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Unlabeled and Labeled Graphs

The goal of graph mining is to extract interesting subgraphs from a single large
graph (e.g., a social network), or from a database of many graphs.

A graph is a pair G = (V ,E ) where V is a set of vertices, and E ⊆ V ×V is a set
of edges.

A labeled graph has labels associated with its vertices as well as edges. We use
L(u) to denote the label of the vertex u, and L(u,v) to denote the label of the
edge (u,v), with the set of vertex labels denoted as ΣV and the set of edge labels
as ΣE . Given an edge (u,v) ∈ G , the tuple 〈u,v ,L(u),L(v),L(u,v)〉 that
augments the edge with the node and edge labels is called an extended edge.

A graph G ′ = (V ′,E ′) is said to be a subgraph of G if V ′ ⊆ V and E ′ ⊆ E . A
connected subgraph is defined as a subgraph G ′ such that V ′ ⊆ V , E ′ ⊆ E , and
for any two nodes u,v ∈ V ′, there exists a path from u to v in G ′.
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Unlabeled and Labeled Graphs
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Subgraph and Connected Subgraph
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Mining Frequent Subgraph

Given a database of graphs, D = {G1,G2, . . . ,Gn}, and given some graph G , the
support of G in D is defined as follows:

sup(G ) =
∣

∣

∣

{

Gi ∈D | G ⊆ Gi

}

∣

∣

∣

The support is simply the number of graphs in the database that contain G .
Given a minsup threshold, the goal of graph mining is to mine all frequent
connected subgraphs with sup(G )≥minsup.

If we consider subgraphs with m vertices, then there are
(

m

2

)

=O(m2) possible

edges. The number of possible subgraphs with m nodes is then O(2m
2

) because
we may decide either to include or exclude each of the edges. Many of these

subgraphs will not be connected, but O(2m
2

) is a convenient upper bound. When
we add labels to the vertices and edges, the number of labeled graphs will be even
more.
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Graph Pattern Mining

There are two main challenges in frequent subgraph mining.

The first is to systematically generate nonredundant candidate subgraphs. We use
edge-growth as the basic mechanism for extending the candidates.

The second challenge is to count the support of a graph in the database. This
involves subgraph isomorphism checking, as we have to find the set of graphs that
contain a given candidate.
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Candidate Generation

An effective strategy to enumerate subgraph patterns is rightmost path extension.

Given a graph G , we perform a depth-first search (DFS) over its vertices, and
create a DFS spanning tree, that is, one that covers or spans all the vertices.

Edges that are included in the DFS tree are called forward edges, and all other
edges are called backward edges. Backward edges create cycles in the graph.

Once we have a DFS tree, define the rightmost path as the path from the root to
the rightmost leaf, that is, to the leaf with the highest index in the DFS order.
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Depth-first Spanning Tree
Starting at v1, each DFS step chooses the vertex with smallest index
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DFS Code

For systematic enumeration we rank the set of isomorphic graphs and pick one
member as the canonical representative.

Let G be a graph and let TG be a DFS spanning tree for G . The DFS tree TG

defines an ordering of both the nodes and edges in G . The DFS node ordering is
obtained by numbering the nodes consecutively in the order they are visited in the
DFS walk.

Assume that for a pattern graph G the nodes are numbered according to their
position in the DFS ordering, so that i < j implies that vi comes before vj in the
DFS walk.

The DFS edge ordering is obtained by following the edges between consecutive
nodes in DFS order, with the condition that all the backward edges incident with
vertex vi are listed before any of the forward edges incident with it.

The DFS code for a graph G , for a given DFS tree TG , denoted DFScode(G ), is
defined as the sequence of extended edge tuples of the form
〈

vi ,vj ,L(vi ),L(vj),L(vi ,vj)
〉

listed in the DFS edge order.
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Canonical DFS Code

A subgraph is canonical if it has the smallest DFS code among all possible isomorphic
graphs.

Let t1 and t2 be any two DFS code tuples:

t1 =
〈

vi ,vj ,L(vi ),L(vj ),L(vi ,vj )
〉

t2 =
〈

vx ,vy ,L(vx ),L(vy ),L(vx ,vy )
〉

We say that t1 is smaller than t2, written t1 < t2, iff

i) (vi ,vj )<e (vx ,vy ),or

ii) (vi ,vj ) = (vx ,vy ) and
〈

L(vi ),L(vj ),L(vi ,vj)
〉

<l

〈

L(vx),L(vy ),L(vx ,vy )
〉

where <e is an ordering on the edges and <l is an ordering on the vertex and edge labels.

The label order <l is the standard lexicographic order on the vertex and edge labels.

The edge order <e is derived from the rules for rightmost path extension, namely that all
of a node’s backward extensions must be considered before any forward edge from that
node, and deep DFS trees are preferred over bushy DFS trees.
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Canonical DFS Code: Edge Ordering

Let eij = (vi ,vj) and exy = (vx ,vy ) be any two edges. We say that eij <e exy iff

If eij and exy are both forward edges, then (a) j < y , or (b) j = y and i > x .

If eij and exy are both backward edges, then (a) i < x , or (b) i = x and j < y .

If eij is a forward and exy is a backward edge, then j ≤ x .

If eij is a backward and exy is a forward edge, then i < y .

The canonical DFS code for a graph G is defined as follows:

C =min
G ′

{

DFScode(G ′) | G ′ is isomorphic to G
}
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Canonical DFS Code
G1 has the canonical or minimal DFS code
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t11 = 〈v1,v2,a,a,q〉
t12 = 〈v2,v3,a,a, r〉
t13 = 〈v3,v1,a,a, r〉
t14 = 〈v2,v4,a,b, r〉

t21 = 〈v1,v2,a,a,q〉
t22 = 〈v2,v3,a,b, r〉
t23 = 〈v2,v4,a,a, r〉
t24 = 〈v4,v1,a,a, r〉

t31 = 〈v1,v2,a,a,q〉
t32 = 〈v2,v3,a,a, r〉
t33 = 〈v3,v1,a,a, r〉
t34 = 〈v1,v4,a,b, r〉

DFScode(G1) DFScode(G2) DFScode(G3)
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Canonicality Checking

Given a DFS code C = {t1, t2, . . . , tk} comprising k extended edge tuples and the
corresponding graph G (C ), the task is to check whether the code C is canonical.

This can be accomplished by trying to reconstruct the canonical code C∗ for
G (C ) in an iterative manner starting from the empty code and selecting the least
rightmost path extension at each step, where the least edge extension is based on
the extended tuple comparison operator.

If at any step the current (partial) canonical DFS code C∗ is smaller than C , then
we know that C cannot be canonical and can thus be pruned. On the other hand,
if no smaller code is found after k extensions then C must be canonical.
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Algorithm IsCanonical: Canonicality Checking

IsCanonical (C):
1 DC ←{G (C )} // graph corresponding to code C

2 C∗←∅ // initialize canonical DFScode

3 for i = 1 · · ·k do
4 E = RightMostPath-Extensions(C∗,DC ) // extensions of C∗

5 (si ,sup(si ))←min{E} // least rightmost edge extension

of C∗

6 if si < ti then
7 return false // C∗ is smaller, thus C is not

canonical

8 C∗← C∗ ∪ si

9 return true // no smaller code exists; C is canonical
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Canonicality Checking
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Graph and Subgraph Isomorphism

A graph G ′ = (V ′,E ′) is said to be isomorphic to another graph G = (V ,E ) if
there exists a bijective function φ : V ′→ V , i.e., both injective (into) and
surjective (onto), such that

(u,v) ∈ E ′ ⇐⇒ (φ(u),φ(v)) ∈ E

∀u ∈ V ′, L(u) = L(φ(u))

∀(u,v) ∈ E ′, L(u,v) = L(φ(u),φ(v))

In other words, the isomorphism φ preserves the edge adjacencies as well as the
vertex and edge labels. Put differently, the extended tuple
〈u,v ,L(u),L(v),L(u,v)〉 ∈ G ′ if and only if
〈φ(u),φ(v),L(φ(u)),L(φ(v)),L(φ(u),φ(v))〉 ∈ G .

If the function φ is only injective but not surjective, we say that the mapping φ is
a subgraph isomorphism from G ′ to G . In this case, we say that G ′ is isomorphic
to a subgraph of G , that is, G ′ is subgraph isomorphic to G , denoted G ′ ⊆ G ; we
also say that G contains G ′.
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Graph and Subgraph Isomorphism
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Graph Isomorphism

G1 and G2 are isomorphic graphs. There are several possible isomorphisms
between G1 and G2. An example of an isomorphism φ : V2→ V1 is

φ(v1) = u1 φ(v2) = u3 φ(v3) = u2 φ(v4) = u4

The inverse mapping φ−1 specifies the isomorphism from G1 to G2. For example,
φ−1(u1) = v1, φ

−1(u2) = v3, and so on.

The set of all possible isomorphisms from G2 to G1 are as follows:

v1 v2 v3 v4

φ1 u1 u3 u2 u4

φ2 u1 u4 u2 u3

φ3 u2 u3 u1 u4

φ4 u2 u4 u1 u3
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Subgraph Isomorphism

The graph G3 is subgraph isomorphic to both G1 and G2. The set of all possible
subgraph isomorphisms from G3 to G1 are as follows:

w1 w2 w3

φ1 u1 u2 u3

φ2 u1 u2 u4

φ3 u2 u1 u3

φ4 u2 u1 u4

The graph G4 is not subgraph isomorphic to either G1 or G2, since x1 and x3 are
directly connected, and u3 and u4, from G1, are not. The same applies to v2 and
v4 from G2.
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Subgraph Isomorphisms

To enumerate all the possible isomorphisms from C to each graph Gi ∈D the
function SubgraphIsomorphisms, accepts a code C and a graph G , and returns the
set of all isomorphisms between C and G .

The set of isomorphisms Φ is initialized by mapping vertex 0 in C to each vertex x

in G that shares the same label as 0, that is, if L(x) = L(0).

The method considers each tuple ti in C and extends the current set of partial
isomorphisms. Let ti = 〈u,v ,L(u),L(v),L(u,v)〉. We have to check if each
isomorphism φ ∈Φ can be extended in G using the information from ti

If ti is a forward edge, then we seek a neighbor x of φ(u) in G such that x has not
already been mapped to some vertex in C , that is, φ−1(x) should not exist, and
the node and edge labels should match, that is, L(x) = L(v), and
L(φ(u),x) = L(u,v). If so, φ can be extended with the mapping φ(v)→ x . The
new extended isomorphism, denoted φ′, is added to the initially empty set of
isomorphisms Φ′.

If ti is a backward edge, we have to check if φ(v) is a neighbor of φ(u) in G . If
so, we add the current isomorphism φ to Φ′.
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Algorithm SubgraphIsomorphisms

SubgraphIsomorphisms (C = {t1, t2, . . . , tk}, G):
1 Φ←{φ(0)→ x | x ∈ G and L(x) = L(0)}
2 foreach ti ∈ C , i = 1, . . . ,k do
3 〈u,v ,L(u),L(v),L(u,v)〉 ← ti // expand extended edge ti
4 Φ′←∅ // partial isomorphisms including ti
5 foreach partial isomorphism φ ∈Φ do

6 if v > u then
// forward edge

7 foreach x ∈NG (φ(u)) do
8 if 6 ∃φ−1(x) and L(x) = L(v) and L(φ(u),x) = L(u,v) then
9 φ′← φ∪{φ(v)→ x}

10 Add φ′ to Φ′

11 else
// backward edge

12 if φ(v)∈NGj
(φ(u)) then Add φ to Φ′ // valid isomorphism

13

14 Φ←Φ′ // update partial isomorphisms

15 return Φ
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Subgraph Isomorphisms

G1

a10

b20 a30

b40

G2

b50

a60 b70

a80

C

t1 : 〈0,1,a,a〉
t2 : 〈1,2,a,b〉

G (C)

a0

a1

b2

Initial Φ

id φ 0

G1

φ1 10
φ2 30

G2

φ3 60
φ4 80

Add t1

id φ 0,1

G1

φ1 10,30
φ2 30,10

G2

φ3 60,80
φ4 80,60

Add t2

id φ 0,1,2

G1

φ′

1 10,30,20
φ′′

1 10,30,40
φ2 30,10,20

G2

φ3 60,80,70
φ′

4 80,60,50
φ′′

4 80,60,70
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Rightmost Path Extensions

For generating new candidates from a given graph G , we extend it by adding a new edge
to vertices only on the rightmost path. We can either extend G by adding backward
edges from the rightmost vertex to some other vertex on the rightmost path (disallowing
self-loops or multi-edges), or we can extend G by adding forward edges from any of the
vertices on the rightmost path. A backward extension does not add a new vertex,
whereas a forward extension adds a new vertex.

For systematic candidate generation we impose a total order on the extensions, as
follows: First, we try all backward extensions from the rightmost vertex, and then we try
forward extensions from vertices on the rightmost path.

Among the backward edge extensions, if ur is the rightmost vertex, the extension (ur ,vi )
is tried before (ur ,vj ) if i < j . In other words, backward extensions closer to the root are
considered before those farther away from the root along the rightmost path.

Among the forward edge extensions, if vx is the new vertex to be added, the extension
(vi ,vx) is tried before (vj ,vx) if i > j . In other words, the vertices farther from the root
(those at greater depth) are extended before those closer to the root. Also note that the
new vertex will be numbered x = r + 1, as it will become the new rightmost vertex after
the extension.
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Rightmost Path Extensions
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Extension and Support Computation

The support computation task is to find the number of graphs in the database D

that contain a candidate subgraph, which is very expensive because it involves
subgraph isomorphism checks. gSpan combines the tasks of enumerating
candidate extensions and support computation.

Assume that D = {G1,G2, . . . ,Gn} comprises n graphs. Let C = {t1, t2, . . . , tk}
denote a frequent canonical DFS code comprising k edges, and let G (C ) denote
the graph corresponding to code C . The task is to compute the set of possible
rightmost path extensions from C , along with their support values.

Given code C , gSpan first records the nodes on the rightmost path (R), and the
rightmost child (ur ). Next, gSpan considers each graph Gi ∈D. If C = ∅, then
each distinct label tuple of the form 〈L(x),L(y),L(x ,y)〉 for adjacent nodes x and
y in Gi contributes a forward extension 〈0,1,L(x),L(y),L(x ,y)〉 On the other
hand, if C is not empty, then gSpan enumerates all possible subgraph
isomorphisms Φi between the code C and graph Gi . Given subgraph isomorphism
φ ∈Φi , gSpan finds all possible forward and backward edge extensions, and stores
them in the extension set E .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 11: Graph Pattern Mining 25 / 37



Forward and Backward Extensions

Backward extensions are allowed only from the rightmost child ur in C to some other
node on the rightmost path R.

The method considers each neighbor x of φ(ur ) in Gi and checks whether it is a mapping
for some vertex v = φ−1(x) along the rightmost path R in C . If the edge (ur ,v) does
not already exist in C , it is a new extension, and the extended tuple
b = 〈ur ,v ,L(ur ),L(v),L(ur ,v)〉 is added to the set of extensions E , along with the graph
id i that contributed to that extension.

Forward extensions are allowed only from nodes on the rightmost path R to new nodes.
For each node u in R, the algorithm finds a neighbor x in Gi that is not in a mapping
from some node in C . For each such node x , the forward extension
f = 〈u,ur+1,L(φ(u)),L(x),L(φ(u),x)〉 is added to E , along with the graph id i . Because
a forward extension adds a new vertex to the graph G (C), the id of the new node in C

must be ur+1, that is, one more than the highest numbered node in C , which by
definition is the rightmost child ur .
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Algorithm RightMostPath-Extensions

RightMostPath-Extensions (C , D):
1 R← nodes on the rightmost path in C

2 ur ← rightmost child in C // dfs number

3 E ← ∅ // set of extensions from C

4 foreach Gi ∈D, i = 1, . . . ,n do
5 if C = ∅ then
6 foreach distinct 〈L(x),L(y),L(x,y)〉 ∈ Gi do

7 f =
〈

0,1,L(x),L(y),L(x,y)
〉

8 Add tuple f to E along with graph id i

9 else
10 Φi = SubgraphIsomorphisms(C ,Gi )
11 foreach isomorphism φ ∈ Φi do
12 foreach x ∈ NGi

(φ(ur )) such that ∃v ← φ−1(x) do

13 if v ∈ R and (ur ,v) 6∈ G(C) then
14 b =

〈

ur ,v ,L(ur ),L(v),L(ur ,v)
〉

15 Add tuple b to E along with graph id i

16 foreach u ∈ R do

17 foreach x ∈ NGi
(φ(u)) and 6 ∃φ−1(x) do

18 f =
〈

u,ur+1,L(φ(u)),L(x),L(φ(u),x)
〉

19 Add tuple f to E along with graph id i

20 foreach distinct extension s ∈ E do
21 sup(s) = number of distinct graph ids that support tuple s

22 return set of pairs 〈s, sup(s)〉 for extensions s ∈ E, in tuple sorted order
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Righmost Path Extensions

G1

a10

b20 a30

b40

G2

b50

a60 b70

a80

C

t1 : 〈0,1,a,a〉
t2 : 〈1,2,a,b〉

G (C )

a0

a1

b2

(a) G1, G2, Code C and graph G(C)

Φ φ 0 1 2

Φ1

φ1 10 30 20
φ2 10 30 40
φ3 30 10 20

Φ2

φ4 60 80 70
φ5 80 60 50
φ6 80 60 70

(b) Subgraph isomorphisms

Id φ Extensions

G1

φ1 {〈2,0,b,a〉,〈1,3,a,b〉}
φ2 {〈1,3,a,b〉,〈0,3,a,b〉}
φ3 {〈2,0,b,a〉,〈0,3,a,b〉}

G2

φ4 {〈2,0,b,a〉,〈2,3,b,b〉,〈0,3,a,b〉}
φ5 {〈2,3,b,b〉,〈1,3,a,b〉}
φ6 {〈2,0,b,a〉,〈2,3,b,b〉,〈1,3,a,b〉}

(c) Edge extensions

Extension Support

〈2,0,b,a〉 2
〈2,3,b,b〉 1
〈1,3,a,b〉 2
〈0,3,a,b〉 2

(d) Extensions (sorted) and supports
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gSpan Graph Mining Algorithm

gSpan enumerates patterns in a depth-first manner, starting with the empty code.
Given a canonical and frequent code C , gSpan first determines the set of possible
edge extensions along the rightmost path.

The function RightMostPath-Extensions returns the set of edge extensions along
with their support values, E . Each extended edge t in E leads to a new candidate
DFS code C ′ = C ∪{t}, with support sup(C ) = sup(t).

For each new candidate code, gSpan checks whether it is frequent and canonical,
and if so gSpan recursively extends C ′ The algorithm stops when there are no
more frequent and canonical extensions possible.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 11: Graph Pattern Mining 29 / 37



Algorithm gSpan

// Initial Call: C ←∅
gSpan (C , D, minsup):

1 E ← RightMostPath-Extensions(C ,D) // extensions and

supports

2 foreach (t,sup(t)) ∈ E do
3 C ′← C ∪ t // extend code with extended edge tuple t

4 sup(C ′)← sup(t) // record the support of new extension

// recursively call gSpan if code is frequent and

canonical

5 if sup(C ′)≥minsup and IsCanonical (C ′) then

6 gSpan (C ′, D, minsup)
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Example Graph Database: gSpan

G1
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b20 a30

b40

G2

b50

a60 b70

a80
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Frequent Graph Mining: gSpan
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Frequent Graph Mining: gSpan
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Frequent Graph Mining: gSpan
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Frequent Graph Mining: gSpan
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Frequent Graph Mining: gSpan
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