lexicographic preference domain for a rich admissible
conditional preference set, then a voting rule that satisfies non-imposition is strategy-
proof if and only if it is a locally strategy-proof CR-net. Werecall that in this paper,
there are at least two issues with at least two possible values each, and the lexicographic
preference domain for a rich admissible conditional preference setS is composed of all
lexicographic extensions of the CP-nets that are constructed fromS.

Theorem 1 Under Assumption 1, for any1 ≤ j ≤ n, supposeSj is a rich admissible
conditional preference set, and voterj’s preferences are restricted to the lexicographic
preference domain ofSj . Then, a voting ruler that satisfies non-imposition is strategy-
proof if and only ifr is a locally strategy-proof CR-net.

Sketch of Proof: The “if” part is easy. The “only if” part is proved by induction onp

(the number of issues). More precisely, suppose the theoremholds forp issues. Forp+1
issues, letr be a strategy-proof voting rule that satisfies non-imposition. We first prove
thatr can be decomposed in the following way: there exists a local ruler1 overD1 and
a voting rulerx−1:a1

overD2 × · · · × Dp+1 for eacha1 ∈ D1, such that for any profile
P , the first component ofr(P ) is determined by applyingr1 to the projection ofP on
x1, and the remaining components are determined by applyingrx−1:a1

to the restriction
of P on the remaining issues givenx1 = a1, wherea1 is the first component ofr(P )
(just determined byr1). Moreover, we prove thatr1 andrx−1:a1

(for all a1 ∈ D1) satisfy
non-imposition and strategy-proofness. Therefore, by theinduction hypothesis, for each
a1 ∈ D1, rx−1:a1

is a locally strategy-proof CR-net overD2×· · ·×Dp+1. It follows that
r is a locally strategy-proof CR-net overD1 × · · · ×Dp+1, in which the (unconditional)
rule for x1 is r1, and given anya1 ∈ D1, the sub-CR-net conditioned onx1 = a1 is
rx−1:a1

. �

The proofs of all theorems are omitted due to the space constraint. All proofs can be
found in the long version of this paper on the first author’s website.

It follows from Theorem 1 that any sequential voting rule that is composed of locally
strategy-proof voting rules is strategy-proof over lexicographic preference domains, be-
cause a sequential voting rule is a separable CR-net. Specifically, when the multi-issue
domain is binary (that is, for any1 ≤ i ≤ p, |Di| = 2), the sequential composition
of majority rules is strategy-proof when the profiles are lexicographic. It is interesting
to view this in the context of previous works on the strategy-proofness of sequential
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composition of majority rules: Lacy and Niou [20] and Le Breton and Sen [11] showed
that the sequential composition of majority rules is strategy-proof when the profile is re-
stricted to the set of all separable profiles; on the other hand, Lang and Xia [21] showed
that this rule is not strategy-proof when the profile is restricted to the set of allO-legal
profiles.

The restriction to lexicographic preferences is still limiting. Next, we investigate
whether there is any other preference domain for the voters on which the set of strategy-
proof voting rules that satisfy non-imposition is equivalent to the set of all locally
strategy-proof CR-nets. The answer to this question is “No,” as shown in the next re-
sult. More precisely, over any preference domain that extends an admissible conditional
preference set, the set of strategy-proof voting rules satisfying non-imposition and the
set of locally strategy-proof CR-nets satisfying non-imposition are identicalif and only
if the preference domain is lexicographic.

Theorem 2 Under Assumption 1, for any1 ≤ j ≤ n, supposeSj is a rich admissible
conditional preference set,Lj ⊆ Pref(Sj), andLj extendsSj . If there exists1 ≤ j ≤ n

such thatLj is not the lexicographic preference domain ofSj , then there exists a locally
strategy-proof CR-netM that satisfies non-imposition and is not strategy-proof over∏n

j=1
Lj .

6 An impossibility theorem
In this section, we present an impossibility theorem for strategy-proof voting rules when
voters’ preferences are restricted to beO-legal.

Theorem 3 When the set of alternatives is a multi-issue domain, if eachvoter can
choose any linear order inLegal(O) to represent her preferences, then there is no
strategy-proof voting rule that satisfies non-imposition,except a dictatorship.

This impossibility theorem is a variant of the Gibbard-Satterthwaite theorem. We em-
phasize that there are at least two issues with at least two possible values each, and
Legal(O) is much smaller than the set of all linear orders overX . Therefore, the theo-
rem doesnot follow directly from Gibbard-Satterthwaite. It follows directly from either
of the two stronger impossibility theorems proved in the full version of the paper: one
is for extensions of lexicographic domains, and the other isfor extensions of the “rich”
domains defined by Le Breton and Sen [11]. Due to the space constraint and the heavy
technicality and notation of the two impossibility theorems, we omit them.

We recall that Lang and Xia [21] showed that a specific sequential voting rule (the se-
quential composition of majority rules) is not strategy-proof when each voter can choose
any linear order inLegal(O) to represent her preferences. Theorem 3 is much stronger,
in that it states that over such a preference domain, not onlydoes the sequential composi-
tion of majority rules fail to be strategy-proof, but in factall non-dictatorial voting rules
that satisfy non-imposition fail to be strategy-proof; moreover, this holds for non-binary
multi-issue domains as well.

7 Conclusion
In settings where a group of agents needs to make a joint decision, the set of alter-
natives often has a multi-issue structure. In this paper, wecharacterized strategy-proof
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voting rules when the voters’ preferences are represented by acyclic CP-nets that follow
a common order over issues. We showed that if each voter’s preferences are restricted
to a lexicographic preference domain, then a voting rule satisfying non-imposition is
strategy-proof if and only if it is a locally strategy-proofCR-net. We then proved that if
the profile is allowed to be anyO-legal profile, then the only strategy-proof voting rules
satisfying non-imposition are dictatorships.

Our result for lexicographic preferences is quite positive; however, beyond that, our
results do not inspire much hope for desirable strategy-proof voting rules in multi-issue
domains. Of course, it is well known that it is difficult to obtain strategy-proofness in
voting settings in general, and this does not mean that we should abandon voting as a
general method. Similarly, difficulties in obtaining desirable strategy-proof voting rules
in multi-issue domains should not prevent us from studying voting rules for multi-issue
domains altogether. From a mechanism design perspective, strategy-proofness is a very
strong criterion, which corresponds to implementation in dominant strategies. It may
well be the case that rules that are not strategy-proof stillresult in good outcomes in
practice—or, more formally, in (say) Bayes-Nash equilibrium.
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33. Lirong Xia, Vincent Conitzer, and Jérôme Lang. Aggregating preferences in multi-issue do-
mains by using maximum likelihood estimators. InProc. of AAMAS, pages 399–408, 2010.

34. Lirong Xia, Vincent Conitzer, and Ariel D. Procaccia. A scheduling approach to coalitional
manipulation. InProc. of EC, pages 275–284, 2010.
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