
Data Mining and Machine Learning:
Fundamental Concepts and Algorithms

dataminingbook.info

Mohammed J. Zaki1 Wagner Meira Jr.2

1 Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA

2 Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 26: Deep Learning

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 1 / 98

Recurrent Neural Networks

Multilayer perceptrons are feed-forward networks in which the information �ows in
only one direction, namely from the input layer to the outputlayer via the hidden
layers. In contrast, recurrent neural networks (RNNs) are dynamically driven (e.g.,
temporal), with a feedbackloop between two (or more) layers, which makes them
ideal for learning from sequence data.

The task of an RNN is to learn a function that predicts the target sequenceY
given the input sequenceX . That is, the predicted outputo t on input x t should
be similar or close to the target responsey t , for each time pointt .

To learn dependencies between elements of the input sequence, an RNN maintains
a sequence ofm-dimensional hidden state vectorsht 2 Rm, whereht captures the
essential features of the input sequences up to timet .The hidden vectorht at
time t depends on the input vectorx t at time t and the previous hidden state
vector ht � 1 from time t � 1, and it is computed as follows:

ht = f h(W T
i x t + W T

h ht � 1 + bh) (1)

Here, f h is the hidden state activation function, typically tanh or ReLU.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 2 / 98

Recurrent Neural Network

x t ht o t
W i W o;bo

W h;bh
� 1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 3 / 98

Recurrent Neural Networks

It is important to note that all the weight matrices and bias vectors are
independentof the time t . For example, for the hidden layer, the same weight
matrix W h and bias vectorbh is used and updated while training the model, over
all time stepst .

This is an example ofparameter sharingor weight tying between di�erent layers or
components of a neural network. Likewise, the input weight matrix W i , the
output weight matrixW o and the bias vectorbo are all shared across time.

This greatly reduces the number of parameters that need to belearned by the
RNN, but it also relies on the assumption that all relevant sequential features can
be captured by the shared parameters.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 4 / 98

RNN unfolded in time.

t = 0 t = 1 t = 2 : : : t = � � 1 t = �

o1 o2 � � � o � � 1 o �

h0 h1 h2 � � � h� � 1 h�

x1 x2 � � � x � � 1 x �

W h;bh W h;bh W h;bh

W o;bo W o;bo W o;bo W o;bo

W i W i W i W i

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 5 / 98

Training an RNN

For training the network, we compute the error orlossbetween the predicted and
response vectors over all time steps. For example, the squared error loss is given as

EX =
�X

t = 1

Ex t =
1
2

�
�X

t = 1

ky t � o t k
2

On the other hand, if we use a softmax activation at the outputlayer, then we use
the cross-entropy loss, given as

EX =
�X

t = 1

Ex t = �
�X

t = 1

pX

i= 1

yti � ln(oti)

wherey t = (yt 1;yt 2; � � � ;ytp)T 2 Rp and o t = (ot 1;ot 2; � � � ;otp)T 2 Rp.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 6 / 98

Feed-forward in Time

The feed-forward process starts at timet = 0, taking as input the initial hidden
state vectorh0, which is usually set to 0 or it can be user-speci�ed, say froma
previous prediction step. Given the current set of parameters, we predict the
output o t at each time stept = 1;2; � � � ; � .

o t = f o
�
W T

o ht + bo
�

= f o
�

W T
o f h

�
W T

i x t + W T
h ht � 1 + bh

�

| {z }
ht

+ bo

�

=
...

= f o
�

W T
o f h

�
W T

i x t + W T
h f h

�
� � � f h

�
W T

i x1 + W T
h h0 + bh

| {z }
h1

�
+ � � �

�
+ bh

�
+ bo

�

We can observe that the RNN implicitly makes a prediction forevery pre�x of the
input sequence, sinceo t depends on all the previous input vectorsx1;x2; � � � ;x t ,
but not on any future inputsx t + 1; � � � ;x � .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 7 / 98

Backpropagation in Time

Once the the output sequenceO = ho1;o2; � � � ;o � i is generated, we can compute
the error in the predictions using the squared error (or cross-entropy) loss
function, which can in turn be used to compute the net gradient vectors that are
backpropagated from the output layers to the input layers foreach time step.

Let Ex t denote the loss on input vectorx t from the input sequence
X = hx1;x2; � � � ;x � i .

De�ne � o
t as the net gradient vector for the output vectoro t , i.e., the derivative of

the error functionEx t with respect to the net value at each neuron ino t , given as

� o
t =

�
@Ex t

@net o
t 1

;
@Ex t

@net o
t 2

; � � � ;
@Ex t

@net o
tp

� T

whereo t = (ot 1;ot 2; � � � ;otp)T 2 Rp is the p-dimensional output vector at timet ,
and net o

ti is the net value at output neuronoti at time t .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 8 / 98

Backpropagation in Time

Likewise, let� h
t denote the net gradient vector for the hidden state neuronsht at

time t

� h
t =

�
@Ex t

@net h
t 1

;
@Ex t

@net h
t 2

; � � � ;
@Ex t

@net h
tm

� T

whereht = (ht 1;ht 2; � � � ;htm)T 2 Rm is the m-dimensional hidden state vector at
time t , and net h

ti is the net value at hidden neuronhti at time t .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 9 / 98

RNN: Feed-forward step

l = 0 l = 1 l = 2 l = 3 : : : l = � l = � + 1

o1 o2 � � � o � � 1 o �

h0 h1 h2 � � � h� � 1 h�

x1 x2 � � � x � � 1 x �

W h;bh W h;bh W h;bh

W
o
;b

o

W
o
;b

o

W
o
;b

o

W
o
;b

o

W
i

W
i

W
i

W
i

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 10 / 98

RNN:Backpropagation step

l = 0 l = 1 l = 2 l = 3 : : : l = � l = � + 1

o1

� o
1

o2

� o
2

� � �

o � � 1

� o
� � 1

o �

� o
�

h0

h1

� h
1

h2

� h
2

� � �

h� � 1

� h
� � 1

h�

� h
�

x1 x2 � � � x � � 1 x �

W h � � h
1 W h � � h

2 W h � � h
�

W
o

� �
o

1

W
o

� �
o

2

W
o
� �

o
� �

1

W
o
� �

o
�

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 11 / 98

Computing Net Gradients

The key step in backpropagation is to compute the net gradients in reverse order,
starting from the output neurons to the input neurons via thehidden neurons.
The backpropagation step reverses the �ow direction for computing the net
gradients� o

t and � h
t , as shown in the backpropagation graph.In particular, the net

gradient vector at the outputo t can be computed as follows:

� o
t = @f o

t � @Ex t (2)

where� is the element-wise or Hadamard product.
On the other hand, the net gradients at each of the hidden layers need to account
for the incoming net gradients fromo t and fromht + 1.Thus, the net gradient
vector for ht (for t = 1;2; : : : ; � � 1) is given as

� h
t = @f h

t �
� �

W o � � o
t

�
+

�
W h � � h

t + 1

� �
(3)

Note that for h� , it depends only ono � .Finally, note that the net gradients do not
have to be computed forh0 or for any of the input neuronsx t , since these are leaf
nodes in the backpropagation graph, and thus do not backpropagate the gradients
beyond those neurons.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 12 / 98

Reber grammar automata.

0 1

2

3

4

5

6 7
B

T

P

X

S

V

T

S

X

V

P
E

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 13 / 98

RNN
Reber grammar automata

We use an RNN to learn the Reber grammar, which is generated according to the
automata.Let� = f B;E;P;S;T;V;Xg denote the alphabet comprising the seven
symbols. Further, let$ denote a terminal symbol.

Starting from the initial node, we can generate strings thatfollow the Reber
grammar by emitting the symbols on the edges. If there are twotransitions out of
a node, each one can be chosen with equal probability.

The sequencehB;T;S;S;X;X;T;V;V;Ei is a valid Reber sequence (with the
corresponding state sequenceh0;1;2;2;2;4;3;3;5;6;7i). On the other hand, the
sequencehB;P;T;X;S;Ei is not a valid Reber sequence, since there is no edge out
of state 3 with the symbolX.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 14 / 98

RNN
Reber grammar automata

The task of the RNN is to learn to predict the next symbol for each of the
positions in a given Reber sequence. For training, we generate Reber sequences
from the automata.

Let SX = hs1;s2; � � � ;s� i be a Reber sequence. The corresponding true outputY is
then given as the set of next symbols from each of the edges leaving the state
corresponding to each position inSX .

For example, consider the Reber sequenceSX = hB;P;T;V;V;Ei , with the state
sequence� = h0;1;3;3;5;6;7i . The desired output sequence is then given as
SY = f P|T;T|V;T|V;P|V;E;$g, where$ is the terminal symbol.

Here,P|T denotes that the next symbol can be eitherP or T. We can see thatSY

comprises the sequence of possible next symbols from each ofthe states in�
(excluding the start state 0).

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 15 / 98

RNN
Reber grammar automata

To generate the training data for the RNN, we have to convert the symbolic
Reber strings into numeric vectors. We do this via a binary encoding of the
symbols, as follows:

B (1;0;0;0;0;0;0)T

E (0;1;0;0;0;0;0)T

P (0;0;1;0;0;0;0)T

S (0;0;0;1;0;0;0)T

T (0;0;0;0;1;0;0)T

V (0;0;0;0;0;1;0)T

X (0;0;0;0;0;0;1)T

$ (0;0;0;0;0;0;0)T

That is, each symbol is encoded by a 7-dimensional binary vector, with a 1 in the
column corresponding to its position in the ordering of symbols in � . The
terminal symbol$ is not part of the alphabet, and therefore its encoding is all0's.
Finally, to encode the possible next symbols, we follow a similar binary encoding
with a 1 in the column corresponding to the allowed symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 16 / 98

RNN
Reber grammar automata

For example, the choiceP|T is encoded as(0;0;1;0;1;0;0)T . Thus, the Reber
sequenceSX and the desired output sequenceSY are encoded as:

X Y
x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6

� B P T V V E P|T T|V T|V P|V E $
B 1 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0 1 0
P 0 1 0 0 0 0 1 0 0 1 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 1 0 0 0 1 1 1 0 0 0
V 0 0 0 1 1 0 0 1 1 1 0 0
X 0 0 0 0 0 0 0 0 0 0 0 0

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 17 / 98

RNN
Reber grammar automata

For training, we generaten = 400 Reber sequences with a minimum length of 30.
The maximum sequence length is� = 52. Each of these Reber sequences is used
to create a training pair(X ;Y) as described above.

Next, we train an RNN withm = 4 hidden neurons using tanh activation. The
input and ouput layer sizes are determined by the dimensionality of the encoding,
namelyd = 7 andp = 7. We use a sigmoid activation at the output layer, treating
each neuron as independent. We use the binary cross entropy error function.

The RNN is trained forr = 10000 epochs, using gradient step size� = 1 and the
entire set of 400 input sequences as the batch size. The RNN model learns the
training data perfectly, making no errors in the prediction of the set of possible
next symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 18 / 98

RNN
Reber grammar automata

We test the RNN model on 100 previously unseen Reber sequences (with
minimum length 30, as before). The RNN makes no errors on the test sequences.
On the other hand, we also trained an MLP with a single hidden layer, with sizem
varying between 4 and 100.

Even afterr = 10000 epochs, the MLP is not able to correctly predict any of the
output sequences perfectly. It makes 2.62 mistakes on average per sequence for
both the training and testing data. Increasing the number ofepochs or the
number of hidden layers does not improve the MLP performance.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 19 / 98

Bidirectional RNNs

An RNN makes use of a hidden stateht that depends on the previous hidden
state ht � 1 and the current inputx t at time t . In other words, it only looks at
information from the past.

A bidirectional RNN (BRNN)extends the RNN model to also include information
from the future.

In particular, a BRNN maintains a backward hidden state vector bt 2 Rm that
depends on the next backward hidden statebt + 1 and the current inputx t . The
output at time t is a function of bothht and bt . In particular, we compute the
forward and backward hidden state vectors as follows:

ht = f h(W T
ih x t + W T

h ht � 1 + bh)

bt = f b(W T
ib x t + W T

b bt + 1 + bb)
(4)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 20 / 98

Bidirectional RNNs

The output at time t is computed only when bothht and bt are available, and is
given as

o t = f o(W T
hoht + W T

bobt + bo)

It is clear that BRNNs need the complete input before they cancompute the
output.

We can also view a BRNN as having two sets of input sequences, namely the
forward input sequenceX = hx1;x2; � � � ;x � i and the reversed input sequence
X r = hx � ;x � � 1; : : : ;x1i , with the corresponding hidden statesht and bt , which
together determine the outputo t . Thus, a BRNN is comprised of two �stacked�
RNNs with independent hidden layers that jointly determinethe output.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 21 / 98

Bidirectional RNN: Unfolded in time.

t = 0 t = 1 t = 2 : : : t = � � 1 t = � t = � + 1

o1 o2 � � � o � � 1 o �

h0

h1

b1

h2

b2

� � �

� � �

h� � 1

b� � 1

h�

b�

b� + 1

x1 x2 � � � x � � 1 x �

W h;bh

W h;bh W h;bh

W ho;boW bo W ho;boW bo W ho;boW bo W ho;boW bo

W ih W ib W ih W ib W ih W ib W ih W ib

W b;bb W b;bb

W b;bb

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 22 / 98

Gated RNNs: Long Short-Term Memory Networks

One of the problems in training RNNs is their susceptibilityto either thevanishing
gradientor the exploding gradientproblem. For example, consider the task of
computing the net gradient vector� h

t for the hidden layer at timet , given as

� h
t = @f h

t �
� �

W o � � o
t

�
+

�
W h � � h

t + 1

� �

Assume for simplicity that we use a linear activation function, i.e., @f h
t = 1, and

let us ignore the net gradient vector for the output layer, focusing only on the
dependence on the hidden layers. Then for an input sequence of length � , we have

� h
t = W h � � h

t + 1 = W h(W h � � h
t + 2) = W 2

h � � h
t + 2 = � � � = W � � t

h � � h
�

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 23 / 98

Gated RNNs: Long Short-Term Memory Networks

We can observe that the net gradient from time� a�ects the net gradient vector
at time t as a function ofW � � t

h , i.e., as powers of the hidden weight matrixW h.
Let the spectral radiusof W h, de�ned as the absolute value of its largest
eigenvalue, be given asj� 1j.

It turns out that if j� 1j < 1, then

 W k

h

 ! 0 ask ! 1 , that is, the gradients

vanish as we train on long sequences.

On the other hand, ifj� 1j > 1, then at least one element ofW k
h becomes

unbounded and thus

 W k

h

 ! 1 as k ! 1 , that is, the gradients explode as we

train on long sequences.

It is clear that the net gradients scale according to the eigenvalues ofW h.
Therefore, ifj� 1j < 1, then j� 1jk ! 0 ask ! 1 , and sincej� 1j � j � i j for all
i = 1;2; � � � ;m, then necessarilyj� i jk ! 0 as well. That is, the gradients vanish. On
the other hand, ifj� 1j > 1, then j� 1jk ! 1 as k ! 1 , and the gradients explode.

Therefore, for the error to neither vanish nor explode, the spectral radius ofW h

should remain 1 or very close to it.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 24 / 98

Gated RNNs: Long Short-Term Memory Networks

Long short-term memory (LSTM) networks alleviate the vanishing gradients
problem by usinggate neuronsto control access to the hidden states. Consider
the m-dimensional hidden state vectorht 2 Rm at time t . In a regular RNN, we
update the hidden state as follows:

ht = f h(W T
i x t + W T

h ht � 1 + bh)

Let g 2 f 0;1gm be a binary vector. If we take the element-wise product ofg and
ht , namely,g � ht , then elements ofg act as gates that either allow the
corresponding element ofht to be retained or set to zero.

The vectorg thus acts as logical gate that allows selected elements ofht to be
remembered or forgotten. However, for backpropagation we need di�erentiable
gates, for which we use sigmoid activation on the gate neurons so that their value
lies in the range[0;1].

Like a logical gate, such neurons allow the inputs to be completely remembered if
the value is 1, or forgotten if the value is 0. In addition, they allow a weighted
memory, allowing partial remembrance of the elements ofht , for values between 0
and 1.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 25 / 98

Di�erentiable Gates

As an example, consider a hidden state vector

ht =
�
� 0:94 1:05 0:39 0:97 0:90

� T

First consider a logical gate vector

g =
�
0 1 1 0 1

� T

Their element-wise product gives

g � ht =
�
0 1:05 0:39 0 0:90

� T

We can see that the �rst and fourth elements have been �forgotten.�
Now consider a di�erentiable gate vector

g =
�
0:1 0 1 0:9 0:5

� T

The element-wise product ofg and ht gives

g � ht =
�
� 0:094 0 0:39 0:873 0:45

� T

Now, only a fraction speci�ed by an element ofg is retained as a memory after
the element-wise product.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 26 / 98

Gated RNNs: Long Short-Term Memory Networks

To see how gated neurons work, we consider an RNN with aforget gate. In a
regular RNN, assuming tanh activation, the hidden state vector is updated
unconditionally, as follows:

ht = tanh
�
W T

i x t + W T
h ht � 1 + bh

�

Instead of directly updatinght , we will employ the forget gate neurons to control
how much of the previous hidden state vector to forget when computing its new
value, and also to control how to update it in light of the new input x t .
Given inputx t and previous hidden stateht � 1, we �rst compute a candidate
update vectoru t , as follows:

u t = tanh
�
W T

u x t + W T
huht � 1 + bu

�
(5)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 27 / 98

Gated RNNs: Long Short-Term Memory Networks

Using the forget gate, we can compute the new hidden state vector as follows:

ht = � t � ht � 1 + (1� � t) � u t (6)

We can see that the new hidden state vector retains a fractionof the previous
hidden state values, and a (complementary) fraction of the candidate update
values. Observe that if� t = 0, i.e., if we want to entirely forget the previous
hidden state, then 1� � t = 1, which means that the hidden state will be updated
completely at each time step just like in a regular RNN.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 28 / 98

RNN with a forget gate� t
Recurrent connections shown in gray, forget gate shown doublelined. � denotes element-wise
product.

o t

ht

� t � � u t

x t

W o;bo

1� � t

W � ;b� W u;bu

� 1
W h�

� 1
W hu

� 1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 29 / 98

Gated RNNs: Long Short-Term Memory Networks

A forget gate vector� t is a layer that depends on the previous hidden state layer
ht � 1 and the current input layerx t ; these connections are fully connected, and are
speci�ed by the corresponding weight matricesW h� and W � , and the bias vector
b� . On the other hand, the output of the forget gate layer� t needs to modify the
previous hidden state layerht � 1, and therefore, both� t and ht � 1 feed into what
is essentially a newelement-wiseproduct layer, denoted by� .

Finally, the output of this element-wise product layer is used as input to the new
hidden layerht that also takes input from another element-wise gate that
computes the output from the candidate update vectoru t and the complemented
forget gate, 1� � t .

Thus, unlike regular layers that are fully connected and have a weight matrix and
bias vector between the layers, the connections between� t and ht via the
element-wise layer are all one-to-one, and the weights are �xed at the value 1 with
bias 0. Likewise the connections betweenu t and ht via the other element-wise
layer are also one-to-one, with weights �xed at 1 and bias at 0.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 30 / 98

Gated RNNs
Example

Let m = 5. Assume that the previous hidden state vector and the candidate
update vector are given as follows:

ht � 1 =
�
� 0:94 1:05 0:39 0:97 0:9

� T

u t =
�
0:5 2:5 � 1:0 � 0:5 0:8

� T

Let the forget gate and its complement be given as follows:

� t =
�
0:9 1 0 0:1 0:5

� T

1� � t =
�
0:1 0 1 0:9 0:5

� T

The new hidden state vector is then computed as the weighted sum of the
previous hidden state vector and the candidate update vector:

ht = � t � ht � 1 + (1� � t) � u t

=
�
0:9 1 0 0:1 0:5

� T
�

�
� 0:94 1:05 0:39 0:97 0:9

� T
+

�
0:1 0 1 0:9 0:5

� T
�

�
0:5 2:5 � 1:0 � 0:5 0:8

� T

=
�
� 0:846 1:05 0 0:097 0:45

� T
+

�
0:05 0 � 1:0 � 0:45 0:40

� T

=
�
� 0:796 1:05 � 1:0 � 0:353 0:85

� TZaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 31 / 98

Gated RNNs: Long Short-Term Memory Networks
Computing Net Gradients

The net gradients at the outputs are computed by consideringthe partial
derivatives of the activation function (@f o

t) and the error function (@Ex t):

� o
t = @f o

t � @Ex t

For the other layers, we can reverse all the arrows to determine the dependencies
between the layers. The net gradient� u

ti at update layer neuroni at time t is
given as

� u
ti =

@Ex

@net u
ti

=
@Ex

@net h
ti

�
@net h

ti

@uti
�

@uti

@net u
ti

= � h
ti � (1� � ti) �

�
1� u2

ti

�

where @net h
ti

@uti
= @

@uti
f � ti � ht � 1;i + (1� � ti) � uti g = 1� � ti , and we use the fact that

the update layer uses atanh activation function.
Across all neurons, we obtain the net gradient atu t as follows:

� u
t = � h

t � (1� � t) � (1� u t � u t)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 32 / 98

Gated RNNs: Long Short-Term Memory Networks

The net gradient� �
ti at forget gate neuroni at time t is given as

� �
ti =

@Ex

@net �
ti

=
@Ex

@net h
ti

�
@net h

ti

@�ti
�

@�ti
@net �

ti

= � h
ti � (ht � 1;i � uti) � � ti (1� � ti)

Across all neurons, we obtain the net gradient at� t as follows:

� �
t = � h

t � (ht � 1 � u t) � � t � (1� � t)

Considering all the layers, including the output, forget, update and element-wise
layers, the complete net gradient vector at the hidden layerat time t is given as:

� h
t = W o � o

t + W h� � �
t + 1 + W hu� u

t + 1 +
�
� h

t + 1 � � t + 1

�

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 33 / 98

RNN with a forget gate unfolded in time
Recurrent connectionsin gray

o1 o2

h0 h1 h2

� �

� �

� 1 u1 � 2 u2

x1 x2

W o;bo W o;bo

1� � 1 1� � 2

W � ;b� W u;bu W � ;b� W u;bu

W h� W hu W h� W hu

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 34 / 98

Long Short-Term Memory (LSTM) Networks

LSTMs use di�erentiable gate vectors to control the hidden state vector ht , as
well as another vectorc t 2 Rm called theinternal memoryvector.

In particular, LSTMs utilize threegate vectors: an input gate vector� t 2 Rm, a
forget gate vector� t 2 Rm, and an output gate vector! t 2 Rm.

Like a regular RNN, an LSTM also maintains a hidden state vector for each time
step. However, the content of the hidden vector is selectively copied from the
internal memory vector via the output gate, with the internal memory being
updated via the input gate and parts of it forgotten via the forget gate.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 35 / 98

LSTM neural network
Recurrent connections shown in gray, gate layers shown doublelined.

o t

ht

�

� c t

�

� t � t u t ! t

x t

W o;bo

tanh

W � ;b� W � ;b� W ! ;b!

W u;bu

� 1

W h�

� 1

W h�

� 1

W hu

� 1

W h!

� 1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 36 / 98

LSTM neural network

At each time stept , the three gate vectors are updated as follows:

� t = �
�
W T

� x t + W T
h� ht � 1 + b�

�

� t = �
�
W T

� x t + W T
h� ht � 1 + b�

�

! t = �
�
W T

! x t + W T
h! ht � 1 + b!

�
(7)

Each of the gate vectors conceptually plays a di�erent role in an LSTM network.
The input gate vector� t controls how much of the input vector, via the candidate
update vectoru t , is allowed to in�uence the memory vectorc t .

The forget gate vector� t controls how much of the previous memory vector to
forget, and �nally the output gate vector! t controls how much of the memory
state is retained for the hidden state.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 37 / 98

LSTM neural network

Given the current inputx t and the previous hidden stateht � 1, an LSTM �rst
computes a candidate update vectoru t after applying thetanh activation:

u t = tanh
�
W T

u x t + W T
huht � 1 + bu

�
(8)

It then applies the di�erent gates to compute the internal memory and hidden
state vectors:

c t = � t � u t + � t � c t � 1

ht = ! t � tanh(c t)
(9)

The memory vectorc t at time t depends on the current update vectoru t and the
previous memoryc t � 1. However, the input gate� t controls the extent to which
u t in�uencesc t , and the forget gate� t controls how much of the previous
memory is forgotten.

On the other hand, the hidden stateht depends on a tanh activated internal
memory vectorc t , but the output gate! t controls how much of the internal
memory is re�ected in the hidden state.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 38 / 98

LSTM neural network

Finally, the output of the networko t is obtained by applying the output activation
function f o to an a�ne combination of the hidden state neuron values:

o t = f o(W T
o ht + bo)

LSTMs can typically handle long sequences since the net gradients for the internal
memory states do not vanish over long time steps. This is because, by design, the
memory statec t � 1 at time t � 1 is linked to the memory statec t at time t via
implicit weights �xed at 1 and biases �xed at 0, with linear activation. This allows
the error to �ow across time steps without vanishing or exploding.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 39 / 98

LSTM neural network unfolded in time
Recurrent connections in gray

o1 o2

h0 h1 h2

� �

c0 � c1 � c2

� �

� 1 � 1 u1 ! 1 � 2 � 2 u2 ! 2

x1 x2

W o;bo

tanh

W o;bo

tanh

W � ;b� W � ;b� W ! ;b!W u;bu
W � ;b� W � ;b� W ! ;b!W u;bu

W h� W h� W hu W h! W h� W h� W hu W h!

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 40 / 98

Training LSTMs

During backpropagation the net gradient vector at the outputlayer at timet is
computed by considering the partial derivatives of the activation function,@f o

t ,
and the error function,@Ex t , as follows:

� o
t = @f o

t � @Ex t

where we assume that the output neurons are independent. Thenet gradient
vector � c

t at c t is therefore given as:

� c
t = � h

t � ! t � (1� c t � c t) + � c
t + 1 � � t + 1

Across all forget gate neurons, the net gradient vector is therefore given as

� �
t = � c

t � c t � 1 � (1� � t) � � t

The input gate also has only one incoming edge in backpropagation, from c t , via
the element-wise multiplication� t � u t , with sigmoid activation. In a similar
manner, as outlined above for� �

t , the net gradient� �
t at the input gate� t is

given as:

� �
t = � c

t � u t � (1� � t) � � t

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 41 / 98

Training LSTMs

The same reasoning applies to the update candidateu t , which also has an
incoming edge fromc t via � t � u t and tanh activation, so the net gradient vector
� u

t at the update layer is

� u
t = � c

t � � t � (1� u t � u t)

Likewise, in backpropagation, there is one incoming connection to the output gate
from ht via ! t � tanh(c t) with sigmoid activation, therefore

� !
t = � h

t � tanh(c t) � (1� ! t) � ! t

Finally, to compute the net gradients at the hidden layer, note that gradients �ow
back to ht from the following layers:u t + 1; � t + 1; � t + 1; ! t + 1 and o t . Therefore,
the net gradient vector at the hidden state vector� h

t is given as

� h
t = W o � o

t + W h� � �
t + 1 + W h� � �

t + 1 + W h! � !
t + 1 + W hu� u

t + 1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 42 / 98

Embedded Reber grammar automata

s0 s1

t0 t1

t2

t3

t4

t5

t6 t7

p0 p1

p2

p3

p4

p5

p6 p7

e0 e1
B

T

P

B

T

P

X

S

V

T

S

X

V

P
E

B

T

P

X

S

V

T

S

X

V

P
E

T

P

E

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 43 / 98

LSTM
Example

We use an LSTM to learn the embedded Reber grammar, which is generated
according to the automata.This automata has two copies of the Reber automata

From the states1, the top automata is reached by following the edge labeledT,
whereas the bottom automata is reached via the edge labeledP. The states of the
top automata are labeled ast0; t1; � � � ; t7, whereas the states of the bottom
automata are labeled asp0;p1; � � � ;p7. Finally, note that the statee0 can be
reached from either the top or the bottom automata by following the edges
labeledT and P, respectively.

The �rst symbol is alwaysB and the last symbol is alwaysE. However, the
important point is that the second symbol is always the same as the second last
symbol, and thus any sequence learning model has to learn this long range
dependency. For example, the following is a valid embedded Reber sequence:
SX = hB;T;B;T;S;S;X;X;T;V;V;E;T;Ei .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 44 / 98

LSTM
Example

The task of the LSTM is to learn to predict the next symbol for each of the
positions in a given embedded Reber sequence. For training,we generaten = 400
embedded Reber sequences with a minimum length of 40, and convert them into
training pairs(X ;Y) using the binary encoding.The maximum sequence length is
� = 64.

Given the long range dependency, we used an LSTM withm = 20 hidden neurons
(smaller values ofm either need more epochs to learn, or have trouble learning the
grammar). The input and output layer sizes are determined bythe dimensionality
of encoding, namelyd = 7 andp = 7. We use sigmoid activation at the output
layer, treating each neuron as independent.

Finally, we use the binary cross entropy error function. TheLSTM is trained for
r = 10000 epochs (using step size� = 1 and batch size 400); it learns the training
data perfectly, making no errors in the prediction of the set of possible next
symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 45 / 98

LSTM
Example

We test the LSTM model on 100 previously unseen embedded Reber sequences
(with minimum length 40, as before). The trained LSTM makes no errors on the
test sequences. In particular, it is able to learn the long range dependency between
the second symbol and the second last symbol, which must always match.

The embedded Reber grammar was chosen since an RNN has trouble learning the
long range dependency. Using an RNN withm = 60 hidden neurons, using
r = 25000 epochs with a step size of� = 1, the RNN can perfectly learn the
training sequences. That is, it makes no errors on any of the 400 training
sequences.

However, on the test data, this RNN makes a mistake in 40 out ofthe 100 test
sequences. In fact, in each of these test sequences it makes exactly one error; it
fails to correctly predict the second last symbol.

These results suggest that while the RNN is able to �memorize� the long range
dependency in the training data, it is not able to generalizecompletely on unseen
test sequences.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 46 / 98

Convolutional Neural Networks

A convolutional neural network (CNN) is essentially alocalizedand sparse
feedforward MLP that is designed to exploit spatial and/or temporal structure in
the input data.

In a regular MLP all of the neurons in layerl are connected to all of the neurons
in layer l + 1. In contrast, a CNN connects a contiguous or adjacent subsetof
neurons in layerl to a single neuron in the next layerl + 1.

Di�erent sliding windows comprising contiguous subsets ofneurons in layerl
connect to di�erent neurons in layerl + 1.

Furthermore, all of these sliding windows useparameter sharing, that is, the same
set of weights, called a�lter , is used for all sliding windows. Finally, di�erent
�lters are used to automatically extract features from layer l for use by layerl + 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 47 / 98

1D Convolution

Given a vectora 2 Rk , de�ne the summation operator as one that adds all the
elements of the vector. That is,

sum(a) =
kX

i= 1

ai

A 1D convolutionbetweenx and w, denoted by the asterisk symbol� , is de�ned
as

x � w =
�

sum
�
xk (1) � w

�
� � � sum

�
xk (n � k + 1) � w

� � T

where� is the element-wise product, so that

sum
�
xk (i) � w

�
=

kX

j = 1

xi+ j � 1 � wj (10)

for i = 1;2; � � � ;n � k + 1. We can see that the convolution ofx 2 Rn and w 2 Rk

results in a vector of lengthn � k + 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 48 / 98

1D Convolution

1 1

3 � 0 = -1

-1 2

2

3

1

-2

wx

1

3 1 -1

-1 � 0 = 7

2 2

3

1

-2

w

x

1

3 -1

-1 1 7

2 � 0 = 5

3 2

1

-2

w

x

1

3 -1

-1 7

2 1 5

3 � 0 = 4

1 2

-2

w

x

1

3 -1

-1 7

2 5

3 1 4

1 � 0 = -1

-2 2

w

x

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 49 / 98

1D Convolution
Example

Figure shows a vectorx with n = 7 and a �lter w = (1;0;2)T with window size
k = 3. The �rst window of x of size 3 isx3(1) = (1;3; � 1)T . Therefore, we have

sum(x3(1) � w) = sum
�
(1;3; � 1)T � (1;0;2)T

�
= sum

�
(1;0; � 2)T

�
= � 1

The convolution steps for di�erent sliding windows ofx with the �lter w are
shown in the �gure. The convolutionx � w has sizen � k + 1 = 7� 3+ 1 = 5, and
is given as

x � w = (� 1;7;5;4; � 1)T

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 50 / 98

2D Convolution

Given ak � k matrix A 2 Rk � k , de�ne the summation operator as one that adds
all the elements of the matrix. That is,

sum(A) =
kX

i= 1

kX

j = 1

ai ;j

The 2D convolutionof X and W , denotedX � W , is de�ned as:

X � W =

0

B
B
@

sum
�
X k (1;1) � W

�
� � � sum

�
X k (1;n � k + 1) � W

�

... � � �
...

sum
�
X k (n � k + 1;1) � W

�
� � � sum

�
X k (n � k + 1;n � k + 1) � W

�

1

C
C
A

where� is the element-wise product ofX k (i ; j) and W , so that

sum
�
X k (i ; j) � W

�
=

kX

a= 1

kX

b= 1

xi+ a� 1;j + b� 1 � wa;b (11)

for i ; j = 1;2; � � � ;n � k + 1. The convolution ofX 2 Rn� n and W 2 Rk � k results
in a (n � k + 1) � (n � k + 1) matrix.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 51 / 98

2D Convolution

1 2 2 1
3 1 4 2 1 0 2
2 1 3 4 0 1
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6
2 1 3 4 0 1
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4 4
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4 4 8
1 2 3 1

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4 4 8
1 2 3 1 4

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4 4 8
1 2 3 1 4 4

W
X

� =

1 2 2 1
3 1 4 2 1 0 2 6 4
2 1 3 4 0 1 4 4 8
1 2 3 1 4 4 4

W
X

� =

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 52 / 98

2D Convolution
Example

Figure shows a matrixX with n = 4 and a �lter W with window sizek = 2. The
convolution of the �rst window ofX , namelyX 2(1;1), with W is given as:

sum
�
X 2(1;1) � W

�
= sum

��
1 2
3 1

�
�

�
1 0
0 1

��
= sum

��
1 0
0 1

��
= 2

The convolution steps for di�erent 2� 2 sliding windows ofX with the �lter W
are shown in the �gure. The convolutionX � W has size 3� 3, since
n � k + 1 = 4� 2+ 1 = 3, and is given as

X � W =

0

@
2 6 4
4 4 8
4 4 4

1

A

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 53 / 98

3D Convolution

Let W be ak � k � r tensor of weights, called a3D �lter , with k � n and r � m.
Let X k (i ; j ;q) denote thek � k � r subtensor ofX starting at row i , columnj and
channelq, as illustrated in the �gure, with 1� i ; j � n � k + 1, and
1 � q � m � r + 1.
Given ak � k � r tensorA 2 Rk � k � r , de�ne the summation operator as one that
adds all the elements of the tensor. That is,

sum(A) =
kX

i= 1

kX

j = 1

rX

q= 1

ai ;j ;q

whereai ;j ;q is the element ofA at row i , columnj , and channelq. The 3D
convolutionof X and W , denotedX � W , is de�ned as:

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 54 / 98

3D Convolution

X � W =

0

B
B
@

sum
�
X k (1;1;1) � W

�
� � � sum

�
X k (1;n � k + 1;1) � W

�

sum
�
X k (2;1;1) � W

�
� � � sum

�
X k (2;n � k + 1;1) � W

�

... � � �
...

sum
�
X k (n � k + 1;1;1) � W

�
� � � sum

�
X k (n � k + 1;n � k + 1;1) � W

�
0

B
B
@

sum
�
X k (1;1;2) � W

�
� � � sum

�
X k (1;n � k + 1;2) � W

�

sum
�
X k (2;1;2) � W

�
� � � sum

�
X k (2;n � k + 1;2) � W

�

... � � �
...

sum
�
X k (n � k + 1;1;2) � W

�
� � � sum

�
X k (n � k + 1;n � k + 1;2) � W

�

...
...

...0

B
B
@

sum
�
X k (1;1;m � r + 1) � W

�
� � � sum

�
X k (1;n � k + 1;m � r + 1) � W

�

sum
�
X k (2;1;m � r + 1) � W

�
� � � sum

�
X k (2;n � k + 1;m � r + 1) � W

�

... � � �
...

sum
�
X k (n � k + 1;1;m � r + 1) � W

�
� � � sum

�
X k (n � k + 1;n � k + 1;m � r + 1) � W

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 55 / 98

3D Convolution

where� is the element-wise product ofX k (i ; j ;q) and W , so that

sum
�
X k (i ; j ;q) � W

�
=

kX

a= 1

kX

b= 1

rX

c= 1

xi+ a� 1;j + b� 1;q+ c� 1 � wa;b;c (12)

for i ; j = 1;2; � � � ;n � k + 1 andq = 1;2; � � � ;m � r + 1. We can see that the
convolution ofX 2 Rn� n� m and W 2 Rk � k � r results in a
(n � k + 1) � (n � k + 1) � (m � r + 1) tensor.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 56 / 98

3D subtensorX k(i ; j ;q)
k � k � r subtensor of X starting at row i , column j , and channel q.

xi ;j ;q+ r � 1 xi ;j + 1;q+ r � 1 � � � xi ;j + k� 1;q+ r � 1

xi + 1;j ;q+ r � 1 xi + 1;j + 1;q+ r � 1 � � � xi + 1;j + k� 1;q+ r � 1

...
... � � � ...

xi + k� 1;j ;q+ r � 1 xi + k� 1;j + 1;q+ r � 1 � � � xi + k� 1;j + k� 1;q+ r � 1xi ;j ;q+ 1 xi ;j + 1;q+ 1 � � � xi ;j + k� 1;q+ 1

xi + 1;j ;q+ 1 xi + 1;j + 1;q+ 1 � � � xi + 1;j + k� 1;q+ 1

...
... � � � ...

xi + k� 1;j ;q+ 1 xi + k� 1;j + 1;q+ 1 � � � xi + k� 1;j + k� 1;q+ 1xi ;j ;q xi ;j + 1;q � � � xi ;j + k� 1;q

xi + 1;j ;q xi + 1;j + 1;q � � � xi + 1;j + k� 1;q

...
... � � � ...

xi + k� 1;j ;q xi + k� 1;j + 1;q � � � xi + k� 1;j + k� 1;q

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 57 / 98

3D Convolution

1 � 2 4

2 1 � 2

1 3 � 1

2 1 3

3 � 1 1

1 1 � 2

1 � 1 3

2 1 4

3 1 2

0 1

1 0

1 0

0 1

1 1

2 0

5

W

X

�
=

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 58 / 98

3D Convolution

1 � 2 4

2 1 � 2

1 3 � 1

2 1 3

3 � 1 1

1 1 � 2

1 � 1 3

2 1 4

3 1 2

0 1

1 0

1 0

0 1

1 1

2 0

5 11

W

X

�
=

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 59 / 98

3D Convolution

1 � 2 4

2 1 � 2

1 3 � 1

2 1 3

3 � 1 1

1 1 � 2

1 � 1 3

2 1 4

3 1 2

0 1

1 0

1 0

0 1

1 1

2 0

5 11

15

W

X

�
=

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 60 / 98

3D Convolution

1 � 2 4

2 1 � 2

1 3 � 1

2 1 3

3 � 1 1

1 1 � 2

1 � 1 3

2 1 4

3 1 2

0 1

1 0

1 0

0 1

1 1

2 0

5 11

15 5

W

X

�
=

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 61 / 98

3D Convolution
Example

Figures show a 3� 3� 3 tensorX with n = 3 andm = 3, and a 2� 2� 3 �lter W
with window sizek = 2 andr = 3. The convolution of the �rst window ofX ,
namelyX 2(1;1), with W is given as

sum
�
X 2(1;1) � W

�
= sum

��
1 � 1 2 1 1 � 2
2 1 3 � 1 2 1

�
�

�
1 1 1 0 0 1
2 0 0 1 1 0

��

= sum
��

1 � 1 2 0 0 � 2
4 0 0 � 1 2 0

��
= 5

where we stack the di�erent channels horizontally. The convolution steps for
di�erent 2 � 2� 3 sliding windows ofX with the �lter W are shown in �gure.
The convolutionX � W has size 2� 2, sincen � k + 1 = 3� 2+ 1 = 2 and
r = m = 3; it is given as

X � W =
�

5 11
15 5

�

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 62 / 98

Filter Bias

Let W be ak � k � ml 3D �lter. Recall that when we convolveZ l and W , we
get a (nl � k + 1) � (nl � k + 1) matrix at layerl + 1. However, so far, we have
ignored the role of the bias term in the convolution. Letb 2 R be a scalar bias
value forW , and let Z l

k (i ; j) denote thek � k � ml subtensor ofZ l at position
(i ; j). Then, the net signal at neuronzl+ 1

i ;j in layer l + 1 is given as

net l+ 1
i ;j = sum

�
Z l

k (i ; j) � W
�

+ b

and the value of the neuronzl+ 1
i ;j is obtained by applying some activation function

f to the net signal

zl+ 1
i ;j = f

�
sum

�
Z l

k (i ; j) � W
�

+ b
�

The activation function can be any of the ones typically usedin neural networks,
for example, identity, sigmoid, tanh, ReLU and so on.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 63 / 98

Multiple 3D Filters

We can observe that one 3D �lterW with a corresponding bias termb results in
a (nl � k + 1) � (nl � k + 1) matrix of neurons in layerl + 1. Therefore, if we
desireml+ 1 channels in layerl + 1, then we needml+ 1 di�erent k � k � ml �lters
W q with a corresponding bias termbq, to obtain the
(nl � k + 1) � (nl � k + 1) � ml+ 1 tensor of neuron values at layerl + 1, given as

Z l+ 1 =
�

zl+ 1
i ;j ;q = f

�
sum

�
Z l

k (i ; j) � W q
�

+ bq

� �

i ;j = 1;2;:::; nl � k+ 1 and q= 1;2;:::; ml + 1

In summary, a convolution layer takes as input thenl � nl � ml tensorZ l of
neurons from layerl , and then computes thenl+ 1 � nl+ 1 � ml+ 1 tensorZ l+ 1 of
neurons for the next layerl + 1 via the convolution ofZ l with a set ofml+ 1

di�erent 3D �lters of size k � k � ml , followed by adding the bias and applying
some non-linear activation functionf . Note that each 3D �lter applied toZ l

results in a new channel in layerl + 1. Therefore,ml+ 1 �lters are used to yield
ml+ 1 channels at layerl + 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 64 / 98

Multiple 3D �lters.

3 1 4 1
1 1 1 2
3 0 1 2
2 0 1 0

1 2 2 1
3 1 4 2
2 1 3 4
1 2 3 1 1 0

0 1 1 0
0 1

6 8 10
5 6 11
7 5 5

=

�

0 1
1 0 0 1

1 0

7 8 7
7 6 8
4 6 10

=�

Z l+ 1

Z l

W 1

W 2

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 65 / 98

Multiple 3D Filters

Figure shows how applying di�erent �lters yield the channels for the next layer.

It shows a 4� 4� 2 tensorZ l with n = 4 andm = 2. It also shows two di�erent
2� 2� 2 �lters W 1 and W 2 with k = 2 andr = 2.

Sincer = m = 2, the convolution ofZ l and W i (for i = 1;2) results in a 3� 3
matrix sincen � k + 1 = 4� 2+ 1 = 3.

However,W 1 yields one channel andW 2 yields a second channel, so that the
tensor for the next layerZ l+ 1 has size 3� 3� 2, with two channels (one per �lter).

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 66 / 98

Padding and Striding

One of the issues with the convolution operation is that the size of the tensors will
necessarily decrease in each successive CNN layer.

If layer l has sizenl � nl � ml , and we use �lters of sizek � k � ml , then each
channel in layerl + 1 will have size(nl � k + 1) � (nl � k + 1).

That is the number of rows and columns for each successive tensor will shrink by
k � 1 and that will limit the number of layers the CNN can have.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 67 / 98

Padding

To get around this limitation, a simple solution is to pad each tensor along both
the rows and columns in each channel by some default value, typically zero.

For uniformity, we always pad by adding the same number of rows at the top and
at the bottom, and likewise the same number of columns on the left and on the
right.

With paddingp, the implicit size of layerl tensor is then
(nl + 2p) � (nl + 2p) � ml . Assume that each �lter is of sizek � k � ml , and
assume there areml+ 1 �lters, then the size of the layerl + 1 tensor will be
(nl + 2p � k + 1) � (nl + 2p � k + 1) � ml+ 1. Since we want to preserve the size of
the resulting tensor, we need to have

nl + 2p � k + 1 � nl ;which implies;p =
�

k � 1
2

�

With padding, we can have arbitrarily deep convolutional layers in a CNN.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 68 / 98

Padding 2D Convolution
p = 0 e p = 1

1 2 2 1 1

3 1 4 2 1 1 0 0 7 11 9

2 1 3 4 3 0 1 1 9 11 12

1 2 3 1 1 0 1 0 8 8 7

4 1 3 2 1

W

Z l

Z l+ 1

� =

0 0 0 0 0 0 0

0 1 2 2 1 1 0 6 5 7 4 2

0 3 1 4 2 1 0 1 0 0 6 7 11 9 5

0 2 1 3 4 3 0 0 1 1 4 9 11 12 6

0 1 2 3 1 1 0 0 1 0 7 8 8 7 6

0 4 1 3 2 1 0 5 5 7 6 2

0 0 0 0 0 0 0

W

Z l

Z l+ 1

� =

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 69 / 98

Padding
Example

Figure shows a 2D convolution without and with padding. It starts with a
convolution of a 5� 5 matrix Z l (n = 5) with a 3� 3 �lter W (k = 3), which
results in a 3� 3 matrix sincen � k + 1 = 5� 3+ 1 = 3. Thus, the size of the next
layerZ l+ 1 has decreased.

On the other hand, zero paddingZ l usingp = 1 results in a 7� 7 matrix as shown
in the �gure Sincep = 1, we have an extra row of zeros on the top and bottom,
and an extra column of zeros on the left and right. The convolution of the
zero-paddedX with W now results in a 5� 5 matrix Z l+ 1 (since 7� 3+ 1 = 5),
which preserves the size.

If we wanted to apply another convolution layer, we could zero pad the resulting
matrix Z l+ 1 with p = 1, which would again yield a 5� 5 matrix for the next layer,
using a 3� 3 �lter. This way, we can chain together as many convolution layers as
desired, without decrease in the size of the layers.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 70 / 98

Striding

Striding is often used to sparsify the number of sliding windows used in the
convolutions. That is, instead of considering all possiblewindows we increment
the index along both rows and columns by an integer values � 1 called thestride.
A 3D convolution ofZ l of sizenl � nl � ml with a �lter W of sizek � k � ml ,
using strides, is given as:

Z l � W =

0

B
B
B
B
@

sum
�
Z l

k (1;1) � W
�

sum
�
Z l

k (1;1+ s) � W
�

� � � sum
�
Z l

k (1;1+ t � s) � W
sum

�
Z l

k (1+ s;1) � W
�

sum
�
Z l

k (1+ s;1+ s) � W
�

� � � sum
�
Z l

k (1+ s;1+ t � s) �
...

... � � �
...

sum
�
Z l

k (1+ t � s;1) � W
�

sum
�
Z l

k (1+ t � s;1+ s) � W
�

� � � sum
�
Z l

k (1+ t � s;1+ t � s) �

wheret =
j

nl � k
s

k
. We can observe that using strides, the convolution of

Z l 2 Rnl � nl � ml with W 2 Rk � k � ml results in a(t + 1) � (t + 1) matrix.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 71 / 98

Striding
s = 2

1 2 2 1 1

3 1 4 2 1 1 0 0 7

2 1 3 4 3 0 1 1

1 2 3 1 1 0 1 0

4 1 3 2 1

W

Z l

Z l+ 1

� =

1 2 2 1 1

3 1 4 2 1 1 0 0 7 9

2 1 3 4 3 0 1 1

1 2 3 1 1 0 1 0

4 1 3 2 1

W

Z l

Z l+ 1

� =

1 2 2 1 1

3 1 4 2 1 1 0 0 7 9

2 1 3 4 3 0 1 1 8

1 2 3 1 1 0 1 0

4 1 3 2 1

W

Z l

Z l+ 1

� =

1 2 2 1 1

3 1 4 2 1 1 0 0 7 9

2 1 3 4 3 0 1 1 8 7

1 2 3 1 1 0 1 0

4 1 3 2 1

W

Z l

Z l+ 1

� =

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 72 / 98

Striding
Example

Figure shows 2D convolution using strides = 2 on a 5� 5 matrix Z l (nl = 5) with
a �lter W of size 3� 3 (k = 3). Instead of the default stride of one, which would
result in a 3� 3 matrix, we get a(t + 1) � (t + 1) = 2� 2 matrix Z l+ 1, since

t =
j nl � k

s

k
=

j 5� 3
2

k
= 1

We can see that the next window index increases bys along the rows and
columns. For example, the �rst window isZ l

3(1;1) and thus the second window is
Z l

3(1;1+ s) = Z l
3(1;3). Next, we move down by a stride ofs = 2, so that the third

window isZ l
3(1+ s;1) = Z l

3(3;1), and the �nal window isZ l
3(3;1+ s) = Z l

3(3;3)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 73 / 98

Pooling

CNNs also use other types of aggregation functions in addition to summation,
such as average and maximum.Avg-Pooling If we replace the summation with
the average value over the element-wise product ofZ l

k (i ; j ;q) and W , we get

avg
�
Z l

k (i ; j ;q) � W
�

= avga= 1;2;��� ;k
b= 1;2;��� ;k
c= 1;2;��� ;r

�
zl

i+ a� 1;j + b� 1;q+ c� 1 � wa;b;c
	

=
1

k2 � r
� sum

�
Z l

k (i ; j ;q) � W
�

Max-Pooling If we replace the summation with the maximum value over the
element-wise product ofZ l

k (i ; j ;q) and W , we get

max
�
Z l

k (i ; j ;q) � W
�

= max
a= 1;2;��� ;k
b= 1;2;��� ;k
c= 1;2;��� ;r

�
zl

i+ a� 1;j + b� 1;q+ c� 1 � wa;b;c
	

(13)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 74 / 98

Max-Pooling in CNNs

Typically, max-pooling is used more often than avg-pooling. Also, for pooling it is
very common to set the stride equal to the �lter size (s = k), so that the
aggregation function is applied over disjointk � k windows in each channel inZ l .

More importantly, in pooling, the �lterW is by default taken to be ak � k � 1
tensor all of whose weights are �xed as 1, so thatW = 1k � k � 1. In other words,
the �lter weights are �xed at 1 and are not updated during backpropagation.
Further, the �lter uses a �xed zero bias (that is,b = 0).

Finally, note that pooling implicitly uses an identity activation function. As such,
the convolution ofZ l 2 Rnl � nl � ml with W 2 Rk � k � 1, using strides = k, results in
a tensorZ l+ 1 of size

� nl
s

�
�

� nl
s

�
� ml .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 75 / 98

Max-pooling
Stride: s = 2

1 2 2 1

3 1 4 2 1 1 3

2 1 3 4 1 1

1 2 3 1

W

Z l

Z l+ 1

� =

1 2 2 1

3 1 4 2 1 1 3 4

2 1 3 4 1 1

1 2 3 1

W

Z l

Z l+ 1

� =

1 2 2 1

3 1 4 2 1 1 3 4

2 1 3 4 1 1 2

1 2 3 1

W

Z l

Z l+ 1

� =

1 2 2 1

3 1 4 2 1 1 3 4

2 1 3 4 1 1 2 4

1 2 3 1

W

Z l

Z l+ 1

� =

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 76 / 98

Max-Pooling
Example

Figure shows max-pooling on a 4� 4 matrix Z l (nl = 4), using window sizek = 2
and strides = 2 that equals the window size. The resulting layerZ l+ 1 thus has
size 2� 2, sincebnl

s c = b4
2 c = 2. We can see that the �lterW has �xed weights

equal to 1.
The convolution of the �rst window ofZ l , namelyZ l

2(1;1), with W is given as

max
�
Z l

2(1;1) � W
�

= max
��

1 2
3 1

�
�

�
1 1
1 1

��
= max

��
1 2
3 1

��
= 3

The other convolution steps are shown in the Figure.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 77 / 98

Deep CNNs

In a typical CNN architecture, one alternates between a convolution layer (with
summation as the aggregation function, and learnable �lterweights and bias
term) and a pooling layer (say, with max-pooling and �xed �lter of ones).

The intuition is that, whereas the convolution layer learnsthe �lters to extract
informative features, the pooling layer applies an aggregation function likemax (or
avg) to extract the most important neuron value (or the mean of the neuron
values) within each sliding window, in each of the channels.

Starting from the input layer, a deep CNN is comprised of multiple, typically
alternating, convolution and pooling layers, followed by one or more fully
connected layers, and then the �nal output layer.

For each convolution and pooling layer we need to choose the window sizek as
well as the stride values, and whether to use paddingp or not. We also have to
choose the non-linear activation functions for the convolution layers, and also the
number of layers to consider.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 78 / 98

Training: Convolutional neural network

To see how to train CNNs we will consider a network with a singleconvolution
layer and a max-pooling layer, followed by a fully connectedlayer.For simplicity,
we assume that there is only one channel for the inputX , and further, we use
only one �lter.

input convolution max-pooling fully connected output
l = 0 l = 1 l = 2 l = 3 l = 4

X

n0 � n0

Z 1

� 1

n1 � n1

Z 2

� 2

n2 � n2
k2 = s2

z3

� 3

n3

o

� o

p

W 0;b0 W 2;b2 W 3;b3

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 79 / 98

Deep CNNs
Feed-forward Phase

Let D = f X i ;y i g
n
i= 1 denote the training data, comprisingn tensors

X i 2 Rn0 � n0 � m0 (with m0 = 1 for ease of explanation) and the corresponding
response vectory i 2 Rp. Given a training pair(X ;y) 2 D , in the feed-forward
phase, the predicted outputo is given via the following equations:

Z 1 = f 1�
(X � W 0) + b0

�

Z 2 = Z 1 � s2 ;max 1k2 � k2

z3 = f 3 �
W T

2 z2 + b2
�

o = f o
�
W T

o z3 + bo
�

where� s2 ;max denotes max-pooling with strides2.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 80 / 98

Deep CNNs
Backpropagation Phase

Let � 1, � 2, and � 3 denote the net gradient vectors at layersl = 1;2;3,
respectively, and let� o denote the net gradient vector at the output layer.

The output net gradient vector is obtained in the regular manner by computing the
partial derivatives of the loss function (@EX) and the activation function (@f o):

� o = @f o � @EX

assuming that the output neurons are independent.

Since layerl = 3 is fully connected to the output layer, and likewise the
max-pooling layerl = 2 is fully connected toZ 3, the net gradients at these layers
are computed as in a regular MLP

� 3 = @f 3 �
�
W o � � o �

� 2 = @f 2 �
�
W 2 � � 3�

= W 2 � � 3

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 81 / 98

Deep CNNs
Backpropagation Phase

Let last step follows from the fact that@f 2 = 1, since max-pooling implicitly uses
an identity activation function. Consider the net gradient� 1

ij at neuronz1
ij in layer

l = 1 wherei ; j = 1;2; � � � ;n1.

� 1
ij =

(
� 2

ab � @f 1
ij if i = i � and j = j �

0 otherwise

In other words, the net gradient at neuronz1
ij in the convolution layer is zero if

this neuron does not have the maximum value in its window.

Otherwise, if it is the maximum, the net gradient backpropagates from the
max-pooling layer to this neuron and is then multiplied by the partial derivative of
the activation function.

The n1 � n1 matrix of net gradients� 1 comprises the net graidents� 1
ij for all

i ; j = 1;2; � � � ;n1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 82 / 98

Convolutional neural network

Input

X

28� 28� 1

Convolution

Z 1

24� 24� 6
k1= 5

Max-pooling

Z 2

12� 12� 6
k2= s2= 2

Convolution

Z 3

8� 8� 16
k3= 5

Max-pooling

Z 4

4� 4� 16
k4= s4= 2

Z 5

120

Fully Connected Layers

Z 6

84

o
10

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 83 / 98

CNN
Example

Figure shows a CNN for handwritten digit recognition. This CNNis trained and
tested on the MNIST dataset, that contains 60,000 training images and 10,000
test images. Some examples of handwritten digits from MNISTare shown in
�gure.

Each input image is a 28� 28 matrix of pixel values between 0 to 255, which are
divided by 255, so that each pixel lies in the interval[0;1]. The corresponding
(true) output y i is a one-hot encoded binary vector that denotes a digit from 0to
9; the digit 0 is encoded ase1 = (1;0;0;0;0;0;0;0;0;0)T , the digit 1 as
e2 = (0;1;0;0;0;0;0;0;0;0)T , and so on.

In our CNN model, all the convolution layers use stride equal to one, and do not
use any padding, whereas all of the max-pooling layers use stride equal to the
window size. Since each input is a 28� 28 pixels image of a digit with 1 channel
(grayscale), we haven0 = 28 andm0 = 1, and therefore, the inputX = Z 0 is a
n0 � n0 � m0 = 28� 28� 1 tensor. The �rst convolution layer usesm1 = 6 �lters,
with k1 = 5 and strides1 = 1, without padding.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 84 / 98

CNN
Example

Thus, each �lter is a 5� 5� 1 tensor of weights, and across the six �lters the
resulting layerl = 1 tensorZ 1 has size 24� 24� 6, with
n1 = n0 � k1 + 1 = 28� 5+ 1 = 24 andm1 = 6. The second hidden layer is a
max-pooling layer that usesk2 = 2 with a stride ofs2 = 2.

Since max-pooling by default uses a �xed �lterW = 1k2 � k2 � 1, the resulting tensor

Z 2 has size 12� 12� 6, with n2 =
j

n1
k2

k
=

�
24
2

�
= 12, andm2 = 6. The third layer

is a convolution layer withm3 = 16 channels, with a window size ofk3 = 5 (and
stride s3 = 1), resulting in the tensorZ 3 of size 8� 8� 16, where
n3 = n2 � k3 + 1 = 12� 5+ 1 = 8.

This is followed by another max-pooling layer that usesk4 = 2 ands4 = 2, which
yields the tensorZ 4 that is 4� 4� 16, wheren4 =

j
n3
k4

k
=

�
8
2

�
= 4, andm4 = 16.

The next three layers are fully connected as in a regular MLP.All of the
4� 4� 16= 256 neurons in layerl = 4 are connected to layerl = 5, which has 120
neurons. Thus,Z 5 is simply a vector of length 120, or it can be considered a
degenerate tensor of size 120� 1� 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 85 / 98

CNN
Example

Layer l = 5 is also fully connected to layerl = 6 with 84 neurons, which is the last
hidden layer. Since there are 10 digits, the output layero comprises 10 neurons,
with softmax activation function. The convolution layersZ 1 and Z 3, and the fully
connected layersZ 5 and Z 6, all use ReLU activation.

We train the CNN model onn = 60000 training images from the MNIST dataset;
we train for 15 epochs using step size� = 0:2 and using cross-entropy error (since
there are 10 classes).

Training was done using minibatches, using batch size of 1000. After training the
CNN model, we evaluate it on the test dataset of 10,000 images.The CNN model
makes 147 errors on the test set, resulting in an error rate of1.47%.

Figure shows examples of images that are misclassi�ed by theCNN. We show the
true labely for each image and the predicted labelo (converted back from the
one-hot encoding to the digit label). We show three examplesfor each of the
labels. For example, the �rst three images on the �rst row arefor the case when
the true label isy = 0, and the next three examples are for true labely = 1, and
so on. We can see that several of the misclassi�ed images are noisy, incomplete or
erroneous, and hard to classify correctly even by a human.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 86 / 98

CNN
Example

For comparison, we also train a deep MLP with two (fully connected) hidden
layers with the same sizes as the two fully connected layers before the output layer
in the CNN shown in �gure.

Therefore, the MLP comprises the layersX , Z 5, Z 6, and o, with the input
28� 28 images viewed as a vector of sized = 784. The �rst hidden layer has size
n1 = 120, the second hidden layer has sizen2 = 84, and the output layer has size
p = 10. We use ReLU activation function for all layers, except the output, which
uses softmax. We train the MLP model for 15 epochs on the training dataset with
n = 60000 images, using step size� = 0:5. On the test dataset, the MLP made
264 errors, for an error rate of 2.64%.

Figure shows the number of errors on the test set after each epoch of training for
both the CNN and MLP model; the CNN model achieves signi�cantlybetter
accuracy than the MLP.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 87 / 98

MNIST: Incorrect predictions

0 5 10 15 20 25

0

5

10

15

20

25

y = 0;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 0;o = 8

0 5 10 15 20 25

0

5

10

15

20

25

y = 0;o = 6

0 5 10 15 20 25

0

5

10

15

20

25

y = 1;o = 8

0 5 10 15 20 25

0

5

10

15

20

25

y = 1;o = 7

0 5 10 15 20 25

0

5

10

15

20

25

y = 1;o = 5

0 5 10 15 20 25

0

5

10

15

20

25

y = 2;o = 0

0 5 10 15 20 25

0

5

10

15

20

25

y = 2;o = 8

0 5 10 15 20 25

0

5

10

15

20

25

y = 2;o = 7

0 5 10 15 20 25

0

5

10

15

20

25

y = 3;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 3;o = 5

0 5 10 15 20 25

0

5

10

15

20

25

y = 3;o = 8

0 5 10 15 20 25

0

5

10

15

20

25

y = 4;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 4;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 4;o = 7

0 5 10 15 20 25

0

5

10

15

20

25

y = 5;o = 6

0 5 10 15 20 25

0

5

10

15

20

25

y = 5;o = 3

0 5 10 15 20 25

0

5

10

15

20

25

y = 5;o = 3

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 88 / 98

MNIST: Incorrect predictions

0 5 10 15 20 25

0

5

10

15

20

25

y = 6;o = 4

0 5 10 15 20 25

0

5

10

15

20

25

y = 6;o = 5

0 5 10 15 20 25

0

5

10

15

20

25

y = 6;o = 1

0 5 10 15 20 25

0

5

10

15

20

25

y = 7;o = 3

0 5 10 15 20 25

0

5

10

15

20

25

y = 7;o = 8

0 5 10 15 20 25

0

5

10

15

20

25

y = 7;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 8;o = 6

0 5 10 15 20 25

0

5

10

15

20

25

y = 8;o = 3

0 5 10 15 20 25

0

5

10

15

20

25

y = 8;o = 2

0 5 10 15 20 25

0

5

10

15

20

25

y = 9;o = 7

0 5 10 15 20 25

0

5

10

15

20

25

y = 9;o = 4

0 5 10 15 20 25

0

5

10

15

20

25

y = 9;o = 0

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 89 / 98

MNIST: CNN versus Deep MLP
Prediction error as a function of epochs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2; 000

4; 000

6; 000

epochs

er
ro

rs
MLP
CNN

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 90 / 98

Regularization

Regularization is an approach whereby we constrain the model parameters to
reduce over�tting, by reducing the variance at the cost of increasing the bias
slightly. In general, for any learning modelM, if L(y ; ŷ) is some loss function for a
given inputx, and � denotes all the model parameters, whereŷ = M(xj�) . The
learning objective is to �nd the parameters that minimize the loss over all
instances:

min
�

J(�) =
nX

i= 1

L(y i ; ŷ i) =
nX

i= 1

L(y i ;M(x i j�))

With regularization, we add a penalty on the parameters� , to obtain the
regularized objective:

min
�

J(�) =
nX

i= 1

L(y i ; ŷ i) + � R(�) (14)

where� � 0 is the regularization constant.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 91 / 98

L2 Regularization for Deep Learning

We �rst consider the case of a multilayer perceptron with onehidden layer, and
then generalize it to multiple hidden layers. The set of all the parameters of the
model are

� = f W h;bh;W o;bog

The L2 regularized objective is therefore given as

min
�

J(�) = Ex +
�
2

� RL2 (W o;W h) = Ex +
�
2

�
�

kW hk2
F + kW ok2

F

�

The regularized objective tries to minimize the individualweights for pairs of
neurons between the input and hidden, and hidden and output layers. This has
the e�ect of adding some bias to the model, but possibly reducing variance, since
small weights are more robust to changes in the input data in terms of the
predicted output values. The gradient update rule using theregularized weight
gradient matrix is given as

W o = W o � � � r W o = W o � � �
�
z � � T

o + � � W o
�

= W o � � � � � W o � � �
�
z � � T

o

�

= (1� � � �) � W o � � �
�
z � � T

o

�

L2 regularization is also calledweight decay, since the updated weight matrix uses
decayed weights from the previous step, using the decay factor 1� � � � .
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 92 / 98

Deep MLPs

Given the error functionEx , the L2 regularized objective function is

min
�

J(�) = Ex +
�
2

� RL2 (W 0;W 1; : : : ;W h)

= Ex +
�
2

�

hX

l= 0

k[k
�
W l

2
F

!

where the set of all the parameters of the model is
� = f W 0;b0;W 1;b1; � � � ;W h;bhg. Based on the derivation for the one hidden
layer MLP from above, the regularized gradient is given as:

r W l = z l � (� l+ 1)T + � � W l (15)

and the update rule for weight matrices is

W l = W l � � � r W l = (1� � � �) � W l � � �
�
z l � (� l+ 1)T

�
(16)

for l = 0;1; � � � ;h, where where� l is the net gradient vector for the hidden neurons
in layer l .
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 93 / 98

Dropout Regularization

The idea behind dropout regularization is to randomly set a certain fraction of the
neuron values in a layer to zero during training time. The aimis to make the
network more robust and to avoid over�tting at the same time.By dropping
random neurons for each training point, the network is forced to not rely on any
speci�c set of edges.

From the perspective of a given neuron, since it cannot rely on all its incoming
edges to be present, it has the e�ect of not concentrating theweight on speci�c
input edges, but rather the weight is spread out among the incoming edges.

The net e�ect is similar toL2 regularization since weight spreading leads to smaller
weights on the edges. The resulting model with dropout is therefore more resilient
to small perturbations in the input, which can reduce over�tting at a small price
in increased bias. However, note that whileL2 regularization directly changes the
objective function, dropout regularization is a form ofstructural regularization
that does not change the objective function, but instead changes the network
topology in terms of which connections are currently activeor inactive.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 94 / 98

Dropout Regularization
MLP with One Hidden Layer

During the training phase, for each inputx, we create a random mask vector to
drop a fraction of the hidden neurons. Formally, letr 2 [0;1] be the probability of
keeping a neuron, so that the dropout probability is 1� r .

We create am-dimensional multivariate Bernoulli vectoru 2 f 0;1gm, called the
masking vector, each of whose entries is 0 with dropout probability 1� r , and 1
with probability r . Let u = (u1;u2; � � � ;um)T , where

ui =

(
0 with probability 1� r
1 with probability r

The feed-forward step is then given as

z = f h
�
bh + W T

h x
�

~z = u � z

o = f o
�
bo + W T

o ~z
�

where� is the element-wise multiplication.
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 95 / 98

Inverted Dropout

There is one complication in the basic dropout approach above, namely, the
expected output of hidden layer neurons is di�erent during training and testing,
since dropout is not applied during the testing phase (afterall, we do not want
the predictions to be randomly varying on a given test input). With r as the
probability of retaining a hidden neuron, its expected output value is

E[zi] = r � zi + (1� r) � 0 = r � zi

On the other hand, since there is no dropout at test time, the outputs of the
hidden neurons will be higher at testing time. So one idea is to scale the hidden
neuron values byr at testing time. On the other hand, there is a simpler approach
calledinverted dropoutthat does not need a change at testing time. The idea is
to rescale the hidden neurons after the dropout step during the training phase, as
follows:

z = f
�
bh + W T

h x
�

~z =
1
r

�
�
u � z

�

o = f
�
bo + W T

o ~z
�

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 96 / 98

Dropout in Deep MLPs

Dropout regularization for deep MLPs is done in a similar manner. Let rl 2 [0;1],
for l = 1;2; � � � ;h denote the probability of retaining a hidden neuron for layer l , so
that 1 � rl is the dropout probability. One can also use a single rater for all the
layers by settingrl = r . De�ne the masking vector for hidden layerl , u l 2 f 0;1gnl ,
as follows:

ul
i =

(
0 with probability 1� rl

1 with probability rl

The feed-forward step between layerl and l + 1 is then given as

z l = f
�
bl + W T

l ~z l � 1�

~z l =
1
rl

�
�
u l � z l

� (17)

using inverted dropout.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 97 / 98

Data Mining and Machine Learning:
Fundamental Concepts and Algorithms

dataminingbook.info

Mohammed J. Zaki1 Wagner Meira Jr.2

1 Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA

2 Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 26: Deep Learning

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 98 / 98

