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Abstract

Time synchronization is an important issue in multihop, ad-hoc wireless networks such as sensor
networks. Many applications of sensor networks need local clocks of sensor nodes to be synchronized,
requiring various degrees of precision. Some intrinsic properties of sensor networks such as limited
resources of energy, storage, computation, and bandwidth, combined with potentially high density of
nodes make traditional synchronization methods unsuitable for these networks. Hence there has been
an increasing research focus on designing synchronization algorithms specifically for sensor networks.
This paper reviews the time synchronization problem and the need for synchronization in sensor
networks, then presents in detail the basic synchronization methods explicitly designed and proposed
for sensor networks.

1 Introduction

As the advances in technology have enabled the development of tiny, low power devices capable of
performing sensing and communication tasks, sensor networks emerged and received high attention
of many researchers. Sensor networks are a special type of ad-hoc networks, where wireless devices
(usually referred as nodes in the network) get together and spontaneously form a network without
the need for any infrastructure. Because of the lack of infrastructure, such as routers in traditional
networks, nodes in an ad-hoc network cooperate for communication, by forwarding each other’s packets
for delivery from a source to its destination. This yields a multihop communication environment.
Though being a special type of ad-hoc networks, sensor networks have their own characteristics, such
as much limited energy sources, high density of node deployment, cheap and unreliable sensor nodes.
Having these extra limiting factors for their operation, sensor networks are designed to perform complex
tasks such as emergency applications, environment monitoring, information gathering in battle fields,
and many other uses, connecting the physical world to the virtual world of computers.

As in all distributed systems, time synchronization is an important component of a sensor network.
Time synchronization in a computer network aims at providing a common time scale for local clocks
of nodes in the network. Since all hardware clocks are imperfect, local clocks of nodes may drift away
from each other in time, hence observed time or durations of time intervals may differ for each node
in the network. However, for many applications or networking protocols, it is required that a common
view of time exists and is available to all -or some- of the nodes in the network at any particular instant.
This work presents a survey of existing research on time synchronization in the field of wireless sensor
networks. To the best of our knowledge, there is no previous work that solely surveys this specific
area.

The rest of this paper is organized as follows: In section 2 we describe how computer clocks operate
and review the synchronization problem on computer networks. We also present common sources of
error /inaccuracy in synchronization systems in this section. Section 3 presents motivations for studying
time synchronization in sensor networks. Section 4 is devoted to detailed analysis of synchronization
methods proposed for sensor networks so far. Last section concludes the paper with some remarks and
future research directions.



2 Computer Clocks and the Synchronization Problem

Computing devices are mostly equipped with a hardware oscillator assisted computer clock, which
implements an approximation C(¢) of real-time ¢. The angular frequency of the hardware oscillator
determines the rate at which the clock runs. The rate of a perfect clock, which can be denoted
as %, would equal 1, however all clocks are subject to a clock drift; oscillator frequency will vary
unpredictably due to various physical effects. Even though the frequency of a clock changes over time,
it can be approximated with good accuracy by an oscillator with fixed frequency [8]. Then, for some

node 4 in the network, we can approximate its local clock as:

where a;(t) is the clock drift, and b;(¢) is the offset of node i’s clock. Drift denotes the rate (frequency)
of the clock, and offset is the difference in value from real time t.

Using equation (1), we can compare the local clocks of two nodes in a network, say node 1 and
node 2 as:

Ci(t) = aiz - Ca(t) + bio (2)

We call aq5 the relative drift, and byo the relative offset between the clocks of node 1 and node
2. If two clocks are perfectly synchronized, then their relative drift is 1 -meaning the clocks have the
same rate- and their relative offset is zero -meaning they have the same value at that instant. Some
studies in the literature use “skew” instead of “drift”, defining it as the difference (as opposed to ratio)
between clock rates (e.g. [5]). Also, the “offset” may equivalently be mentioned as “phase offset”.

The synchronization problem on a network of n devices corresponds to the problem of equalizing
the computer clocks of different devices. The synchronization can be either global; trying to equalize
C;(t) for all i = 1..n, or it can be local; trying to equalize C;(t) for some set of nodes -mostly the ones
that are spatially close. Equalizing just the instantaneous values (correcting the offsets) of clocks is not
enough for synchronization since the clocks will drift away afterwards. Therefore a synchronization
scheme should either equalize the clock rates as well as offsets, or it should repeatedly correct the
offsets to keep the clocks synchronized over a time period.

The above definition of synchronization actually defines the most strict form of synchronization,
where one seeks perfect matching of time on different clocks, but this definition can be relaxed to
different degrees according to the needs of an application. In general, the synchronization problem
can be classified into three basic types [9]. First -and the simplest- form of synchronization deals only
with ordering of events or messages. The aim of such an algorithm is to be able to tell whether an
event F has occurred before or after another event Fs, i.e. just to compare the local clocks for order
rather than having them synchronized. The algorithm proposed in [10] is an example to this type of
synchronization. Second type of synchronization algorithms target maintaining relative clocks. In this
scheme, nodes run their local clocks independently, but they keep information about the relative drift
and offset of their clock to other clocks in the network, so that at any instant, the local time of the
node can be converted to some other node’s local time and vice versa. Most of the synchronization
schemes proposed for sensor networks use this model [5, 6, 8]. The third -and most complex- form of
synchronization is the “always on” model where all nodes maintain a clock that is synchronized to a
reference clock in the network. The goal of this type of synchronization algorithms is to preserve a
global timescale throughout the network. The synchronization scheme of [9] conforms to this model,
but the use of “always on” mode is not mandatory in the scheme.

2.1 Common Challenges for Synchronization Methods

All network time synchronization methods rely on some sort of message exchange between nodes.
Nondeterminism in the network dynamics such as propagation time or physical channel access time
makes the synchronization task challenging in many systems. When a node in the network generates
a timestamp to send to another node for synchronization, the packet carrying the timestamp will face
a variable amount of delay until it reaches and is decoded at its intended receiver. This delay prevents
the receiver from exactly comparing the local clocks of the two nodes and accurately synchronizing to



the sender node. We can basically decompose the sources of error in network time synchronization
methods into four basic components:

e Send Time: This is the time spent to construct a message at the sender. It includes the
overhead of operating system (such as context switches), and the time to transfer the message
to the network interface for transmission.

e Access Time: Each packet faces some delay at the MAC (Medium Access Control) layer before
actual transmission. The sources of this delay depend on the MAC scheme used, but some
typical reasons for delay are waiting for the channel to be idle or waiting for the TDMA slot for
transmission.

e Propagation Time: This is the time spent in propagation of the message between the network
interfaces of the sender and the receiver.

o Receive Time: This is the time needed for the network interface of the receiver to receive the
message and transfer it to the host.

3 The Need For Synchronization in Sensor Networks

There are several reasons for addressing the synchronization problem in sensor networks. First, sensor
nodes need to coordinate their operations and collaborate to achieve a complex sensing task. Data
fusion is an example of such coordination in which data collected at different nodes are aggregated into
a meaningful result. For example, in a vehicle tracking application, sensor nodes report the location
and time that they sense the vehicle to a sink node which in turn combines these information to
estimate the location and velocity of the vehicle. Clearly, if the sensor nodes lack a common timescale
(i.e., they are not synchronized) the estimate will be inaccurate.

Second, synchronization can be used by power saving schemes to increase network lifetime. For
example, sensors may sleep (go into power-saving mode by turning off their sensors and/or transceivers)
at appropriate times, and wake up when necessary. When using power-saving modes, the nodes should
sleep and wake-up at coordinated times, such that the radio receiver of a node is not turned off when
there is some data directed to it. This requires a precise timing between sensor nodes.

Scheduling algorithms such as TDMA can be used to share the transmission medium in the time
domain to eliminate transmission collisions and conserve energy. Thus, synchronization is an essential
part of transmission scheduling.

Traditional synchronization schemes such as NTP or GPS are not suitable for use in sensor networks
because of complexity and energy issues, cost and size factors. NTP works well synchronizing the
computers on the Internet, but is not designed with the energy and computation limitations of sensor
nodes in mind. A GPS device may be too expensive to attach on cheap sensor devices, and GPS
service may not be available everywhere, such as inside the buildings or under the water. Furthermore
in adversarial environments, the GPS signals may not be trusted.

3.1 Requirements on the Synchronization Schemes for Sensor Networks

In this section we present a broad set of requirements for the synchronization problem. These require-
ments can also be regarded as the metrics for evaluating synchronization schemes on sensor networks.
However, there are trade offs between the requirements of an efficient synchronization solution (e.g.,
precision versus energy efficiency), thus a single scheme may not satisfy them altogether.

e FEnergy Efficiency — As with all of the protocols designed for sensor networks, synchronization
schemes should take into account the limited energy resources contained in sensor nodes.

o Scalability — Most sensor network applications need deployment of a large number of sensor
nodes. A synchronization scheme should scale well with increasing number of nodes and/or high
density in the network.

e Precision — The need for precision, or accuracy, may vary significantly depending on the specific
application and the purpose of synchronization. For some applications, even a simple ordering



of events and messages may suffice whereas for some others, the requirement for synchronization
accuracy may be on the order of a few usecs.

e Robustness — A sensor network is typically left unattended for long times of operation in possibly
hostile environments. In case of the failure of a few sensor nodes, the synchronization scheme
should remain valid and functional for the rest of the network.

e Lifetime — The synchronized time among sensor nodes provided by a synchronization algorithm
may be instantaneous, or may last as long as the operation time of the network.

e Scope — The synchronization scheme may provide a global time-base for all nodes in the network,
or provide local synchronization only among spatially close nodes. Because of the scalability is-
sues, global synchronization is difficult to achieve or too costly (considering energy and bandwidth
usage) in large sensor networks. On the other hand, a common time-base for a large number
of nodes might be needed for aggregating data collected from distant nodes, dictating a global
synchronization.

o Cost and Size — Wireless sensor nodes are very small and inexpensive devices. Therefore, as
noted earlier, attaching a relatively large or expensive hardware (such as a GPS receiver) on a
small, cheap device is not a logical option for synchronizing sensor nodes. The synchronization
method for sensor networks should be developed with limited cost and size issues in mind.

e Immediacy — Some sensor network applications such as emergency detection (e.g. gas leak
detection, intruder detection) require the occurring event to be communicated immediately to
the sink node. In this kind of applications, the network can not tolerate any kind of delay when
such an emergency situation is detected. This is called the immediacy requirement, and might
prevent the protocol designer from relying on excessive processing after such an event of interest
occurs, which in turn requires that nodes be pre-synchronized at all times.

4 Synchronization Methods for Sensor Networks

Time synchronization in sensor networks has attracted attention in last few years. Post-facto syn-
chronization was a pioneering work by Elson and Estrin [2]. They proposed that unlike in traditional
synchronization schemes such as NTP, local clocks of the sensor nodes should normally run unsyn-
chronized — in their own pace, but should synchronize whenever necessary. This way local timestamps
of two nodes at the occurrence time of an event are synchronized later by extrapolating backwards to
estimate the offset between clocks at a previous time (at the time of the event). This synchronization
scheme has led afterwards to their RBS (Reference Broadcast Synchronization) protocol, which is
discussed in detail in section 4.1.

Romer presented a synchronization algorithm for ad hoc networks [3] around the same time as
[2], suggesting the timestamps in the messages to be transformed between nodes, instead of adjusting
the clocks. However, his scheme used the traditional two-way message exchange for drift and offset
estimation, with the assumption that the drifts are bounded by some constant p. This synchronization
scheme achieves around 1ms precision with little overhead.

In [1], the authors report 2us precision for synchronization, achieved by tight coupling between
application and MAC layers in the protocol stack. The achievement in precision is basically due to
the proposed architecture that enables timestamping messages at the instant the message is actually
sent at the MAC layer, thereby eliminating uncertainties due to the sender.

[4] gives an overview of the time synchronization problem in sensor networks, defining the require-
ments, and various issues for designing synchronization algorithms for sensor networks. The authors
argue that such an algorithm should be multi-modal, tiered and tunable, so that it can satisfy the di-
verse needs of various sensor network applications. Moreover, they suggest that the local clock of each
node should be free-running, i.e. one should not adjust the local clocks. Instead, the synchronization
scheme should build up a table of parameters that enables each node to convert its local clock to that
of another node, and vice versa.

In [10] a message ordering scheme for sensor networks is proposed. The intention is not to synchro-
nize clocks but to be able to reason about the relative order between messages or events. The scheme



described in this work complies with the most relaxed version of synchronization and is not applicable
for most synchronization needs in sensor networks.

A recent interesting study has a more theoretical approach to the problem [7]. In this work,
the authors consider an infinitely large sensor network, and propose an approach in which nodes
collaborate to generate a waveform that carries enough synchronization information to all nodes in the
network. They argue that as the number of nodes goes to infinity, optimal synchronization is possible
at reasonable complexity.

In the rest of this section, we present in detail the synchronization methods explicitly designed and
proposed for sensor networks.

4.1 Reference Broadcast Synchronization (RBS)

Elson, Girod and Estrin [5] proposed a synchronization scheme for sensor networks, Reference Broad-
cast Synchronization (RBS), where their simple yet novel idea is to use a "third party” for synchro-
nization: instead of synchronizing the sender with a receiver (as in most of the previous work), their
scheme synchronizes a set of receivers with one another (although its application in sensor networks
is novel, the idea of receiver-receiver synchronization was previously proposed for synchronization in
broadcast environments). In RBS scheme, nodes send reference beacons to their neighbors. A refer-
ence beacon does not include a timestamp, but instead, its time of arrival is used by receiving nodes
as a reference point for comparing clocks.
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Figure 1: Comparison of traditional synchronization systems to RBS. [5]

The authors argue that, by removing the sender’s nondeterminism from the critical path (figure
1), RBS achieves much better precision compared to traditional synchronization methods that use
two-way message exchanges between synchronizing nodes. As the sender’s nondeterminism has no
effect on RBS precision, the only sources of error can be the nondeterminism in propagation time and
receive time. The authors claim that a single broadcast will propagate to all receivers at essentially
the same time, and hence the propagation error is negligible. This is especially true when the radio
ranges are relatively small (compared to speed of light times the required synchronization precision),
as is the case for sensor networks. So they only account for the receive time errors when analyzing
accuracy of their model.

In the simplest form of RBS, a node broadcasts a single pulse to two receivers. The receivers, upon
receiving the pulse, exchange their receiving times of the pulse, and try to estimate their relative phase
offsets. This basic RBS scheme can be extended in two ways: 1) allowing synchronization between
n receivers by a single pulse, where n may be larger than two, 2) increasing the number of reference
pulses to achieve higher precision. The authors show by simulation that 30 reference broadcasts (for
a single synchronization in time) can improve the precision from 11us to 1.6us when synchronizing a
pair of nodes. They also make use of this redundancy for estimating clock skews: instead of averaging
the phase offsets from multiple observations (e.g. each of 30 reference pulses), they propose to perform
a least-squares linear regression to this data. Then, the frequency and phase of the local node’s clock
with respect to the remote node can be recovered from the slope and intercept of the line.



The authors implemented and tested RBS on two different hardware platforms to acquire its
precision performance. One platform is the Berkeley Motes, one of the widely used sensor node
architectures. On Berkeley Motes, the achieved precision is within 11us. The other platform is
commodity hardware, Compaq IPAQs running Linux kernel v2.4, connected with an 11 Mbit/sec
802.11 network. The reported precision achieved by RBS on this platform is 6.29 4+ 6.45us.

4.2 Timing-Sync Protocol for Sensor Networks (TPSIN)

Ganeriwal et.al. proposed a network-wide time synchronization protocol for sensor networks, which
they call Timing-Sync Protocol for Sensor Networks (TPSN) [9]. Their protocol works in two phases:
“level discovery phase” and “synchronization phase”. The aim of the first phase is to create a hierar-
chical topology in the network, where each node is assigned a level. Only one node is assigned level 0,
called the root node. In the second phase, a node of level i synchronizes to a node of level i — 1. At the
end of the synchronization phase, all nodes are synchronized to the root node and the network-wide
synchronization is achieved.

Level Discovery Phase — This phase is run once at the network deployment. First a node should
be determined as the root node. This could be a sink node in the sensor network, and the sink
may have a GPS receiver, in which case the algorithm will synchronize all nodes to an external time
(time in physical world). If such a sink is not available, sensor nodes can periodically take over the
functionality of the root node. An existing leader election algorithm might be used for this periodic
root node election step.

The root node is assigned level 0, and initiates the level discovery phase by broadcasting a
level_discovery packet. This packet contains the identity and level of the sender node. Upon re-
ceiving this packet, the neighbors of the root node assign themselves level 1. Then each level 1 node
broadcasts a level_discovery packet with its level and identity in the packet. Once a node is assigned
a level, it discards further incoming level_discovery packets. This broadcast chain goes on through the
network, and the phase is completed when all nodes are assigned a level.

T2 T3
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local time
node A -
Tl T4 local time

Figure 2: Two way message exchange between a pair of nodes.

Synchronization Phase — The basic building block of the synchronization phase is the two-way
message exchange between a pair of nodes. The authors assume that the clock drift between a pair of
nodes is constant in the small time period during a single message exchange. The propagation delay is
also assumed to be constant in both directions. Consider a two-way message exchange between nodes
A and B as shown in figure 2. Node A initiates the synchronization by sending a synchronization_pulse
packet at T'1 (according to its local clock). This packet includes A’s level number, and the value T'1.
B receives this packet (according to its local clock) at T2 = T'1 + A + d, where A is the relative clock
drift between the nodes, and d is the propagation delay of the pulse. B responds at time 7'3 with an
acknowledgement packet, which includes the level number of B and the values T'1, T2, and T'3. Then,
node A can calculate the clock drift and propagation delay as below, and synchronize itself to B.

A (T2 —T1)— (T4 -1T3) d (T2 —-T1)+ (T4 —T3)
B 2 o 2

The synchronization phase is initiated by the root node’s time_sync packet. On receiving this

packet, level 1 nodes initiate a two-way message exchange with the root. Before initiating the message




exchange, each node waits for some random time, in order to minimize collisions on the wireless
channel. Once they get back a reply from the root node, they adjust their clocks to the root node.
Level 2 nodes, overhearing some level 1 node’s communication with the root, initiate a two-way message
exchange with a level 1 node, again after waiting for some random time to ensure that level 1 nodes
have completed their synchronization. This procedure eventually gets all nodes synchronized to the
root node.

TPSN is implemented on Berkeley’s Mica architecture [1], and makes use of timestamping packets
at the MAC layer in order to reduce uncertainty at sender. Ganeriwal et.al. claim that TPSN achieves
two times better precision than RBS. They state that the precision of 6.5us reported for RBS is
due to using a superior operating system (Linux) and much more stable crystals available in IPAQs.
Thus RBS is implemented on Mica sensor architecture, as well as TPSN in order to compare their
performance. As we presented in section 4.1, RBS has actually been tested on Berkeley motes (by
Elson et.al.), and the reported precision was 11us. However, Ganeriwal et.al. report, on average,
29.13us precision for their implementation of RBS on Mica. The average error of TPSN is 16.9us
with its implementation on the same hardware platform. Essentially it is claimed that uncertainty at
the sender contributes very little to the total synchronization error, as it is minimized by the use of
low level timestamps at the sender, and therefore the classical sender-receiver synchronization is more
effective than receiver-receiver synchronization in sensor networks.

4.3 Tiny-Sync and Mini-Sync

Tiny-Sync and Mini-Sync are the two lightweight synchronization algorithms, proposed mainly for
sensor networks, by Sichitiu and Veerarittiphan [8]. The authors assume that each clock can be
approximated by an oscillator with fixed frequency. As argued in section 2, two clocks, C1(t) and
Cs(t), can be linearly related under this assumption as:

Ci(t) = a1z - C2(t) + big, (3)

where aqs is the relative drift, and by is the relative offset between the two clocks.

Both algorithms use the conventional two-way messaging scheme to estimate the relative drift and
offset between the clocks of two nodes; node 1 sends a probe message to node 2, timestamped with ¢,,
the local time just before the message is sent. Node 2 generates a timestamp when it gets the message
at t,, and immediately sends back a reply message. Finally, node 1 generates a timestamp ¢, when
it gets this reply message. Using the absolute order between these timestamps and equation (3), the
following inequalities can be obtained:

to < a2ty +bi2 (4)
tr > a2ty +bio (5)

The 3-tuple of the timestamps (t,,tp,t,) is called a “data point”. Tiny-sync and mini-sync works
with some set of data points, each collected by a two-way message exchange as explained. As the
number of data points increases, the precision of the algorithms increases. Each data point corresponds
to two constraints on the relative drift and relative offset (equations 4, 5). The constraints imposed by
data points are depicted in figure 3. Note that the line corresponding to equation (3) must lie between
the vertical intervals created by each data point. One of the dashed lines in figure 3 represent the
steepest possible such line, satisfying equation (3). This line gives the upper bound for the relative
drift (slope of the line, @iz), and the lower bound for the relative offset (y-intercept of the line, bi2)
between the two clocks. Similarly, the other dashed line gives the lower bound for relative drift (ai2)
and the upper bound for relative offset (@) Then the relative drift a;5 and the relative offset b1 can
be bounded as:
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Figure 3: The constraints imposed on a;2 and b1o by data points. [8]

The authors argue that exact drift and offset values can not be determined by this method (or any
other method - as long as message delays are unknown), but they can be well estimated.

The tighter the bounds get, the higher the chance that the estimates will be good, i.e. the precision
of synchronization will be higher. In order to tighten the bounds, one can solve the linear programming
problem consisting of the constraints dictated by all data points in order to get the optimal bounds
resulting from the data points. However, this approach is quite complex for sensor networks, since it
requires high computation and storage for keeping all data points in memory.

The basic intuition behind tiny-sync and mini-sync algorithms is the observation that not all data
points are useful. Counsider, for example, the three data points in figure 3; the intervals [a12,a12] and

[b12, b12] are only bounded by data points 1 and 3. Therefore data point 2 is useless in this example.
Following this intuition, Tiny-sync keeps only the four constraints -the ones which yield the best
bounds on the estimates- among all data points. The resulting algorithm is much simpler than solving
a linear programming problem. However, the authors argue, by a counter example, that this scheme
does not always give the optimal solution for the bounds: The algorithm may eliminate some data
point, considering it useless, although it would actually give a better bound together with another
data point that is yet to occur.

Mini-sync is an extension of Tiny-sync, such that it finds the optimal solution with an increase
in complexity. The idea is to prevent the algorithm of tiny-sync for eliminating constraints that might
be used by some future data points to give tighter bounds. We skip the details here, but the authors
basically define a criteria to determine if there is a chance that a constraint might be useful. A
constraint is eliminated (discarded) only if it is definitely useless. The solutions found by Mini-sync
are optimal.

4.4 Lightweight Tree-based Synchronization (LTS)

Lightweight Tree-based Synchronization (LTS), proposed by Greunen and Rabaey [6] is distinguished
from other work in the sense that the aim is not to maximize accuracy, but to minimize the complexity
of the synchronization. Thus the needed synchronization accuracy is assumed to be given as a con-
straint, and the target is to devise a synchronization algorithm with minimal complexity to achieve
given precision. This approach is supported by the claim of authors that the maximum time accuracy
needed in sensor networks is relatively low (within fractions of a second), and therefore it is sufficient
to use a relaxed, or lightweight, synchronization scheme in sensor networks.

Two LTS algorithms are proposed for multihop synchronization of the network based on pairwise



synchronization scheme of [9], as also explained in section 4.2. Both algorithms require nodes to
synchronize to some reference point(s) such as a sink node in the sensor network. The first algorithm is a
centralized algorithm, and needs a spanning tree to be constructed first. Then pairwise synchronization
is done along the n — 1 edges of the spanning tree. In the centralized algorithm, the reference node is
the root of the spanning tree and has the responsibility of initiating a “resynchronization” as needed.
Using the assumption that the clock drifts are bounded, and given the required precision, the reference
node calculates the time period that a single synchronization step will be valid. Since the depth of
the spanning tree affects the time to synchronize the whole network, and also the precision error at
the leaf nodes, the depth of the tree is communicated back to the root node so that it can use this
information in its resynchronization time decision.

The second multihop LTS algorithm performs network-wide synchronization in a distributed fash-
ion. Each node decides the time for its own synchronization, and a spanning tree structure is not used
in this algorithm. When a node 4 decides that it needs to synchronize (using the desired accuracy,
its distance from the reference node, and the clock drift), it sends a synchronization request to the
closest reference node (by any routing mechanism available). Then, all nodes along the path from that
reference node to 4 must be synchronized before node i can be synchronized. The advantage of this
scheme is that some nodes may have less frequent events to deliver and therefore may not need frequent
synchronization. Since nodes have the opportunity to decide on their own synchronization, this saves
unnecessary synchronization effort of such nodes. On the other hand, letting each node decide on
resynchronization may boost the number of pairwise synchronizations, since for each synchronization
request, all nodes along the path from reference node to the initiator of resynchronization need to
be synchronized. As the number of synchronization requests increase, the overall effect of synchro-
nizations along these paths may be a significant waste of resources. Hence the idea of aggregating
synchronization requests is proposed; when any node wishes to request synchronization, it queries
adjacent nodes to discover the existence of any pending request. If any exists, the synchronization
request of this node could be aggregated to a pending request, decreasing the inefficiency that would
be caused by two separate synchronizations along the same path.

5 Conclusion: Remarks and Research Directions

We presented basic synchronization methods proposed for wireless sensor networks, reviewing the
motivations and requirements for such work. Two synchronization algorithms, RBS and TPSN, both
report very high precisions, on the orders of few usecs, though they use completely different approaches.
The receiver-receiver synchronization of RBS completely eliminates the uncertainty at the sender, and
thus is believed by many researchers to perform better than classical sender-receiver synchronization.
However, it should be noted that receiver-receiver synchronization requires 4 messages sent and 3
messages received for synchronizing two nodes, while the sender-receiver synchronization requires only
2 sent and 2 received messages. As radio communication is known to be the most energy consuming
component of sensor node operations, this is almost a two times increase in energy-complexity. This
increase in the complexity of receiver-receiver synchronization can be reduced to some degree by
synchronizing many receivers by a single synchronization pulse broadcast by the sender. Although
TPSN does not suffer from energy complexity in this respect, it needs a hierarchical structure of nodes
to be formed, which might increase the synchronization cost. Mini-sync also relies on a hierarchical
structure among sensor nodes, though it is a low-complexity option for synchronizing sensor networks.
LTS algorithms offer very low cost synchronization, however with very limited accuracy, therefore with
limited applicability. Before concluding the paper, we review some open issues and possible research
directions in this field.

Most of the time synchronization work in the literature analyzes and presents their results based
on experiments or simulations. For single hop synchronization, there are also analytical models to
define the accuracy characteristics of a proposed synchronization scheme. However, there is a lack
of analytical models for multihop synchronization. When two nodes apart are synchronized using
multiple pairwise synchronization steps, the error is usually expected to grow, but since the pairwise
errors may have different signs and magnitudes, the overall effect of multihop synchronization is usually
much smaller than the sum of magnitudes of single-hop errors. An analytical model for this artifact



may be developed accounting for the probabilistic variations in the sign and magnitude of single hop
synchronization errors.

Identification -or discovery- of nodes to act as beacon senders in RBS is an important issue. If
there is more than one beacon sender in a single neighborhood, the resulting redundancy may be
used to improve precision, but it also increases consumption of limited resources in the network. The
correlation between this redundancy and precision may be investigated. Methods for identifying beacon
senders to achieve some desired point in this trade-off curve may be proposed.

Extensive research on sensor networks boosts the evolution of these systems. Although sensor
networks are mostly considered as fixed topologies (with stationary sensor nodes), and sensor network
protocols so far usually assume that the nodes are stationary, next generation sensor networks may be
expected to include mobile sensor nodes. Indeed, Networked Infomechanical Systems (NIMS) project is
a recent initiative towards this, which has already announced the development and deployment of initial
prototypes that operated in a forest field biology station'. As such systems evolve, synchronization
algorithms that take mobility into account will be needed. We believe that synchronization algorithms
can even benefit from the mobility, as mobile nodes will “carry” time information from one part of the
network to other parts, potentially increasing the global synchronization accuracy.
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