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Regression

Given X1,X2, · · · ,Xd (predictor, explanatory, or independent variables), and given
Y (response or dependent variable), regression aims to predict Y based on X .

That is, the goal is to learn a regression function f , such that

Y = f (X1,X2, · · · ,Xd)+ ε= f (X )+ ε

where X = (X1,X2, · · · ,Xd)
T is the multivariate random variable comprising the

predictor attributes, and ε is a random error term that is assumed to be
independent of X .

Y is comprised of two components, one dependent on X , and the other, coming
from the error term, independent of the predictor attributes.

The error term encapsulates inherent uncertainty in Y , as well as, possibly the
effect of unobserved, hidden or latent variables.
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Linear Regression

In linear regression the function f is assumed to be linear in X , that is

f (X ) = β+ω1X1 +ω2X2 + · · ·+ωdXd = β+
d∑

i=1

ωiXi = β+ω
T
X

β is the true (unknown) bias term, ωi is the true (unknown) regression coefficient
or weight for attribute Xi , and ω = (ω1,ω2, · · · ,ωd)

T is the true d-dimensional
weight vector.

f specifies a hyperplane in R
d+1, where ω is the the weight vector that is normal

or orthogonal to the hyperplane, and β is the intercept or offset term.

f is completely specified by the d + 1 parameters comprising β and ωi , for
i = 1, · · · ,d .
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Linear regression

A common approach to predicting the bias and regression coefficients is to use the
method of least squares.

Given the training data D with points x i and response values yi (for i = 1, · · · ,n),
we seek values b and w , so as to minimize the sum of squared residual errors
(SSE)

SSE =
n∑

i=1

ǫ2i =
n∑

i=1

(yi − ŷi )
2
=

n∑

i=1

(
yi − b−w

T
x i

)2

In bivariate regression, D comprises a single predictor attribute,
X = (x1,x2, · · · ,xn)

T , along with Y = (y1,y2, · · · ,yn)
T :

ŷi = f (xi ) = b+w · xi
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Bivariate Regression

The residual error is ǫi = yi − ŷi and the best line that minimizes the SSE:

min
b,w

SSE =

n∑

i=1

ǫ2i =

n∑

i=1

(yi − ŷi )
2 =

n∑

i=1

(yi − b−w · xi )
2

We differentiate it with respect to b and set the result to 0:

∂

∂b
SSE =−2

n∑

i=1

(yi − b−w · xi ) = 0

=⇒ b =
1

n

n∑

i=1

yi −w ·
1

n

n∑

i=1

xi

Therefore, we have

b = µY −w ·µX
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Bivariate Regression

Differentiating with respect to w , we obtain

∂

∂w
SSE =−2

n∑

i=1

xi (yi − b−w · xi ) = 0

=⇒
n∑

i=1

xi · yi − b

n∑

i=1

xi −w

n∑

i=1

x2
i = 0

=⇒

n∑

i=1

xi · yi −µY

n∑

i=1

xi +w ·µX

n∑

i=1

xi −w

n∑

i=1

x2
i = 0

=⇒ w =

∑n

i=1 xi · yi − n ·µX ·µY∑n

i=1 x
2
i − n ·µ2

X

The regression coefficient w can also be written as

w =

∑n

i=1(xi −µX )(yi −µY )∑n

i=1(xi −µX )2
=

σXY

σ2
X

=
cov(X ,Y )

var(X )
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Bivariate Regression

Given two attributes petal length (X ; the predictor variable) and petal width

(Y ; the response variable) in the Iris dataset (n= 150).
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Bivariate Regression
Example

The mean values for these two variables are

µX =
1

150

150∑

i=1

xi =
563.8

150
= 3.7587

µY =
1

150

150∑

i=1

yi =
179.8

150
= 1.1987

The variance and covariance is given as

σ
2

X =
1

150

150∑

i=1

(xi −µX )
2 = 3.0924

σ
2

Y =
1

150

150∑

i=1

(yi −µY )
2 = 0.5785

σXY =
1

150

150∑

i=1

(xi −µX ) · (yi −µY ) = 1.2877
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Bivariate Regression
Example

Assuming a linear relationship between the response and predictor variables, we
obtain the slope and intercept terms as follows

w =
σXY

σ2
X

=
1.2877

3.0924
= 0.4164

b = µY −w ·µX = 1.1987− 0.4164 · 3.7587 =−0.3665

Thus, the fitted regression line is

ŷ =−0.3665+ 0.4164 · x

Finally, we can compute the SSE value as follows:

SSE =
150∑

i=1

ǫ2i =
150∑

i=1

(yi − ŷi )
2 = 6.343
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Bivariate Regression
Example

petal length (X ) versus petal width (Y ). Solid circle (black) shows the
mean point; residual error is shown for two sample points: x9 and x35.
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Geometry of Bivariate Regression

We can express the n equations, yi = b+w · xi for i = 1,2, · · · ,n, as:

Ŷ = b · 1+w ·X

where 1∈Rn is the n-dimensional vector of 1s. Ŷ is a linear combination of 1 and
X , i.e., it must lie in the column space spanned by 1 and X , given as
span({1,X}). ǫ captures the deviation between Y and Ŷ .

xn

x2

x1 Y

Ŷ

X

1
θ

ǫ= Y − Ŷ
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Geometry of Bivariate Regression
Orthogonal decomposition of X intoX and µX · 1.

Even though 1 and X are linearly independent and form a basis for the column
space, they need not be orthogonal.

We can create an orthogonal basis by decomposing X into a component along 1
and a component orthogonal to 1,X .

X = µX · 1+(X −µX · 1) = µX · 1+X

whereX = X −µX · 1 is the centered attribute vector.

1

X X

︸ ︷︷ ︸
µX ·1

X
−
µ
X
·1

︷
︸︸

︷

θ
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Geometry of Regression

The optimal Ŷ that minimizes the error is the orthogonal projection of Y onto
the subspace spanned by 1 and X .

The residual error vector ǫ is thus orthogonal to the subspace spanned by 1 and
X , and its squared length (or magnitude) equals the SSE value.

Summarizing:

µY = proj1(Y ) w = projX (Y ) b = µY −w ·µX

xn

x2

x1

Y

Ŷ

X

1

w
︷

︸︸
︷

µY︷ ︸︸ ︷

ǫ= Y − Ŷ
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Geometry of Regression
Example

Let us consider the regression of petal length (X ) on petal width (Y ) for the
Iris dataset, with n= 150. First, we center X by subtracting the mean µX = 3.759.
Next, we compute the scalar projections of Y onto 1 andX , to obtain

µY = proj1(Y ) =

(
Y T1

1T1

)
=

179.8

150
= 1.1987

w = projX (Y ) =

(
Y TX

X TX

)
=

193.16

463.86
= 0.4164

Thus, the bias term b is given as

b = µY −w ·µX = 1.1987− 0.4164 · 3.7587 =−0.3665

We can compute the SSE value as the squared length of the residual error vector

SSE = ‖ǫ‖
2
=
∥∥∥Y − Ŷ

∥∥∥
2

= (Y − Ŷ )T (Y − Ŷ ) = 6.343
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Multiple Regression

Multiple regression: multiple predictor attributes X1,X2, · · · ,Xd and a single
response attribute Y .

The training data sample D ∈Rn×d comprises n points x i = (xi1,xi2, · · · ,xid)
T in a

d-dimensional space, along with the corresponding observed response value yi .

Instead of dealing with the bias b separately from the weights wi , we can
introduce a new “constant” valued attribute X0 whose value is always fixed at 1.

The predicted response value for an augmented (d + 1) dimensional point x̃ i can
be written as

ŷi = w0xi0 +w1xi1 +w2xi2 + · · ·+wdxid = w̃
T
x̃ i
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Multiple Regression

The multiple regression task is to find the best fitting hyperplane defined by w̃

that minimizes the SSE:

min
w̃

SSE =

n∑

i=1

ǫ2i = ‖ǫ‖
2
=
∥∥∥Y − Ŷ

∥∥∥
2

= (Y − Ŷ )T (Y − Ŷ ) = Y TY − 2Y T Ŷ + Ŷ T Ŷ

= Y TY − 2Y T (D̃w̃)+ (D̃w̃)T (D̃w̃)

= Y TY − 2w̃T (D̃
T
Y )+ w̃

T (D̃
T
D̃)w̃

Therefore, the optimal weight vector is given as

w̃ = (D̃
T
D̃)−1

D̃
T
Y
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Multiple Regression
Example

Given sepal length (X1) and petal length (X2) on the response attribute
petal width (Y ) for the Iris dataset with n= 150 points, we want to learn the
multiple regression.
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Multiple Regression
Example

We and X0 = 1150 and D̃ ∈R150×3. We then compute D̃
T
D̃ and its inverse

D̃
T
D̃ =




150.0 876.50 563.80

876.5 5223.85 3484.25

563.8 3484.25 2583.00



 (D̃
T
D̃)−1 =




0.793 −0.176 0.064

−0.176 0.041 −0.017

0.064 −0.017 0.009





We also compute D̃
T
Y , given as

D̃
T
Y =




179.80

1127.65

868.97





The augmented weight vector w̃ is then given as

w̃ =




w0

w1

w2



= (D̃
T
D̃)−1 · (D̃

T
Y ) =




−0.014

−0.082

0.45





Therefore b = w0 =−0.014, and Ŷ =−0.014− 0.082 ·X1 + 0.45 ·X2
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Multiple Regression
Example

Figure shows the fitted hyperplane and the residual error for each point. Positive
residuals (i.e., ǫi > 0 or ŷi > yi ) are white, while negative residuals (i.e., ǫi < 0 or
ŷi < y) are gray. The SSE value for the model is 6.18.
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Multiple-Regression Algorithm

The algorithm is based on the QR-factorization, which expresses a matrix as a
product of two separate matrices, Q (an orthogonal matrix), and R (an
upper/right triangular matrix).

Multiple-Regression (D,Y ):

1 D̃←
(
1 D

)
// augmented data with X0 = 1 ∈Rn

2 {Q,R}← QR-factorization(D̃) // Q =
(
U0 U1 · · · Ud

)

3 ∆−1←




1
‖U0‖2 0 · · · 0

0 1
‖U1‖2 · · · 0

0 0
. . . 0

0 0 · · · 1

‖Ud‖
2


 // squared norms

4 Rw ←∆−1
Q

TY // solve for w by back-substitution

5 Ŷ ←Q∆−1
Q

TY
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QR-Factorization and Geometric Approach
Example

Consider the multiple regression of sepal length (X1) and petal length (X2)
on petal width (Y ) for the Iris dataset with n= 150 points.

The Gram–Schmidt orthogonalization results in the following QR-factorization:



| | |
X0 X1 X2

| | |




︸ ︷︷ ︸
D̃

=



| | |
U0 U1 U2

| | |




︸ ︷︷ ︸
Q

·




1 5.843 3.759
0 1 1.858
0 0 1




︸ ︷︷ ︸
R

Q ∈R150×3 and ∆, the squared norms of the basis vectors, and its inverse are

∆=




150 0 0
0 102.17 0
0 0 111.35


 ∆−1 =




0.00667 0 0
0 0.00979 0
0 0 0.00898



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QR-Factorization and Geometric Approach
Example

We can use back-substitution to solve for w̃ , as follows

Rw̃ =∆−1
Q

TY



1 5.843 3.759
0 1 1.858
0 0 1





w0

w1

w2


=




1.1987
0.7538
0.4499




Back-substitution starts with w2:

w2 = 0.4499

Next, w1 is given as:

w1 + 1.858 ·w2 = 0.7538

=⇒ w1 = 0.7538− 0.8358 =−0.082

Finally, w0 can be computed as

w0 + 5.843 ·w1 + 3.759 ·w2 = 1.1987

=⇒ w0 = 1.1987+ 0.4786− 1.6911 =−0.0139
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QR-Factorization and Geometric Approach
Example

The multiple regression model is given as

Ŷ =−0.014 ·X0− 0.082 ·X1 + 0.45 ·X2

It is also instructive to construct the new basis vectors U0,U1, · · · ,Ud in terms of
X0,X1, · · · ,Xd . Since D̃ =QR, we have Q = D̃R

−1. The inverse of R is also
upper-triangular, and is given as

R
−1 =




1 −5.843 7.095
0 1 −1.858
0 0 1




Q can be written as:


| | |
U0 U1 U2

| | |




︸ ︷︷ ︸
Q

=



| | |
X0 X1 X2

| | |




︸ ︷︷ ︸
D̃




1 −5.843 7.095
0 1 −1.858
0 0 1




︸ ︷︷ ︸
R−1
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QR-Factorization and Geometric Approach
Example

This expression allows us to

U0 = X0

U1 =−5.843 ·X0 +X1

U2 = 7.095 ·X0− 1.858 ·X1 +X2

The scalar projections of Y onto Ui are:

projU0
(Y ) = 1.199 projU1

(Y ) = 0.754 projU2
(Y ) = 0.45

The fitted response vector Ŷ is given as:

Ŷ = projU0
(Y ) ·U0 +projU1

(Y ) ·U1 +projU2
(Y ) ·U2

= 1.199 ·X0 + 0.754 · (−5.843 ·X0 +X1)+ 0.45 · (7.095 ·X0− 1.858 ·X1 +X2)

= (1.199− 4.406+ 3.193) ·X0 +(0.754− 0.836) ·X1 + 0.45 ·X2

=−0.014 ·X0− 0.082 ·X1 + 0.45 ·X2
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Multiple Regression: Stochastic Gradient Descent

Instead of using the QR-factorization approach to exactly solve the multiple
regression problem, we can also employ the simpler stochastic gradient algorithm.
The gradient of the SSE objective is given as

∇w̃ =
∂

∂w̃
SSE =−D̃

T
Y +(D̃

T
D̃)w̃

From an initial weight vector w̃
0, we update w̃ as:

w̃
t+1 = w̃

t − η ·∇w̃ = w̃
t + η · D̃

T
(Y − D̃ · w̃ t)

where w̃
t is the estimate of the weight vector at step t. We update the weight

vector by considering only one (random) point at each iteration.

w̃
t+1 = w̃

t − η ·∇w̃ (x̃k)

= w̃
t + η · (yk − x̃k · w̃

t) · x̃k
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Multiple Regression: SGD Algorithm

Multiple Regression: SGD (D,Y ,η, ǫ):
1 D̃←

(
1 D

)
// augment data

2 t← 0 // step/iteration counter

3 w̃
t ← random vector in R

d+1 // initial weight vector

4 repeat
5 foreach k = 1,2, · · · ,n (in random order) do

6 ∇w̃ (x̃k)←−(yk − x̃
T
k w̃

t) · x̃k // compute gradient at x̃k

7 w̃
t+1← w̃

t − η ·∇w̃ (x̃k) // update estimate for wk

8 t← t+ 1

9 until
∥∥w t −w t−1

∥∥≤ ǫ
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Multiple Regression: SGD
Example

Multiple regression of sepal length (X1) and petal length (X2) on the
response attribute petal width (Y ) for the Iris dataset with n= 150 points.

Using the exact approach the multiple regression model was given as

Ŷ =−0.014 ·X0− 0.082 ·X1 + 0.45 ·X2

Using SGD we obtain the following model with η = 0.001 and ǫ= 0.0001:

Ŷ =−0.031 ·X0− 0.078 ·X1 + 0.45 ·X2

The results from the SGD approach are essentially the same as the exact method,
with a slight difference in the bias term.

The SSE value for the exact method is 6.179, whereas for SGD it is 6.181.
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Ridge Regression

For linear regression, Ŷ lies in the span of the column vectors comprising the
augmented data matrix D̃.

Often the data is noisy and uncertain, and, therefore, instead of fitting the model
to the data exactly, it may be better to fit a more robust model.

Regularization constrains the solution vector w̃ to have a small norm.

Besides minimizing
∥∥∥Y − Ŷ

∥∥∥
2

, we add a regularization term (‖w̃‖
2
):

min
w̃

J(w̃) =
∥∥∥Y − Ŷ

∥∥∥
2

+α · ‖w̃‖
2
=
∥∥∥Y − D̃w̃

∥∥∥
2

+α · ‖w̃‖
2

α≥ 0 controls the tradeoff between minimizing the squared norm of the weight
vector and the squared error.
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Ridge Regression

We differentiate w.r.t. w̃ and set the results to 0 to obtain

w̃ = (D̃
T
D̃ +α · I )−1

D̃
T
Y

The matrix (D̃
T
D̃ +α · I ) is always invertible (or non-singular) for α> 0 even if

D̃
T
D̃ is not invertible (or singular).

If λi is an eigenvalue of D̃
T
D̃, then λi +α is an eigenvalue of (D̃

T
D̃ +α · I ).

Since D̃
T
D̃ is positive semi-definite it has non-negative eigenvalues. Even if an

λi = 0, the corresponding eigenvalue of (D̃
T
D̃ +α · I ) is λi +α= α> 0.

Regularized regression is called ridge regression because it adds a “ridge” along the

main diagonal of the D̃
T
D̃ matrix, i.e., the solution depends on (D̃

T
D̃ +α · I ).

If we choose a small positive α we are always guaranteed a solution.
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Ridge Regression
Example

Given sepal length (X1) and petal length (X2) on the response attribute
petal width (Y ) for the Iris dataset with n= 150 points, we want to learn the
ridge regression.
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Ridge Regression
Example

The uncentered scatter matrix is given as

D̃
T
D̃ =

(
150.0 563.8
563.8 2583.0

)

We obtain different lines of best fit for different values of the regularization
constant α:

α= 0 :Ŷ =−0.367+ 0.416 ·X , ‖w̃‖2 =
∥∥∥(−0.367,0.416)T

∥∥∥
2

= 0.308, SSE = 6.34

α= 10 :Ŷ =−0.244+ 0.388 ·X , ‖w̃‖2 =
∥∥∥(−0.244,0.388)T

∥∥∥
2

= 0.210, SSE = 6.75

α= 100 :Ŷ =−0.021+ 0.328 ·X , ‖w̃‖2 =
∥∥∥(−0.021,0.328)T

∥∥∥
2

= 0.108, SSE = 9.97
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Ridge Regression
Example

As α increases there is more emphasis on minimizing the squared norm of w̃ .

Since ‖w̃‖
2

is more constrained as α increases, the fit of the model decreases, as
seen from the increase in SSE values.
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Ridge Regression: Unpenalized Bias Term

Often in L2 regularized regression we do not want to penalize the bias term w0,
since it simply provides the intercept information.

Consider the new regularized objective where w = (w1,w2, · · · ,wd)
T without w0:

min
w

J(w) = ‖Y −w0 · 1−Dw‖
2
+α · ‖w‖

2

=

∥∥∥∥Y −w0 · 1−

d∑

i=1

wi ·Xi

∥∥∥∥
2

+α ·

(
d∑

i=1

w2
i

)

Therefore, we have

min
w

J(w) =
∥∥Y − Dw

∥∥2
+α · ‖w‖

2

whereY = Y −µY · 1 is the centered Y , and D=D− 1µT is the centered D.

We can exclude w0 from the L2 regularization objective by centering the response
vector and the unaugmented data matrix.
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Ridge Regression: Unpenalized Bias
Example

When we do not penalize w0, we obtain the following lines of best fit for different
values of the regularization constant α:

α= 0 :Ŷ =−0.365+ 0.416 ·X w2
0 +w2

1 = 0.307 SSE = 6.34

α= 10 :Ŷ =−0.333+ 0.408 ·X w2
0 +w2

1 = 0.277 SSE = 6.38

α= 100 :Ŷ =−0.089+ 0.343 ·X w2
0 +w2

1 = 0.125 SSE = 8.87

We observe that for α= 10, when we penalize w0, we obtain the following model:

α= 10 :Ŷ =−0.244+ 0.388 ·X w2
0 +w2

1 = 0.210 SSE = 6.75

As expected, we obtain a higher bias term when we do not penalize w0.
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Ridge Regression: Stochastic Gradient Descent

Instead of inverting the matrix (D̃
T
D̃ +α · I ) as called for in the exact ridge

regression solution, we can employ the stochastic gradient descent algorithm.

The gradient of w̃ multiplied by 1/2 for convenience is:

∇w̃ =
∂

∂w̃
J(w̃) =−D̃

T
Y +(D̃

T
D̃)w̃ +α · w̃

Using (batch) gradient descent, we can iteratively compute w̃ as follows

w̃
t+1 = w̃

t − η ·∇w̃ = (1− η ·α)w̃ t + η · D̃
T
(Y − D̃ · w̃ t)

In SGD, we update the weight vector by considering only one (random) point at
each time:

w̃
t+1 = w̃

t − η ·∇w̃ (x̃k) =
(
1−

η ·α

n

)
w̃

t + η · (yk − x̃k · w̃
t) · x̃k
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Ridge Regression: SGD Algorithm

Ridge Regression: SGD (D,Y ,η, ǫ):
1 D̃←

(
1 D

)
// augment data

2 t← 0 // step/iteration counter

3 w̃
t ← random vector in R

d+1 // initial weight vector

4 repeat
5 foreach k = 1,2, · · · ,n (in random order) do

6 ∇w̃ (x̃k)←−(yk − x̃
T
k w̃

t) · x̃k +
α
n
· w̃ // gradient at x̃k

7 w̃
t+1← w̃

t − η ·∇w̃ (x̃k) // update estimate for wk

8 t← t+ 1

9 until
∥∥w t −w t−1

∥∥≤ ǫ
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Ridge Regression: SGD
Example

We apply ridge regression on the Iris dataset (n= 150), using petal length (X )
as the independent attribute, and petal width (Y ) as the response variable.

Using SGD (with η = 0.001 and ǫ= 0.0001) we obtain different lines of best fit for
different values of the regularization constant α:

α= 0 :Ŷ =−0.366+ 0.413 ·X SSESGD = 6.37 SSERidge = 6.34

α= 10 :Ŷ =−0.244+ 0.387 ·X SSESGD = 6.76 SSERidge = 6.38

α= 100 :Ŷ =−0.022+ 0.327 ·X SSESGD = 10.04 SSERidge = 8.87
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Kernel Regression

Kernel generalizes linear regression to the non-linear case, i.e., finding a non-linear
fit to the data to minimize the squared error, along with regularization.
φ(x i ) maps the input point x i to the feature space.

For regularized regression, we have to solve the following objective in feature
space:

min
w̃

J(w̃) =
∥∥∥Y − Ŷ

∥∥∥
2

+α · ‖w̃‖
2
=
∥∥∥Y − D̃φw̃

∥∥∥
2

+α · ‖w̃‖
2

The optimal solution is therefore given as

c = (K̃ +α · I )−1Y

where I ∈Rn×n is the n× n identity matrix, and D̃φD̃
T

φ is the augmented kernel

matrix K̃ .
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Kernel Regression

The expression for the predicted response is:

Ŷ = D̃φw̃

= D̃φD̃
T

φc

=
(
D̃φD̃

T

φ

)(
K̃ +α · I

)−1

Y

= K̃

(
K̃ +α · I

)−1

Y

where K̃ (K̃ +α · I )−1 is the kernel hat matrix.

α> 0 ensures that the inverse always exists, which is another advantage of using
(kernel) ridge regression, in addition to the regularization.

We compute the vector K̃ z comprising the augmented kernel values of z with
respect to all of the data points in D, and take its dot product with the mixture
coefficient vector c to obtain the predicted response.
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Kernel Regression Algorithm

Kernel-Regression (D,Y ,K ,α):
1 K ←

{
K (x i ,xj)

}
i,j=1,...,n

// standard kernel matrix

2 K̃ ←K + 1// augmented kernel matrix

3 c←
(
K̃ +α · I

)−1
Y // compute mixture coefficients

4 Ŷ ← K̃c

Testing (z ,D,K ,c):
5 K̃ z ←

{
1+K (z ,x i )

}
∀ x i∈D

6 ŷ ← cT K̃ z
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Kernel Regression on Iris
Example

Consider the nonlinear Iris dataset obtained via a nonlinear transformation of
sepal length (A1) and sepal width (A2) attributes (A2):

X = A2 Y = 0.2A2
1 +A2

2 + 0.1A1A2
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Kernel Regression on Iris
Example

We treat Y as the response variable and X is the independent attribute. The
points show a clear quadratic (nonlinear) relationship between the them.

The linear fit is

Ŷ = 0.168 ·X

Using the quadratic (inhomogeneous) kernel over X comprising constant (1),
linear (X ), and quadratic terms (X 2), and α= 0.1:

Ŷ =−0.086+ 0.026 ·X + 0.922 ·X 2
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Kernel Regression on Iris
Example

The linear (in gray) and quadratic (in black) fit are shown.

The SSE error is 13.82 for the linear and 4.33 for the quadratic kernel.

The quadratic kernel (as expected) gives a much better fit to the data.
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Kernel ridge regression
Example

Consider the Iris principal components dataset, where X1 and X2 denote the first
two principal components.

The response variable Y is binary, with value 1 corresponding to Iris-virginica

(points on the top right, with Y value 1) and 0 corresponding to Iris-setosa

and Iris-versicolor (other two groups of points, with Y value 0).
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Kernel ridge regression
Example

Figure shows the fitted regression plane using a linear kernel with ridge value
α= 0.01:

Ŷ = 0.333− 0.167 ·X1 + 0.074 ·X2
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Kernel ridge regression
Example

Figure shows the fitted model when we use an inhomogeneous quadratic kernel
with α= 0.01:

Ŷ =−0.03− 0.167 ·X1− 0.186 ·X2 + 0.092 ·X 2
1 + 0.1 ·X1 ·X2 + 0.029 ·X 2

2
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bC bCbC

bCbC bCbCbCbC
bCbCbC bCbC bC bCbC

bC bCbCbC bCbCbC bC bCbC bCbCbC bCbC bCbC bC
bC

bC bC
bC

bCbC
bC

bC
bC

bC bCbCbC
bC

bCbC bCbC bCbC bCbC
bC bC bCbC

The SSE error for the linear model is 15.47, whereas for the quadratic kernel it is
8.44, indicating a better fit for the training data.
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L1 Regression: Lasso

The Lasso (least absolute selection and shrinkage operator) is a regularization
method that aims to sparsify the regression weights.

Lasso uses the L1 norm for regularization:

min
w

J(w) =
1

2
· ||Y − Dw ||2 +α · ‖w‖1

where α≥ 0 is the regularization constant and

‖w‖1 =

d∑

i=1

|wi |

We assume that X1, X2, . . . , Xd and Y have been centered.

Centering relieves us from explicitly dealing with the bias term b = w0, since we
do not want to penalize b.
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L1 Regression: Lasso

The usage of the L1 norm leads to sparsity in the solution vector.

Ridge regression reduces the value of the regression coefficients wi , they may
remain small but still non-zero.

L1 regression can drive the coefficients to zero, resulting in a more interpretable
model, especially when there are many predictor attributes.

The Lasso objective comprises two parts, the squared error term
∥∥Y − Dw

∥∥2

which is convex and differentiable, and the L1 penalty term

α · ‖w‖1 = α

d∑

i=1

|wi |

which is convex but unfortunately non-differentiable at wi = 0.

We cannot simply compute the gradient and set it to zero, as we did in the case
of ridge regression.

It can be solved via the generalized approach of subgradients.
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L1 Regression: Subgradients

Consider the absolute value function f (w) = |w |.

When w > 0, f ′(w) = +1, and when w < 0, f ′(w) =−1.

There is a discontinuity at w = 0 where the derivative does not exist.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

w

|w
|
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L1 Regression: Subgradients

Subgradients generalize the notion of a derivative.

For f (w) = |w |, the slope m of any line that passes through w = 0 that remains
below or touches the graph of f is called a subgradient of f at w = 0.

−3 −2 −1 0 1 2 3

−2
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0
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3

w

|w
|

m=−0.5

m= 0.25
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Subgradients and Subdifferential

The set of all the subgradients at w is called the subdifferential, denoted as ∂|w |.

The subdifferential of f (w) = |w | at w = 0 is given as ∂|w |= [−1,1].

Considering all the cases, the subdifferential for f (w) = |w | is:

∂|w |=





1 iff w > 0

−1 iff w < 0

[−1,1] iff w = 0

When the derivative exists, the subdifferential is unique and corresponds to the
derivative (or gradient).

When the derivative does not exist the subdifferential corresponds to a set of
subgradients.
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Bivariate L1 Regression

Consider the bivariate L1 regression, where we have a single independent attribute
X and a response attributeY (both centered). The bivariate regression model is
given as

ŷi = w ·x i

The Lasso objective can then be written as

min
w

J(w) =
1

2

n∑

i=1

(y i −w ·x i )
2 +α · |w |

We can compute the subdifferential of this objective as follows:

∂J(w) =
1

2
·

n∑

i=1

2 · (y i −w ·x i ) · (−x i )+α ·∂|w |

=−
n∑

i=1

x i ·y i +w ·
n∑

i=1

x 2
i +α ·∂|w |

=−X TY +w ·
∥∥X
∥∥2

+α ·∂|w |
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Bivariate L1 Regression

Corresponding to the three cases for the subdifferential of the absolute value
function we have three cases to consider:

Case I (w > 0 and ∂|w |= 1): w = η ·X TY − η ·α
Since w > 0, η ·X TY > η ·α or |η ·X TY |> η ·α.

Case II (w < 0 and ∂|w |=−1): w = η ·X TY + η ·α
Since w < 0, η ·X TY <−η ·α or |η ·X TY |> η ·α.

Case III (w = 0 and ∂|w | ∈ [−1,1]): w ∈
[
η ·X TY − η ·α, η ·X TY + η ·α

]

However, since w = 0, |η ·X TY | ≤ η ·α.

Then the above three cases can be written compactly as:

w = Sη·α(η ·X
TY )

with τ = η ·α, where w is the optimal solution to the problem.
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L1-Regression Algorithm

L1-Regression (D,Y ,α,η,ǫ):
1 µ←mean(D) // compute mean

2 D←D− 1 ·µT // center the data

3 Y ← Y −µY · 1 // center the response

4 t← 0 // step/iteration counter

5 w t ← random vector in R
d // initial weight vector

6 repeat
7 foreach k = 1,2, · · · ,d do

8 ∇(w t
k )←−X

T
k (Y − Dw t) // compute gradient at wk

9 w t+1
k ← w t

k − η ·∇(w t
k ) // update estimate for wk

10 w t+1
k ←Sη·α

(
w t+1

k

)
// apply soft-threshold function

11 t← t+ 1

12 until
∥∥w t −w t−1

∥∥≤ ǫ

13 b← µY −
(
w t
)T

µ // compute the bias term
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L1 Regression
Example

We apply L1 regression to the full Iris dataset with n= 150 points, and four
independent attributes, namely sepal-width (X1), sepal-length (X2),
petal-width (X3), and petal-length (X4).

The Iris type attribute comprises the response variable Y . There are three Iris
types, namely Iris-setosa, Iris-versicolor, and Iris-virginica, which
are coded as 0, 1 and 2, respectively.

The L1 regression for α (η = 0.0001) are shown below:

α= 0 : Ŷ =+0.19− 0.11 ·X1 − 0.05 ·X2 + 0.23 ·X3 + 0.61 ·X4 SSE = 6.96 ‖w‖
1
= 0.44

α= 1 : Ŷ =−0.08− 0.08 ·X1 − 0.02 ·X2 + 0.25 ·X3 + 0.52 ·X4 SSE = 7.09 ‖w‖
1
= 0.34

α= 5 : Ŷ =−0.55+ 0.00 ·X1 + 0.00 ·X2 + 0.36 ·X3 + 0.17 ·X4 SSE = 8.82 ‖w‖
1
= 0.16

α= 10 : Ŷ =−0.58+ 0.00 ·X1 + 0.00 ·X2 + 0.42 ·X3 + 0.00 ·X4 SSE = 10.15 ‖w‖
1
= 0.18

Note the sparsity inducing effect, for α= 5 and α= 10, which drives some wi to 0.
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L1 Regression
Example

We can contrast the coefficients for L2 (ridge) and L1 (Lasso) regression by
comparing models with the same level of squared error.

For α= 5, the L1 model has SSE = 8.82.

We adjust the ridge value in L2 regression, with α= 35 resulting in a similar SSE
value. The two models are given as follows:

L1 : Ŷ =−0.553+ 0.0 ·X1 + 0.0 ·X2 + 0.359 ·X3 + 0.170 ·X4 ‖w‖
1
= 0.156

L2 : Ŷ =−0.394+ 0.019 ·X1 − 0.051 ·X2 + 0.316 ·X3 + 0.212 ·X4 ‖w‖
1
= 0.598

L2: the coefficients for X1 and X2 are small, and therefore less important, but they
are not zero.

L1: the coefficients for X1 and X2 are exactly zero, leaving only X3 and X4;

Lasso can thus act as an automatic feature selection approach.
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