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Rule Assessment Measures: Support and Confidence

Support: The support of the rule is defined as the number of transactions that
contain both X and Y , that is,

sup(X −→ Y ) = sup(XY ) = |t(XY )|

The relative support is the fraction of transactions that contain both X and Y ,
that is, the empirical joint probability of the items comprising the rule

rsup(X −→ Y ) = P(XY ) = rsup(XY ) =
sup(XY )

|D|

Confidence: The conf idence of a rule is the conditional probability that a
transaction contains the consequent Y given that it contains the antecedent X :

conf (X −→ Y ) = P(Y |X ) =
P(XY )

P(X )
=

rsup(XY )

rsup(X )
=

sup(XY )

sup(X )
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Example Dataset: Support and Confidence

Tid Items
1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

Frequent itemsets: minsup = 3
sup rsup Itemsets
3 0.5 ABD, ABDE , AD, ADE

BCE , BDE , CE , DE

4 0.67 A, C , D, AB, ABE , AE , BC , BD

5 0.83 E , BE

6 1.0 B

Rule confidence
Rule conf

A −→ E 1.00
E −→ A 0.80

B −→ E 0.83
E −→ B 1.00

E −→ BC 0.60
BC −→ E 0.75

Confidence should be evaluated
considering the support of the rule
components. For instance, since
P(BC ) = 0.67, the rule E −→
BC , with a 60% confidence, has a
deleterious effect on BC .
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Rule Assessment Measures: Lift, Leverage and Jaccard

Lift: Lift is defined as the ratio of the observed joint probability of X and Y to
the expected joint probability if they were statistically independent, that is,

lift(X −→ Y ) =
P(XY )

P(X ) ·P(Y )
=

rsup(XY )

rsup(X ) · rsup(Y )
=

conf (X −→ Y )

rsup(Y )

Leverage: Leverage measures the difference between the observed and expected
joint probability of XY assuming that X and Y are independent

leverage(X −→ Y ) = P(XY )−P(X ) ·P(Y ) = rsup(XY )− rsup(X ) · rsup(Y )

Jaccard: The Jaccard coefficient measures the similarity between two sets. When
applied as a rule assessment measure it computes the similarity between the
tidsets of X and Y :

jaccard(X −→ Y ) =
|t(X )∩ t(Y )|

|t(X )∪ t(Y )|

=
P(XY )

P(X )+P(Y )−P(XY )
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Lift and Leverage

Rule lift

AE −→ BC 0.75
CE −→ AB 1.00
BE −→ AC 1.20

lift < 1 indicates the rule sup-
port is smaller than expected,
while lift > 1 means the
reverse.

Rule rsup lift leverage

ACD −→ E 0.17 1.20 0.03
AC −→ E 0.33 1.20 0.06
AB −→ D 0.50 1.12 0.06

A −→ E 0.67 1.20 0.11

Lift and leverage must be
evaluated together, since the
same lift may refer to signifi-
cantly different leverages.
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Lift, Jaccard, and Confidence

Rule rsup conf lift

E −→ AC 0.33 0.40 1.20
E −→ AB 0.67 0.80 1.20
B −→ E 0.83 0.83 1.00

Lift and confidence must be evalu-
ated together, to avoid either weak
rules or rules where the antecedent
and consequent are independent
(lift = 1).

Rule rsup lift jaccard

A −→ C 0.33 0.75 0.33
A −→ E 0.67 1.20 0.80
A −→ B 0.67 1.00 0.67

Jaccard and Lift provide simi-
lar information, but Jaccard is
bounded to the interval [0,1].
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Contingency Table for X and Y

We may also define the contingency table for X and Y , and exploit their absence,
represented by ¬X and ¬Y .

Y ¬Y
X sup(XY ) sup(X¬Y ) sup(X )
¬X sup(¬XY ) sup(¬X¬Y ) sup(¬X )

sup(Y ) sup(¬Y ) |D|
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Rule Assessment Measures: Conviction

Define ¬X to be the event that X is not contained in a transaction, that is,
X 6⊆ t ∈ T , and likewise for ¬Y . There are, in general, four possible events
depending on the occurrence or non-occurrence of the itemsets X and Y as
depicted in the contingency table.

Conviction measures the expected error of the rule, that is, how often X occurs in
a transaction where Y does not. It is thus a measure of the strength of a rule
with respect to the complement of the consequent, defined as

conv(X −→ Y ) =
P(X ) ·P(¬Y )

P(X¬Y )
=

1

lift(X −→¬Y )
=

1−P(Y )

1− conf (X −→ Y )

If the joint probability of X¬Y is less than that expected under independence of
X and ¬Y , then conviction is high, and vice versa.
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Rule Conviction

Rule rsup conf lift conv

A −→ DE 0.50 0.75 1.50 2.00
DE −→ A 0.50 1.00 1.50 ∞

E −→ C 0.50 0.60 0.90 0.83
C −→ E 0.50 0.75 0.90 0.68

A−→DE is a strong rule, confirmed by high values of both lift and conviction.
DE −→ A has 100% confidence, being a trivial rule.
E −→ C and C −→ E are weak, but, despite the same support and lift, conviction
indicates that the E −→ C is stronger than C −→ E , while confidence indicates
the reverse.
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Rule Assessment Measures: Odds Ratio

The odds ratio utilizes all four entries from the contingency table. Let us divide
the dataset into two groups of transactions – those that contain X and those that
do not contain X . Define the odds of Y in these two groups as follows:

odds(Y |X ) =
P(XY )/P(X )

P(X¬Y )/P(X )
=

P(XY )

P(X¬Y )

odds(Y |¬X ) =
P(¬XY )/P(¬X )

P(¬X¬Y )/P(¬X )
=

P(¬XY )

P(¬X¬Y )

The odds ratio is then defined as the ratio of these two odds:

oddsratio(X −→ Y ) =
odds(Y |X )

odds(Y |¬X )
=

P(XY ) ·P(¬X¬Y )

P(X¬Y ) ·P(¬XY )

=
sup(XY ) · sup(¬X¬Y )

sup(X¬Y ) · sup(¬XY )

If X and Y are independent, then odds ratio has value 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 12: Pattern and Rule Assessment



Odds Ratio

Let us compare the odds ratio for two rules, C −→ A and D −→ A. The
contingency tables for A and C , and for A and D, are given below:

C ¬C
A 2 2
¬A 2 0

D ¬D
A 3 1
¬A 1 1

The odds ratio values for the two rules are given as

oddsratio(C −→ A) =
sup(AC ) · sup(¬A¬C )

sup(A¬C ) · sup(¬AC )
=

2× 0

2× 2
= 0

oddsratio(D −→ A) =
sup(AD) · sup(¬A¬D)

sup(A¬D) · sup(¬AD)
=

3× 1

1× 1
= 3

Thus D −→ A is stronger than C −→ A, which is also confirmed by lift and
confidence.
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Example: Association Rules from Iris Data
Discretization of Iris Data

Attribute Range or value Label

Sepal length
4.30–5.55 sl1
5.55–6.15 sl2
6.15–7.90 sl3

Sepal width
2.00–2.95 sw1

2.95–3.35 sw2

3.35–4.40 sw3

Petal length
1.00–2.45 pl1
2.45–4.75 pl2
4.75–6.90 pl3

Petal width

0.10–0.80 pw1

0.80–1.75 pw2

1.75–2.50 pw3

Class
Iris-setosa c1

Iris-versicolor c2
Iris-virginica c3
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Iris: Support vs. Confidence, and Conviction vs. Lift
minsup = 10 and minlift = 0.1 results in 79 rules

0 0.1 0.2 0.3 0.4
0

0.25
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1.00

rsup

conf
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bC bC

bC
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rS
rS

rS rS

rSrS
rS

uTuTuTuTuTuTuTuT uTuTuTuT
uT uT uTuTuTuTuT

uT uT
uT

uT
uT

uT bC Iris-setosa (c1)
rS Iris-versicolor (c2)
uT Iris-virginica (c3)

bC
rS uT

(a) Support vs. confidence

0 0.5 1.0 1.5 2.0 2.5 3.0
0

5.0

10.0

15.0

20.0

25.0

30.0

lift

conv
bCbCbC
bCbCbC

bCbCbC
bCbCbCbC

bCbCbCbCbCbC

bC
bCbC

bC

rSrS

rSrS
rSrSrSrS

rSrS

rSrS

rSrSrSrSrSrSrSrS
rSrSrSrS

rSrSrSrSrSrSrS

uTuT

uTuT
uTuT

uTuT

uTuT

uTuT
uTuTuTuTuTuTuTuTuTuTuTuTuT

bC Iris-setosa (c1)
rS Iris-versicolor (c2)
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(b) Lift vs. conviction

For each class we select the most specific (i.e., with maximal antecedent) rule
with the highest relative support and then confidence, and also those with the
highest conviction and then lift.
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Iris Data: Best Class-specific Rules

Best Rules by Support and Confidence
Rule rsup conf lift conv

{pl1,pw1} −→ c1 0.333 1.00 3.00 ∞
pw2 −→ c2 0.327 0.91 2.72 6.00
pl3 −→ c3 0.327 0.89 2.67 5.24

Best Rules by Lift and Conviction
Rule rsup conf lift conv

{pl1,pw1} −→ c1 0.33 1.00 3.00 ∞
{pl2,pw2} −→ c2 0.29 0.98 2.93 15.00
{sl3,pl3,pw3} −→ c3 0.25 1.00 3.00 ∞

Comparing the rules for each criterion, we verify that the best rule for c1 is the
same, but the comparison between rules for c2 and c3 suggests a trade-off
between support and novelty, represented by lift and conviction.
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Pattern Assessment Measures: Support and Lift

Support: The most basic measures are support and relative support, giving the
number and fraction of transactions in D that contain the itemset X :

sup(X ) = |t(X )| rsup(X ) =
sup(X )

|D|

Lift: The lift of a k-itemset X = {x1,x2, . . . ,xk} is defined as

lift(X ,D) =
P(X )

∏k

i=1P(xi )
=

rsup(X )
∏k

i=1 rsup(xi )

Generalized Lift: Assume that {X1,X2, . . . ,Xq} is a q-partition of X , i.e., a
partitioning of X into q nonempty and disjoint itemsets Xi . Define the generalized
lift of X over partitions of size q as follows:

liftq(X ) = min
X1,...,Xq

{

P(X )
∏q

i=1P(Xi )

}

This is, the least value of lift over all q-partitions X .
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Pattern Assessment Measures: Rule-based Measures

Let Θ be some rule assessment measure. We generate all possible rules from X of
the form X1 −→ X2 and X2 −→ X1, where the set {X1,X2} is a 2-partition, or a
bipartition, of X .

We then compute the measure Θ for each such rule, and use summary statistics
such as the mean, maximum, and minimum to characterize X .

For example, if Θ is rule lift, then we can define the average, maximum, and
minimum lift values for X as follows:

AvgLift(X ) = avg
X1,X2

{

lift(X1 −→ X2)
}

MaxLift(X ) = max
X1,X2

{

lift(X1 −→ X2)
}

MinLift(X ) = min
X1,X2

{

lift(X1 −→ X2)
}
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Iris Data: Support Values for {pl2,pw2,c2} and its Subsets

Consider the support and relative support of itemset X = {pl2,pw2,c2} and its
subsets.

Itemset sup rsup

{pl2,pw2,c2} 44 0.293

{pl2,pw2} 45 0.300
{pl2,c2} 44 0.293
{pw2,c2} 49 0.327
{pl2} 45 0.300
{pw2} 54 0.360
{c2} 50 0.333

lift(X ) =
rsup(X )

rsup(pl2)rsup(pw2)rsup(c2)
=

0.293

0.3 ∗ 0.36 ∗ 0.333
= 8.16
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Rules Generated from X = {pl2,pw2,c2}

Consider all rules that may be generated from X :

Bipartition Rule lift leverage conf
{

{pl2},{pw2,c2}
}

pl2 −→{pw2,c2} 2.993 0.195 0.978
{pw2,c2} −→ pl2 2.993 0.195 0.898

{

{pw2},{pl2,c2}
}

pw2 −→{pl2,c2} 2.778 0.188 0.815
{pl2,c2} −→ pw2 2.778 0.188 1.000

{

{c2},{pl2,pw2}
}

c2 −→{pl2,pw2} 2.933 0.193 0.880
{pl2,pw2} −→ c2 2.933 0.193 0.978

We may then calculate AvgLift(X ):

AvgLift(X ) = avg{2.993,2.778,2.933}= 2.901

And also AvgConf (X ):

AvgConf (X ) = avg{0.978,0.898,0.815,1.0,0.88,0.978}= 0.925
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Iris: Relative Support and Average Lift of Patterns
306 frequent itemsets with minsup = 1 and k ≥ 2
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For sake of analysis, we focus on patterns with high rsup and then high AvgLift,
such as X = {pl1,pw1,c1}.
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Comparing Itemsets: Maximal Itemsets

An frequent itemset X is maximal if all of its supersets are not frequent, that is,
X is maximal iff

sup(X )≥minsup, and for all Y ⊃ X ,sup(Y )<minsup

Given a collection of frequent itemsets, we may choose to retain only the maximal
ones, especially among those that already satisfy some other constraints on
pattern assessment measures like lift or leverage.
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Iris: Maximal Patterns for Average Lift

We focus on the 37 class-specific itemsets that present rsup > 0.1 and
AvgLift > 2.5 and select the maximal ones:

Pattern Avg. lift
{sl1,sw2,pl1,pw1,c1} 2.90
{sl1,sw3,pl1,pw1,c1} 2.86
{sl2,sw1,pl2,pw2,c2} 2.83
{sl3,sw2,pl3,pw3,c3} 2.88
{sw1,pl3,pw3,c3} 2.52

For instance, for c1, the essential items are sl1, pl1, pw1 and either sw2 or sw3.
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Closed Itemsets and Minimal Generators

An itemset X is closed if all of its supersets have strictly less support, that is,

sup(X )> sup(Y ), for all Y ⊃ X

An itemset X is a minimal generator if all its subsets have strictly higher support,
that is,

sup(X )< sup(Y ), for all Y ⊂ X

If an itemset X is not a minimal generator, then it implies that it has some
redundant items, that is, we can find some subset Y ⊂ X , which can be replaced
with an even smaller subset W ⊂ Y without changing the support of X , that is,
there exists a W ⊂ Y , such that

sup(X ) = sup(Y ∪ (X \Y )) = sup(W ∪ (X \Y ))

One can show that all subsets of a minimal generator must themselves be minimal
generators.
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Closed Itemsets and Minimal Generators

The support of an itemset X is

the maximum support among all closed itemsets that contain X .

the minimum support among all minimal generators that are subsets of X .

sup Closed Itemset Minimal Generators
3 ABDE AD, DE

3 BCE CE

4 ABE A

4 BC C

4 BD D

5 BE E

6 B B

Consider itemset AE :

sup(AE ) =max{sup(ABE ),sup(ABDE )}= 4

sup(AE ) =min{sup(A),sup(E )}= 4
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Comparing Itemsets: Productive Itemsets

An itemset X is productive if its relative support is higher than the expected
relative support over all of its bipartitions, assuming they are independent.
More formally, let |X | ≥ 2, and let {X1,X2} be a bipartition of X . We say that X
is productive provided

rsup(X )> rsup(X1)× rsup(X2), for all bipartitions {X1,X2} of X

This immediately implies that X is productive if its minimum lift is greater than
one, as

MinLift(X ) = min
X1,X2

{

rsup(X )

rsup(X1) · rsup(X2)

}

> 1

In terms of leverage, X is productive if its minimum leverage is above zero because

MinLeverage(X ) = min
X1,X2

{

rsup(X )− rsup(X1)× rsup(X2)
}

> 0
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Comparing Itemsets: Productive Itemsets

ABDE is not productive because there is at least a bipartition with lift = 1. For
instance, the bipartition {B ,ADE}:

lift(B −→ ADE ) =
rsup(ABDE )

rsup(B) · rsup(ADE )
=

3/6

6/6 · 3/6
= 1

ADE , on the other hand, is productive:

lift(A−→DE ) =
rsup(ADE )

rsup(A) · rsup(DE )
=

3/6

4/6 · 3/6
= 1.5

lift(D −→ AE ) =
rsup(ADE )

rsup(D) · rsup(AE )
=

3/6

4/6 · 4/6
= 1.125

lift(E −→ AD) =
rsup(ADE )

rsup(E ) · rsup(AD)
=

3/6

5/6 · 3/6
= 1.2

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 12: Pattern and Rule Assessment



Comparing Rules

Given two rules R : X −→ Y and R ′ :W −→ Y that have the same consequent,
we say that R is more specif ic than R ′, or equivalently, that R ′ is more general

than R provided W ⊂ X .

Nonredundant Rules: We say that a rule R : X −→ Y is redundant provided
there exists a more general rule R ′ :W −→ Y that has the same support, that is,
W ⊂ X and sup(R) = sup(R ′).

Improvement and Productive Rules: Define the improvement of a rule
X −→ Y as follows:

imp(X −→ Y ) = conf (X −→ Y )− max
W⊂X

{

conf (W −→ Y )
}

A rule R : X −→ Y is productive if its improvement is greater than zero, which
implies that for all more general rules R ′ :W −→ Y we have conf (R)> conf (R ′).
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Comparing Rules

Consider rule R : BE −→ C , which has support 3, and confidence 3/5= 0.60.
It has two generalizations, namely

R ′

1 : E −→ C , sup = 3,conf = 3/5= 0.6
R ′

2 : B −→ C , sup = 4,conf = 4/6= 0.67

Thus, BE −→ C is redundant w.r.t. E −→ C because they have the same support,
that is, sup(BCE ) = sup(BC ).

BE −→ C is also unproductive, since

imp(BE −→ C ) = 0.6−max{0.6,0.67}=−0.07.

It has a more general rule, namely R ′

2, with higher confidence.
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Fisher Exact Test for Productive Rules

Let R : X −→ Y be an association rule. Consider its generalization R ′ :W −→ Y ,
where W = X \Z is the new antecedent formed by removing from X the subset
Z ⊆ X .

Given an input dataset D, conditional on the fact that W occurs, we can create a
2× 2 contingency table between Z and the consequent Y

W Y ¬Y
Z a b a+ b

¬Z c d c + d

a+ c b+ d n= sup(W )

where

a= sup(WZY ) = sup(XY ) b = sup(WZ¬Y ) = sup(X¬Y )
c = sup(W¬ZY ) d = sup(W¬Z¬Y )
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Fisher Exact Test for Productive Rules

Given a contingency table conditional on W , we are interested in the odds ratio
obtained by comparing the presence and absence of Z , that is,

oddsratio =
a/(a+ b)

b/(a+ b)

/

c/(c + d)

d/(c + d)
=

ad

bc

Under the null hypothesis H0 that Z and Y are independent given W the odds
ratio is 1. If we further assume that the row and column marginals are fixed, then
a uniquely determines the other three values b, c , and d , and the probability mass
function of observing the value a in the contingency table is given by the
hypergeometric distribution.

P
(

a
∣

∣ (a+ c),(a+ b),n
)

=
(a+ b)! (c + d)! (a+ c)! (b+ d)!

n! a! b! c! d!
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Fisher Exact Test: P-value

Our aim is to contrast the null hypothesis H0 that oddsratio = 1 with the
alternative hypothesis Ha that oddsratio > 1.
The p-value for a is given as

p-value(a) =

min(b,c)
∑

i=0

P(a+ i | (a+ c),(a+ b),n)

=

min(b,c)
∑

i=0

(a+ b)! (c + d)! (a+ c)! (b+ d)!

n! (a+ i)! (b− i)! (c − i)! (d + i)!

which follows from the fact that when we increase the count of a by i , then
because the row and column marginals are fixed, b and c must decrease by i , and
d must increase by i , as shown in the table below:

W Y ¬Y
Z a+ i b− i a+ b

¬Z c − i d + i c + d

a+ c b+ d n= sup(W )
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Fisher Exact Test: Example

Consider the rule R : pw2 −→ c2 obtained from the discretized Iris dataset. To test if it is

productive, because there is only a single item in the antecedent, we compare it only

with the default rule ∅ −→ c2. We have

a= sup(pw2,c2) = 49 b = sup(pw2,¬c2) = 5

c = sup(¬pw2,c2) = 1 d = sup(¬pw2,¬c2) = 95

with the contingency table given as

c2 ¬c2

pw2 49 5 54

¬pw2 1 95 96

50 100 150

Thus the p-value is given as

p-value =
∑min(b,c)

i=0
P(a+ i | (a+ c),(a+ b),n) = 1.51× 10−32

Since the p-value is extremely small, we can safely reject the null hypothesis that the

odds ratio is 1. Instead, there is a strong relationship between X = pw2 and Y = c2, and

we conclude that R : pw2 −→ c2 is a productive rule.
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Fisher Exact Test: Example

Consider another rule {sw1,pw2} −→ c2, with X = {sw1,pw2} and Y = c2.
Consider its three generalizations, and the corresponding contingency tables and
p-values:

R ′

1 : pw2 −→ c2
Z = {sw1}
W = X \Z = {pw2}
p-value = 0.84

W = pw2 c2 ¬c2
sw1 34 4 38

¬sw1 15 1 16

49 5 54

R ′

2 : sw1 −→ c2
Z = {pw2}
W = X \Z = {sw1}
p-value = 1.39× 10−11

W = sw1 c2 ¬c2
pw2 34 4 38

¬pw2 0 19 19

34 23 57
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Fisher Exact Test: Example

R ′

3 : ∅ −→ c2
Z = {sw1,pw2}
W = X \Z = ∅
p-value = 3.55× 10−17

W = ∅ c2 ¬c2
{sw1,pw2} 34 4 38

¬{sw1,pw2} 16 96 112

50 100 150

We can see that whereas the p-value with respect to R ′

2 and R ′

3 is small, for R ′

1

we have p-value = 0.84, which is too high and thus we cannot reject the null
hypothesis. We conclude that R : {sw1,pw2} −→ c2 is not productive. In fact, its
generalization R ′

1 is the one that is productive.
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Multiple Hypothesis Testing

There can be an exponentially large number of rules that need to be tested to
check whether they are productive or not.

Multiple hypothesis testing problem: The sheer number of hypothesis tests
leads to some unproductive rules passing the p-value ≤ α threshold by random
chance.

Bonferroni correction: takes into account the number of experiments performed
during the hypothesis testing process.

α′ =
α

#r

where #r is the number of rules to be tested or its estimate.

The rule false discovery rate becomes bounded by α, where a false discovery is to
claim that a rule is productive when it is not.
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Multiple Hypothesis Testing

Given the class-specific rules of discretized Iris dataset, the maximum number of
class-specific rules is given as

#r = c ×

(

4
∑

i=1

(

4

i

)

bi

)

where c is the number of Iris classes, b is the maximum number of bins for any
other attribute, i is the antecedent size, and there are bi possible combinations for
the chosen set of i attributes.

Since c = 3 and b = 3, the number of possible rules is:

#r = 3×

(

4
∑

i=1

(

4

i

)

3i

)

= 3(12+ 54+ 108+ 81) = 3 · 255= 765

Given α= 0.01, α′ = α/#r = 0.01/765= 1.31× 10−5.

The rule pw2 −→ c2 has p-value = 1.51× 10−32, and thus it remains productive
even when we use α′.
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Permutation Test for Significance: Swap Randomization

A permutation or randomization test determines the distribution of a given test
statistic Θ by randomly modifying the observed data several times to obtain a
random sample of datasets, which can in turn be used for significance testing.

The swap randomization approach maintains as invariant the column and row
margins for a given dataset, that is, the permuted datasets preserve the support of
each item (the column margin) as well as the number of items in each transaction
(the row margin).

Given a dataset D, we randomly create k datasets that have the same row and
column margins. We then mine frequent patterns in D and check whether the
pattern statistics are different from those obtained using the randomized datasets.
If the differences are not significant, we may conclude that the patterns arise
solely from the row and column margins, and not from any interesting properties
of the data.
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Swap Randomization

Given a binary matrix D ⊆ T ×I, the swap randomization method exchanges two
nonzero cells of the matrix via a swap that leaves the row and column margins
unchanged.

Consider any two transactions ta, tb ∈ T and any two items ia, ib ∈ I such that
(ta, ia),(tb, ib) ∈D and (ta, ib),(tb, ia) 6∈D, which corresponds to the 2× 2
submatrix in D, given as

D(ta, ia; tb, ib) =

(

1 0
0 1

)

After a swap operation we obtain the new submatrix

D(ta, ib; tb, ia) =

(

0 1
1 0

)

where we exchange the elements in D so that (ta, ib),(tb, ia) ∈D, and
(ta, ia),(tb, ib) 6∈D. We denote this operation as Swap(ta, ia; tb, ib).
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Algorithm SwapRandomization

SwapRandomization(t, D ⊆ T ×I):
1 while t > 0 do
2 Select pairs (ta, ia),(tb, ib) ∈D randomly
3 if (ta, ib) 6∈D and (tb, ia) 6∈D then
4 D←D \

{

(ta, ia),(tb, ib)
}

∪
{

(ta, ib),(tb, ia)
}

5 t = t− 1

6 return D
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Swap Randomization Example

Tid
Items

Sum
A B C D E

1 1 1 0 1 1 4
2 0 1 1 0 1 3
3 1 1 0 1 1 4
4 1 1 1 0 1 4
5 1 1 1 1 1 5
6 0 1 1 1 0 3

Sum 4 6 4 4 5
(a) Input binary data D

Tid
Items

Sum
A B C D E

1 1 1 1 0 1 4
2 0 1 1 0 1 3
3 1 1 0 1 1 4
4 1 1 0 1 1 4
5 1 1 1 1 1 5
6 0 1 1 1 0 3

Sum 4 6 4 4 5
(b) Swap(1,D;4,C)

Tid
Items

Sum
A B C D E

1 1 1 1 0 1 4
2 1 1 0 0 1 3
3 1 1 0 1 1 4
4 0 1 1 1 1 4
5 1 1 1 1 1 5
6 0 1 1 1 0 3

Sum 4 6 4 4 5
(c) Swap(2,C ;4,A)
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Swap Randomization Example

We generated k = 100 swap randomized datasets (150 swaps).

Let the test statistic be the total number of frequent itemsets using minsup = 3.
For D, we have |F|= 19, and for the k = 100 permuted datasets we find:

P
(

|F|= 19
)

= 0.67 P
(

|F|= 17
)

= 0.33

Because p-value(19) = 0.67, we may conclude that the set of frequent itemsets is
essentially determined by the row and column marginals.

Consider ABDE , where sup(ABDE ) = 3 and the probability that ABDE is
frequent is 17/100= 0.17. As this probability is not very low, ABDE is not a
statistically significant pattern.

Consider BCD, where sup(BCD) = 2. The empirical PMF is given as

P(sup = 2) = 0.54 P(sup = 3) = 0.44 P(sup = 4) = 0.02

Since 54% indicates BCD is infrequent, we may assume it.
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CDF for Number of Frequent Itemsets: Iris
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We choose minsup = 10, for which we have F̂ (10) = P(sup < 10) = 0.517, that is,
48.3% of the itemsets that occur at least once are frequent.
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CDF for Average Relative Lift: Iris
k = 100 swap randomization steps, 140 frequent itemsets

The relative lift statistic is

rlift(X ,D,D i ) =
sup(X ,D)− sup(X ,D i )

sup(X ,D)
= 1−

sup(X ,D i )

sup(X ,D)

D i is ith swap randomized dataset obtained after k steps.
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PMF for Relative Lift: {sl1,pw2}
k = 100 swap randomization steps

Its average relative lift value is −0.55, and p-value(−0.2) = 0.069, which indicates
that the itemset is likely to be disassociative.
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Bootstrap Sampling for Confidence Interval

We can generate k bootstrap samples from D using sampling with replacement.
Given pattern X or rule R : X −→ Y , we can obtain the value of the test statistic
in each of the bootstrap samples; let θi denote the value in sample D i .

From these values we can generate the empirical cumulative distribution function
for the statistic

F̂ (x) = P̂ (Θ≤ x) =
1

k

k
∑

i=1

I (θi ≤ x)

where I is an indicator variable that takes on the value 1 when its argument is
true, and 0 otherwise.

Given a desired confidence level α (e.g., α= 0.95) we can compute the interval
for the test statistic by discarding values from the tail ends of F̂ on both sides
that encompass (1−α)/2 of the probability mass. In other words, the interval
[

v1−α/2,vα/2
]

encompasses 1−α fraction of the probability mass, and therefore it
is called the 100(1−α)% confidence interval for the chosen test statistic Θ.
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Bootstrap Confidence Interval Algorithm

Bootstrap-ConfidenceInterval(X , α, k, D):
1 for i ∈ [1,k] do
2 D i ← sample of size n with replacement from D

3 θi ← compute test statistic for X on D i

4 F̂ (x) = P (Θ≤ x) = 1
k

∑k

i=1 I (θi ≤ x)

5 v(1−α)/2 = F̂−1
(

(1−α)/2
)

6 v(1+α)/2 = F̂−1
(

(1+α)/2
)

7 return [v(1−α)/2,v(1+α)/2

]
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Empirical PMF for RelSupport: X = {sw1,pl3,pw3,cl3}

Given rsup(X ,D) = 0.113 (or sup(X ,D) = 17) and k = 100 bootstrap samples, we
compute the relative support of X in each of the samples (rsup(X ,D i)).
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Empirical CDF for RelSupport: X = {sw1,pl3,pw3,cl3}
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Let the confidence level be
1−α= 0.9, thus α= 0.1,
discarding the values that
account for α/2= 0.05:

v1−α/2 = v0.95 = 0.073

vα/2 = v0.05 = 0.16

The 90% confidence interval for rsup(X ) ∈ [0.073,0.16], i.e., sup ∈ [11,24].

Note that rsup(X ,D) = 0.113, with p-value(0.113) = 0.45, and µrsup(X ) = 0.115.
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