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Univariate Analysis

Univariate analysis focuses on a single attribute at a time. The data matrix D is
an n× 1 matrix,

D =




X

x1

x2

...
xn




where X is the numeric attribute of interest, with xi ∈R.

X is assumed to be a random variable, and the observed data a random sample
drawn from X , i.e., xi ’s are independent and identically distributed as X .

In the vector view, we treat the sample as an n-dimensional vector, and write
X ∈R

n.
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Empirical Probability Mass Function

The empirical probability mass function (PMF) of X is given as

f̂ (x) = P(X = x) =
1

n

n∑

i=1

I (xi = x)

where the indicator variable I takes on the value 1 when its argument is true, and
0 otherwise. The empirical PMF puts a probability mass of 1

n
at each point xi .

The empirical cumulative distribution function (CDF) of X is given as

F̂ (x) =
1

n

n∑

i=1

I (xi ≤ x)

The inverse cumulative distribution function or quantile function for X is defined
as follows:

F−1(q) = min{x | F̂ (x)≥ q} for q ∈ [0,1]

The inverse CDF gives the least value of X , for which q fraction of the values are
higher, and 1− q fraction of the values are lower.
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Mean

The mean or expected value of a random variable X is the arithmetic average of
the values of X . It provides a one-number summary of the location or central
tendency for the distribution of X .

If X is discrete, it is defined as

µ= E [X ] =
∑

x

x · f (x)

where f (x) is the probability mass function of X .

If X is continuous it is defined as

µ= E [X ] =

∫ ∞

−∞
x · f (x) dx

where f (x) is the probability density function of X .
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Sample Mean

The sample mean is a statistic, that is, a function µ̂ : {x1,x2, . . . ,xn}→R, defined
as the average value of xi ’s:

µ̂=
1

n

n∑

i=1

xi

It serves as an estimator for the unknown mean value µ of X .

An estimator θ̂ is called an unbiased estimator for parameter θ if E [θ̂] = θ for
every possible value of θ. The sample mean µ̂ is an unbiased estimator for the
population mean µ, as

E [µ̂] = E

[
1

n

n∑

i=1

xi

]
=

1

n

n∑

i=1

E [xi ] =
1

n

n∑

i=1

µ= µ

We say that a statistic is robust if it is not affected by extreme values (such as
outliers) in the data. The sample mean is not robust because a single large value
can skew the average.
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Sample Mean: Iris sepal length

4 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

X1

Frequency

bC bCbCbC bCbC bCbC bC
bC

bC
bC

bC bCbC bC
bC bC
bC

bC
bC bC

bC

bC
bC

bC

bCbC bC
bCbC

bC
bC

bC
bC

bC

bC
bC

bC
bCbC bC bC

bC

bC

bC bC

bC

bC

bC
bC

bC

bC

bC
bC

bC

bC
bC

bC

bC
bC

bC

bC
bC

bC

bC
bC

bCbC

bC bC
bC

bC

bC
bC

bCbC
bC

bC bC bC

bC

bC

bC

bC

bC

bC
bCbC

bC

bCbC bCbCbC

bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC
bC

bC

bCbC
bC

bC

bC
bC

bCbC

bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC
bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC
bC

bC

bC
bCbC

bC
bCbC

bC
bC

bC

bC

b

µ̂= 5.843
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Median

The median of a random variable is defined as the value m such that

P(X ≤m)≥ 1

2
and P(X ≥m)≥ 1

2

The median m is the “middle-most” value; half of the values of X are less and half
of the values of X are more than m.

In terms of the (inverse) cumulative distribution function, the median is the value
m for which

F (m) = 0.5 or m= F−1(0.5)

The sample median is given as

F̂ (m) = 0.5 or m= F̂−1(0.5)

Median is robust, as it is not affected very much by extreme values.
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Mode

The mode of a random variable X is the value at which the probability mass
function or the probability density function attains its maximum value, depending
on whether X is discrete or continuous, respectively.

The sample mode is a value for which the empirical probability mass function
attains its maximum, given as

mode(X ) = argmax
x

f̂ (x)
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Empirical CDF: sepal length
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Empirical Inverse CDF: sepal length
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The median is 5.8, since

F̂ (5.8) = 0.5 or 5.8= F̂−1(0.5)
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Range

The value range or simply range of a random variable X is the difference between
the maximum and minimum values of X , given as

r =max{X}−min{X}

The sample range is a statistic, given as

r̂ =
n

max
i=1

{xi}−
n

min
i=1

{xi}

Range is sensitive to extreme values, and thus is not robust.

A more robust measure of the dispersion of X is the interquartile range (IQR),
defined as

IQR = F−1(0.75)−F−1(0.25)

The sample IQR is given as

ÎQR = F̂−1(0.75)− F̂−1(0.25)
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Variance and Standard Deviation

The variance of a random variable X provides a measure of how much the values
of X deviate from the mean or expected value of X

σ2 = var(X ) = E
[
(X −µ)2

]
=





∑

x

(x −µ)2 f (x) if X is discrete

∫ ∞

−∞
(x −µ)2 f (x) dx if X is continuous

The standard deviation σ, is the positive square root of the variance, σ2.

The sample variance is defined as

σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2

and the sample standard deviation is

σ̂ =

√√√√1

n

n∑

i=1

(xi − µ̂)2
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Geometric Interpretation of Sample Variance

The sample values for X comprise a vector in n-dimensional space, where n is the
sample size. Let Z denote the centered sample

Z = X − 1 · µ̂=




x1 − µ̂

x2 − µ̂
...

xn − µ̂




where 1 ∈R
n is the vector of ones.

Sample variance is squared magnitude of the centered attribute vector, normalized
by the sample size:

σ̂2 =
1

n
‖Z‖2

=
1

n
ZTZ =

1

n

n∑

i=1

(xi − µ̂)2
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Variance of the Sample Mean and Bias

Sample mean µ̂ is itself a statistic. We can compute its mean value and variance

E [µ̂] = µ

var(µ̂) = E [(µ̂−µ)2] =
σ2

n

The sample mean µ̂ varies or deviates from the mean µ in proportion to the
population variance σ2. However, the deviation can be made smaller by
considering larger sample size n.

The sample variance is a biased estimator for the true population variance, since

E [σ̂2] =

(
n− 1

n

)
σ2

But it is asymptotically unbiased, since

E [σ̂2]→ σ2 as n→∞
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Bivariate Analysis

In bivariate analysis, we consider two attributes at the same time. The data D

comprises an n× 2 matrix:

D =




X1 X2

x11 x12

x21 x22

...
...

xn1 xn2




Geometrically, D comprises n points or vectors in 2-dimensional space

x i = (xi1,xi2)
T ∈R

2

D can also be viewed as two points or vectors in an n-dimensional space:

X1 = (x11,x21, . . . ,xn1)
T

X2 = (x12,x22, . . . ,xn2)
T

In the probabilistic view, X = (X1,X2)
T is a bivariate vector random variable, and

the points x i (1≤ i ≤ n) are a random sample drawn from X , that is, x i ’s IID
with X .
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Bivariate Mean and Variance

The bivariate mean is defined as the expected value of the vector random variable
X :

µ= E [X ] = E

[(
X1

X2

)]
=

(
E [X1]

E [X2]

)
=

(
µ1

µ2

)

The sample mean vector is given as

µ̂=
∑

x

x f̂ (x) =
∑

x

x

(
1

n

n∑

i=1

I (x i = x)

)
=

1

n

n∑

i=1

x i
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Covariance

The covariance between two attributes X1 and X2 provides a measure of the
association or linear dependence between them, and is defined as

σ12 = E [(X1 −µ1)(X2 −µ2)]

= E [X1X2]−E [X1]E [X2]

If X1 and X2 are independent, then

E [X1X2] = E [X1] ·E [X2]

which implies that σ12 = 0.

The sample covariance between X1 and X2 is given as

σ̂12 =
1

n

n∑

i=1

(xi1 − µ̂1)(xi2 − µ̂2)
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Correlation

The correlation between variables X1 and X2 is the standardized covariance,
obtained by normalizing the covariance with the standard deviation of each
variable, given as

ρ12 =
σ12

σ1σ2

=
σ12√
σ2

1σ
2
2

The sample correlation for attributes X1 and X2 is given as

ρ̂12 =
σ̂12

σ̂1σ̂2

=

∑n

i=1(xi1 − µ̂1)(xi2 − µ̂2)√∑n

i=1(xi1 − µ̂1)2
∑n

i=1(xi2 − µ̂2)2
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Geometric Interpretation of Sample Covariance and

Correlation

LetX 1 andX 2 denote the centered attribute vectors in R
n:

X 1 = X1 − 1 · µ̂1 =




x11 − µ̂1

x21 − µ̂1

...
xn1 − µ̂1


 X 2 = X2 − 1 · µ̂2 =




x12 − µ̂2

x22 − µ̂2

...
xn2 − µ̂2




The sample covariance and the sample correlation are given as

σ̂12 =
X T

1X 2

n

ρ̂12 =
X T

1X 2√
X T

1X 1

√
X T

2X 2

=
X T

1X 2∥∥X 1

∥∥ ∥∥X 2

∥∥ =

(
X 1∥∥X 1

∥∥

)T (
X 2∥∥X 2

∥∥

)
= cosθ

The correlation coefficient is simply the cosine of the angle between the two
centered attribute vectors.
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Geometric Interpretation of Covariance and Correlation
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Covariance Matrix

The variance–covariance information for the two attributes X1 and X2 can be
summarized in the square 2× 2 covariance matrix

Σ= E [(X −µ)(X −µ)T ]

=

(
σ2

1 σ12

σ21 σ2
2

)

Because σ12 = σ21, Σ is symmetric.
The total variance is given as

var(D) = tr(Σ) = σ2
1 +σ2

2

We immediately have tr(Σ)≥ 0.
The generalized variance is

|Σ|= det(Σ) = σ2
1σ

2
2 −σ2

12 = σ2
1σ

2
2 − ρ2

12σ
2
1σ

2
2 = (1− ρ2

12)σ
2
1σ

2
2

Note that |ρ12| ≤ 1 implies that det(Σ)≥ 0.
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Correlation: sepal length and sepal width
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The sample mean is

µ̂=

(
5.843
3.054

)

The sample covariance matrix is

Σ̂ =

(
0.681 −0.039

−0.039 0.187

)

The sample correlation is

ρ̂12 =
−0.039√

0.681 · 0.187
=−0.109
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Multivariate Analysis

In multivariate analysis we consider all the d numeric attributes X1,X2, . . . ,Xd .

D =




X1 X2 · · · Xd

x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd




In the row view, the data is a set of n points or vectors in the d-dimensional
attribute space

x i = (xi1,xi2, . . . ,xid)
T ∈R

d

In the column view, the data is a set of d points or vectors in the n-dimensional
space spanned by the data points

Xj = (x1j ,x2j , . . . ,xnj)
T ∈R

n
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Mean and Covariance

In the probabilistic view, the d attributes are modeled as a vector random
variable, X = (X1,X2, . . . ,Xd)

T , and the points x i are considered to be a random
sample drawn from X , i.e., IID with X .
The multivariate mean vector is

µ= E [X ] =
(
µ1 µ2 · · · µd

)T

The sample mean is

µ̂=
1

n

n∑

i=1

x i

The (sample) covariance matrix is a d × d (square) symmetric matrix

Σ=




σ2
1 σ12 · · · σ1d

σ21 σ2
2 · · · σ2d

· · · · · · · · · · · ·
σd1 σd2 · · · σ2

d


 Σ̂ =




σ̂2
1 σ̂12 · · · σ̂1d

σ̂21 σ̂2
2 · · · σ̂2d

· · · · · · · · · · · ·
σ̂d1 σ̂d2 · · · σ̂2

d



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Covariance Matrix is Positive Semidefinite

Σ is a positive semidef inite matrix, that is,

a
TΣa ≥ 0 for any d-dimensional vector a

To see this, observe that

a
TΣa = a

TE
[
(X −µ)(X −µ)T

]
a

= E
[
a
T (X −µ)(X −µ)Ta

]

= E
[
Y 2
]

≥ 0

Because Σ is also symmetric, this implies that all the eigenvalues of Σ are real and
non-negative, and they can be arranged from the largest to the smallest as
follows: λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0.

The total variance is given as: var(D) =
∏d

i=1σ
2
i

The generalized variance is det(Σ) =
∏d

i=1λi ≥ 0
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Sample Covariance Matrix: Inner and Outer Product

Let D represent the centered data matrix

D=D − 1 · µ̂T =





x
T
1 − µ̂

T

x
T
2 − µ̂

T

...

x
T
n − µ̂

T




=





— x
T
1 —

— x
T
2 —

...

— x
T
n —





Inner product and outer product form for sample covariance matrix:

Σ̂ =
1

n

(
D

T
D

)
=

1

n





X
T
1 X 1 X

T
1 X 2 · · · X

T
1 X d

X
T
2 X 1 X

T
2 X 2 · · · X

T
2 X d

...
...

. . .
...

X
T
d X 1 X

T
d X 2 · · · X

T
d X d




Σ̂ =

1

n

n∑

i=1

x i · xT
i

i.e., Σ̂ is given as the pairwise inner or dot products of the centered attribute vectors,
normalized by the sample size, or as a sum of rank-one matrices obtained as the outer

product of each centered point.
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Data Normalization

If the attribute values are in vastly different scales, then it is necessary to
normalize them.

Range Normalization: Let X be an attribute and let x1,x2, . . . ,xn be a random
sample drawn from X . In range normalization each value is scaled by the sample
range r̂ of X :

x ′i =
xi −mini{xi}

r̂
=

xi −mini{xi}
maxi{xi}−mini{xi}

After transformation the new attribute takes on values in the range [0,1].

Standard Score Normalization: Also called z-normalization; each value is
replaced by its z-score:

x ′i =
xi − µ̂

σ̂

where µ̂ is the sample mean and σ̂2 is the sample variance of X . After
transformation, the new attribute has mean µ̂′ = 0, and standard deviation σ̂′ = 1.
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Normalization Example

x i Age (X1) Income (X2)

x1 12 300

x2 14 500

x3 18 1000

x4 23 2000

x5 27 3500

x6 28 4000

x7 34 4300

x8 37 6000

x9 39 2500

x10 40 2700

Since Income is much larger, it dominates Age.
The sample range for Age is r̂ = 40− 12 = 28,
whereas for Income it is 6000− 300= 5700. For
range normalization, the point x2 = (14,500) is
scaled to

x
′

2 =

(
14− 12

28
,
500− 300

5700

)
= (0.071,0.035)

For z-normalization, we have

Age Income

µ̂ 27.2 2680

σ̂ 9.77 1726.15

Thus, x2 = (14,500) is scaled to

x
′

2 =

(
14− 27.2

9.77
,
500− 2680

1726.15

)
= (−1.35,−1.26)
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Univariate Normal Distribution

The normal distribution plays an important role as the parametric distribution of
choice in clustering, density estimation, and classification.

A random variable X has a normal distribution, with the parameters mean µ and
variance σ2, if the probability density function of X is given as follows:

f (x |µ,σ2) =
1√

2πσ2
exp

{
− (x −µ)2

2σ2

}

The term (x −µ)2 measures the distance of a value x from the mean µ of the
distribution, and thus the probability density decreases exponentially as a function
of the distance from the mean.

The maximum value of the density occurs at the mean value x = µ, given as
f (µ) = 1√

2πσ2
, which is inversely proportional to the standard deviation σ of the

distribution.
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Normal Distribution: µ= 0, and Different Variances
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Multivariate Normal Distribution

Given the d-dimensional vector random variable X = (X1,X2, . . . ,Xd)
T , it has a

multivariate normal distribution, with the parameters mean µ and covariance
matrix Σ, if its joint multivariate probability density function is given as follows:

f (x |µ,Σ) = 1

(
√

2π)d
√

|Σ|
exp

{
− (x −µ)T Σ−1 (x −µ)

2

}

where |Σ| is the determinant of the covariance matrix.

The term

(x i −µ)T Σ−1 (x i −µ)

measures the distance, called the Mahalanobis distance of the point x from the
mean µ of the distribution, taking into account all of the variance–covariance
information between the attributes.
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Standard Bivariate Normal Density
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Geometry of the Multivariate Normal

Compared to the standard multivariate normal, the mean µ translates the center of the
distribution, whereas the covariance matrix Σ scales and rotates the distribution. The
eigen-decomposition of Σ is given as

Σu i = λiu i

where λ1 ≥ λ2 ≥ . . .λd ≥ 0 are the eigenvalues and u i the corresponding eigenvectors.
This can be expressed compactly as follows:

Σ=UΛU
T

where

Λ=





λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd




U =




| | |

u1 u2 · · · ud

| | |





The eigenvectors represent the new basis vectors, with the covariance matrix given by Λ
(all covariances become zero). Since the trace of a square matrix is invariant to similarity
transformation, such as a change of basis, we have

var(D) = tr(Σ) =

d∑

i=1

σ
2

i =

d∑

i=1

λi = tr(Λ)
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Bivariate Normal for Iris: sepal length and sepal width

µ̂=

(
5.843
3.054

)

Σ̂ =

(
0.681 −0.039

−0.039 0.187

)

We have

Σ̂ =UΛU
T

U =

(
−0.997 −0.078
0.078 −0.997

)

Λ=

(
0.684 0

0 0.184

)

Angle of rotation is:
cosθ = e

T
1 u1 =−0.997

or θ = 175.5◦
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