Data Mining and Machine Learning: Fundamental Concepts and Algorithms dataminingbook.info

Mohammed J. Zaki¹ Wagner Meira Jr.²

¹Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

²Department of Computer Science Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 2: Numeric Attributes

Univariate analysis focuses on a single attribute at a time. The data matrix D is an $n \times 1$ matrix,

$$\boldsymbol{D} = \begin{pmatrix} \boldsymbol{X} \\ \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{pmatrix}$$

where *X* is the numeric attribute of interest, with $x_i \in \mathbb{R}$.

X is assumed to be a random variable, and the observed data a random sample drawn from X, i.e., x_i 's are independent and identically distributed as X.

In the vector view, we treat the sample as an *n*-dimensional vector, and write $X \in \mathbb{R}^n$.

Empirical Probability Mass Function

The empirical probability mass function (PMF) of X is given as

$$\hat{f}(x) = P(X = x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i = x)$$

where the indicator variable *I* takes on the value 1 when its argument is true, and 0 otherwise. The empirical PMF puts a probability mass of $\frac{1}{n}$ at each point x_i .

The empirical cumulative distribution function (CDF) of X is given as

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \leq x)$$

The *inverse cumulative distribution function* or *quantile function* for X is defined as follows:

$$F^{-1}(q) = \min\{x \mid \hat{F}(x) \ge q\}$$
 for $q \in [0,1]$

The inverse CDF gives the least value of X, for which q fraction of the values are higher, and 1 - q fraction of the values are lower.

Zaki & Meira Jr. (RPI and UFMG)

Mean

The *mean* or *expected value* of a random variable X is the arithmetic average of the values of X. It provides a one-number summary of the *location* or *central tendency* for the distribution of X.

If X is discrete, it is defined as

$$\mu = E[X] = \sum_{x} x \cdot f(x)$$

where f(x) is the probability mass function of X.

If X is continuous it is defined as

$$\mu = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

where f(x) is the probability density function of X.

Sample Mean

The sample mean is a statistic, that is, a function $\hat{\mu} : \{x_1, x_2, \dots, x_n\} \to \mathbb{R}$, defined as the average value of x_i 's:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

It serves as an estimator for the unknown mean value μ of X.

An estimator $\hat{\theta}$ is called an *unbiased estimator* for parameter θ if $E[\hat{\theta}] = \theta$ for every possible value of θ . The sample mean $\hat{\mu}$ is an unbiased estimator for the population mean μ , as

$$E[\hat{\mu}] = E\left[\frac{1}{n}\sum_{i=1}^{n} x_i\right] = \frac{1}{n}\sum_{i=1}^{n} E[x_i] = \frac{1}{n}\sum_{i=1}^{n} \mu = \mu$$

We say that a statistic is *robust* if it is not affected by extreme values (such as outliers) in the data. The sample mean is not robust because a single large value can skew the average.

Zaki & Meira Jr. (RPI and UFMG)

Median

The *median* of a random variable is defined as the value m such that

$$P(X \le m) \ge rac{1}{2}$$
 and $P(X \ge m) \ge rac{1}{2}$

The median m is the "middle-most" value; half of the values of X are less and half of the values of X are more than m.

In terms of the (inverse) cumulative distribution function, the median is the value m for which

$$F(m) = 0.5$$
 or $m = F^{-1}(0.5)$

The sample median is given as

$$\hat{F}(m) = 0.5$$
 or $m = \hat{F}^{-1}(0.5)$

Median is robust, as it is not affected very much by extreme values.

The *mode* of a random variable X is the value at which the probability mass function or the probability density function attains its maximum value, depending on whether X is discrete or continuous, respectively.

The *sample mode* is a value for which the empirical probability mass function attains its maximum, given as

$$mode(X) = \arg \max_{x} \hat{f}(x)$$

Empirical CDF: sepal length

Empirical Inverse CDF: sepal length

The median is 5.8, since

$$\hat{F}(5.8) = 0.5$$
 or $5.8 = \hat{F}^{-1}(0.5)$

Range

The value range or simply range of a random variable X is the difference between the maximum and minimum values of X, given as

 $r = \max\{X\} - \min\{X\}$

The sample range is a statistic, given as

$$\hat{r} = \max_{i=1}^{n} \{x_i\} - \min_{i=1}^{n} \{x_i\}$$

Range is sensitive to extreme values, and thus is not robust.

A more robust measure of the dispersion of X is the *interquartile range (IQR)*, defined as

$$IQR = F^{-1}(0.75) - F^{-1}(0.25)$$

The sample IQR is given as

$$\widehat{IQR} = \hat{F}^{-1}(0.75) - \hat{F}^{-1}(0.25)$$

Zaki & Meira Jr. (RPI and UFMG)

4 3 5 4 3 5 5

Variance and Standard Deviation

The variance of a random variable X provides a measure of how much the values of X deviate from the mean or expected value of X

$$\sigma^{2} = \operatorname{var}(X) = E\left[(X - \mu)^{2}\right] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

The standard deviation σ , is the positive square root of the variance, σ^2 .

The *sample variance* is defined as

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

and the sample standard deviation is

$$\hat{\sigma} = \sqrt{rac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}$$

The sample values for X comprise a vector in n-dimensional space, where n is the sample size. Let Z denote the centered sample

$$Z = X - 1 \cdot \hat{\mu} = \begin{pmatrix} x_1 - \hat{\mu} \\ x_2 - \hat{\mu} \\ \vdots \\ x_n - \hat{\mu} \end{pmatrix}$$

where $1 \in \mathbb{R}^n$ is the vector of ones.

Sample variance is squared magnitude of the centered attribute vector, normalized by the sample size:

$$\hat{\sigma}^2 = \frac{1}{n} \|Z\|^2 = \frac{1}{n} Z^T Z = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Variance of the Sample Mean and Bias

Sample mean $\hat{\mu}$ is itself a statistic. We can compute its mean value and variance

$$E[\hat{\mu}] = \mu$$
$$var(\hat{\mu}) = E[(\hat{\mu} - \mu)^2] = \frac{\sigma^2}{n}$$

The sample mean $\hat{\mu}$ varies or deviates from the mean μ in proportion to the population variance σ^2 . However, the deviation can be made smaller by considering larger sample size *n*.

The sample variance is a *biased estimator* for the true population variance, since

$$E[\hat{\sigma}^2] = \left(\frac{n-1}{n}\right)\sigma^2$$

But it is asymptotically unbiased, since

$$E[\hat{\sigma}^2] \rightarrow \sigma^2$$
 as $n \rightarrow \infty$

Zaki & Meira Jr. (RPI and UFMG)

Bivariate Analysis

In bivariate analysis, we consider two attributes at the same time. The data D comprises an $n \times 2$ matrix:

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 \\ x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix}$$

Geometrically, D comprises n points or vectors in 2-dimensional space

$$\boldsymbol{x}_i = (x_{i1}, x_{i2})^T \in \mathbb{R}^2$$

D can also be viewed as two points or vectors in an *n*-dimensional space:

$$X_1 = (x_{11}, x_{21}, \dots, x_{n1})^T$$

 $X_2 = (x_{12}, x_{22}, \dots, x_{n2})^T$

In the probabilistic view, $\mathbf{X} = (X_1, X_2)^T$ is a bivariate vector random variable, and the points \mathbf{x}_i $(1 \le i \le n)$ are a random sample drawn from \mathbf{X} , that is, \mathbf{x}_i 's IID with \mathbf{X} .

Zaki & Meira Jr. (RPI and UFMG)

The bivariate mean is defined as the expected value of the vector random variable \boldsymbol{X} :

$$\boldsymbol{\mu} = \boldsymbol{E}[\boldsymbol{X}] = \boldsymbol{E}\left[\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}\right] = \begin{pmatrix} \boldsymbol{E}[X_1] \\ \boldsymbol{E}[X_2] \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

The sample mean vector is given as

$$\hat{\boldsymbol{\mu}} = \sum_{\boldsymbol{x}} \boldsymbol{x} \hat{f}(\boldsymbol{x}) = \sum_{\boldsymbol{x}} \boldsymbol{x} \left(\frac{1}{n} \sum_{i=1}^{n} l(\boldsymbol{x}_i = \boldsymbol{x}) \right) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i$$

Covariance

The *covariance* between two attributes X_1 and X_2 provides a measure of the association or linear dependence between them, and is defined as

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)]$$

= $E[X_1X_2] - E[X_1]E[X_2]$

If X_1 and X_2 are independent, then

$$E[X_1X_2] = E[X_1] \cdot E[X_2]$$

which implies that $\sigma_{12} = 0$.

The sample covariance between X_1 and X_2 is given as

$$\hat{\sigma}_{12} = rac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1) (x_{i2} - \hat{\mu}_2)$$

Zaki & Meira Jr. (RPI and UFMG)

The correlation between variables X_1 and X_2 is the standardized covariance, obtained by normalizing the covariance with the standard deviation of each variable, given as

$$p_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

The sample correlation for attributes X_1 and X_2 is given as

$$\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$$

Geometric Interpretation of Sample Covariance and Correlation

Let \overline{X}_1 and \overline{X}_2 denote the centered attribute vectors in \mathbb{R}^n :

$$\overline{X}_{1} = X_{1} - 1 \cdot \hat{\mu}_{1} = \begin{pmatrix} x_{11} - \hat{\mu}_{1} \\ x_{21} - \hat{\mu}_{1} \\ \vdots \\ x_{n1} - \hat{\mu}_{1} \end{pmatrix} \qquad \overline{X}_{2} = X_{2} - 1 \cdot \hat{\mu}_{2} = \begin{pmatrix} x_{12} - \hat{\mu}_{2} \\ x_{22} - \hat{\mu}_{2} \\ \vdots \\ x_{n2} - \hat{\mu}_{2} \end{pmatrix}$$

The sample covariance and the sample correlation are given as

$$\hat{\sigma}_{12} = \frac{\overline{X}_1^T \overline{X}_2}{n}$$

$$\hat{\rho}_{12} = \frac{\bar{X}_{1}^{T} \bar{X}_{2}}{\sqrt{\bar{X}_{1}^{T} \bar{X}_{1}} \sqrt{\bar{X}_{2}^{T} \bar{X}_{2}}} = \frac{\bar{X}_{1}^{T} \bar{X}_{2}}{\|\bar{X}_{1}\| \ \|\bar{X}_{2}\|} = \left(\frac{\bar{X}_{1}}{\|\bar{X}_{1}\|}\right)^{T} \left(\frac{\bar{X}_{2}}{\|\bar{X}_{2}\|}\right) = \cos\theta$$

The correlation coefficient is simply the cosine of the angle between the two centered attribute vectors.

Zaki & Meira Jr. (RPI and UFMG)

Chapter 2: Numeric Attributes

Geometric Interpretation of Covariance and Correlation

Covariance Matrix

The variance–covariance information for the two attributes X_1 and X_2 can be summarized in the square 2×2 *covariance matrix*

$$\Sigma = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]$$
$$= \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$$

Because $\sigma_{12} = \sigma_{21}$, Σ is symmetric. The total variance is given as

$$var(\boldsymbol{D}) = tr(\Sigma) = \sigma_1^2 + \sigma_2^2$$

We immediately have $tr(\Sigma) \ge 0$. The generalized variance is

$$|\Sigma| = \det(\Sigma) = \sigma_1^2 \sigma_2^2 - \sigma_{12}^2 = \sigma_1^2 \sigma_2^2 - \rho_{12}^2 \sigma_1^2 \sigma_2^2 = (1 - \rho_{12}^2) \sigma_1^2 \sigma_2^2$$

Note that $|\rho_{12}| \leq 1$ implies that $det(\Sigma) \geq 0$.

The sample mean is

$$\hat{\mu} = \begin{pmatrix} 5.843 \\ 3.054 \end{pmatrix}$$

The sample covariance matrix is

$$\widehat{\Sigma} = \begin{pmatrix} 0.681 & -0.039 \\ -0.039 & 0.187 \end{pmatrix}$$

The sample correlation is

$$\hat{\rho}_{12} = \frac{-0.039}{\sqrt{0.681 \cdot 0.187}} = -0.109$$

Multivariate Analysis

In multivariate analysis we consider all the *d* numeric attributes X_1, X_2, \ldots, X_d .

$$\boldsymbol{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

In the row view, the data is a set of n points or vectors in the d-dimensional attribute space

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})^T \in \mathbb{R}^d$$

In the column view, the data is a set of d points or vectors in the n-dimensional space spanned by the data points

$$X_j = (x_{1j}, x_{2j}, \ldots, x_{nj})^T \in \mathbb{R}^n$$

Mean and Covariance

In the probabilistic view, the *d* attributes are modeled as a vector random variable, $\mathbf{X} = (X_1, X_2, \dots, X_d)^T$, and the points \mathbf{x}_i are considered to be a random sample drawn from \mathbf{X} , i.e., IID with \mathbf{X} .

The multivariate mean vector is

$$\boldsymbol{\mu} = \boldsymbol{E}[\boldsymbol{X}] = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_d \end{pmatrix}^T$$

The sample mean is

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$$

The (sample) covariance matrix is a $d \times d$ (square) symmetric matrix

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix} \qquad \qquad \widehat{\Sigma} = \begin{pmatrix} \widehat{\sigma}_1^2 & \widehat{\sigma}_{12} & \cdots & \widehat{\sigma}_{1d} \\ \widehat{\sigma}_{21} & \widehat{\sigma}_2^2 & \cdots & \widehat{\sigma}_{2d} \\ \cdots & \cdots & \cdots \\ \widehat{\sigma}_{d1} & \widehat{\sigma}_{d2} & \cdots & \widehat{\sigma}_d^2 \end{pmatrix}$$

Covariance Matrix is Positive Semidefinite

 Σ is a *positive semidef inite* matrix, that is,

 $\boldsymbol{a}^T \boldsymbol{\Sigma} \boldsymbol{a} \geq 0$ for any *d*-dimensional vector \boldsymbol{a}

To see this, observe that

$$\mathbf{a}^{\mathsf{T}} \Sigma \mathbf{a} = \mathbf{a}^{\mathsf{T}} E \left[(\mathbf{X} - \boldsymbol{\mu}) (\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}} \right] \mathbf{a}$$
$$= E \left[\mathbf{a}^{\mathsf{T}} (\mathbf{X} - \boldsymbol{\mu}) (\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{a} \right]$$
$$= E \left[Y^{2} \right]$$
$$\geq 0$$

Because Σ is also symmetric, this implies that all the eigenvalues of Σ are real and non-negative, and they can be arranged from the largest to the smallest as follows: $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0$.

The total variance is given as: $var(\mathbf{D}) = \prod_{i=1}^{d} \sigma_i^2$ The generalized variance is $det(\Sigma) = \prod_{i=1}^{d} \lambda_i \ge 0$

Sample Covariance Matrix: Inner and Outer Product

Let \overline{D} represent the centered data matrix

$$\overline{\boldsymbol{D}} = \boldsymbol{D} - 1 \cdot \hat{\boldsymbol{\mu}}^{T} = \begin{pmatrix} \boldsymbol{x}_{1}^{T} - \hat{\boldsymbol{\mu}}^{T} \\ \boldsymbol{x}_{2}^{T} - \hat{\boldsymbol{\mu}}^{T} \\ \vdots \\ \boldsymbol{x}_{n}^{T} - \hat{\boldsymbol{\mu}}^{T} \end{pmatrix} = \begin{pmatrix} - & \overline{\boldsymbol{x}}_{1}^{T} & - \\ - & \overline{\boldsymbol{x}}_{2}^{T} & - \\ \vdots \\ - & \overline{\boldsymbol{x}}_{n}^{T} & - \end{pmatrix}$$

Inner product and outer product form for sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \left(\overline{D}^T \ \overline{D} \right) = \frac{1}{n} \begin{pmatrix} \overline{X}_1^T \overline{X}_1 & \overline{X}_1^T \overline{X}_2 & \cdots & \overline{X}_1^T \overline{X}_d \\ \overline{X}_2^T \overline{X}_1 & \overline{X}_2^T \overline{X}_2 & \cdots & \overline{X}_2^T \overline{X}_d \\ \vdots & \vdots & \ddots & \vdots \\ \overline{X}_d^T \overline{X}_1 & \overline{X}_d^T \overline{X}_2 & \cdots & \overline{X}_d^T \overline{X}_d \end{pmatrix} \quad \widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^n \overline{x}_i \cdot \overline{x}_i^T$$

i.e., $\widehat{\Sigma}$ is given as the pairwise *inner or dot products* of the centered attribute vectors, normalized by the sample size, or as a sum of rank-one matrices obtained as the *outer product* of each centered point.

If the attribute values are in vastly different scales, then it is necessary to normalize them.

Range Normalization: Let X be an attribute and let $x_1, x_2, ..., x_n$ be a random sample drawn from X. In *range normalization* each value is scaled by the sample range \hat{r} of X:

$$x'_{i} = \frac{x_{i} - \min_{i}\{x_{i}\}}{\hat{r}} = \frac{x_{i} - \min_{i}\{x_{i}\}}{\max_{i}\{x_{i}\} - \min_{i}\{x_{i}\}}$$

After transformation the new attribute takes on values in the range [0,1].

Standard Score Normalization: Also called *z*-normalization; each value is replaced by its *z*-score:

$$x_i' = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$$

where $\hat{\mu}$ is the sample mean and $\hat{\sigma}^2$ is the sample variance of X. After transformation, the new attribute has mean $\hat{\mu}' = 0$, and standard deviation $\hat{\sigma}' = 1$.

Normalization Example

x i	Age (X_1)	Income (X_2)
<i>x</i> ₁	12	300
x ₂	14	500
X 3	18	1000
x 4	23	2000
x 5	27	3500
x 6	28	4000
X 7	34	4300
x 8	37	6000
X 9	39	2500
X 10	40	2700

Since Income is much larger, it dominates Age. The sample range for Age is $\hat{r} = 40 - 12 = 28$, whereas for Income it is 6000 - 300 = 5700. For range normalization, the point $x_2 = (14, 500)$ is scaled to

$$\mathbf{x}_{2}' = \left(\frac{14 - 12}{28}, \frac{500 - 300}{5700}\right) = (0.071, 0.035)$$

For z-normalization, we have

	Age	Income
$\hat{\mu}$	27.2	2680
$\hat{\sigma}$	9.77	1726.15

Thus, $x_2 = (14, 500)$ is scaled to

$$x_2' = \left(\frac{14 - 27.2}{9.77}, \frac{500 - 2680}{1726.15}\right) = (-1.35, -1.26)$$

The normal distribution plays an important role as the parametric distribution of choice in clustering, density estimation, and classification.

A random variable X has a normal distribution, with the parameters mean μ and variance σ^2 , if the probability density function of X is given as follows:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

The term $(x - \mu)^2$ measures the distance of a value x from the mean μ of the distribution, and thus the probability density decreases exponentially as a function of the distance from the mean.

The maximum value of the density occurs at the mean value $x = \mu$, given as $f(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}$, which is inversely proportional to the standard deviation σ of the distribution.

Normal Distribution: $\mu = 0$, and Different Variances

Given the *d*-dimensional vector random variable $\mathbf{X} = (X_1, X_2, \dots, X_d)^T$, it has a multivariate normal distribution, with the parameters mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, if its joint multivariate probability density function is given as follows:

$$f(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(\sqrt{2\pi})^d \sqrt{|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})}{2}\right\}$$

where $|\Sigma|$ is the determinant of the covariance matrix.

The term

$$(\mathbf{x}_i - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$$

measures the distance, called the *Mahalanobis distance* of the point x from the mean μ of the distribution, taking into account all of the variance–covariance information between the attributes.

Standard Bivariate Normal Density

Geometry of the Multivariate Normal

Compared to the standard multivariate normal, the mean μ translates the center of the distribution, whereas the covariance matrix Σ scales and rotates the distribution. The eigen-decomposition of Σ is given as

$$\Sigma \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$$

where $\lambda_1 \ge \lambda_2 \ge ... \lambda_d \ge 0$ are the eigenvalues and u_i the corresponding eigenvectors. This can be expressed compactly as follows:

$$\Sigma = \boldsymbol{U} \wedge \boldsymbol{U}^{T}$$

where

The eigenvectors represent the new basis vectors, with the covariance matrix given by Λ (all covariances become zero). Since the trace of a square matrix is invariant to similarity transformation, such as a change of basis, we have

$$var(D) = tr(\Sigma) = \sum_{i=1}^{d} \sigma_i^2 = \sum_{i=1}^{d} \lambda_i = tr(\Lambda)$$

Zaki & Meira Jr. (RPI and UFMG)

Bivariate Normal for Iris: sepal length and sepal width

 $\hat{\mu} = \begin{pmatrix} 5.843 \\ 3.054 \end{pmatrix}$ $\widehat{\Sigma} = \begin{pmatrix} 0.681 & -0.039 \\ -0.039 & 0.187 \end{pmatrix}$ We have $\widehat{\Sigma} = U \wedge U^T$ $\boldsymbol{U} = \begin{pmatrix} -0.997 & -0.078 \\ 0.078 & -0.997 \end{pmatrix}$ $\Lambda = \begin{pmatrix} 0.684 & 0 \\ 0 & 0.184 \end{pmatrix}$

Angle of rotation is: $\cos \theta = \boldsymbol{e}_1^T \boldsymbol{u}_1 = -0.997$ or $\theta = 175.5^\circ$

Data Mining and Machine Learning: Fundamental Concepts and Algorithms dataminingbook.info

Mohammed J. Zaki¹ Wagner Meira Jr.²

¹Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

²Department of Computer Science Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 2: Numeric Attributes