Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning:

Fundamental Concepts and Algorithms
dataminingbook.info

Mohammed J. Zaki Wagner Meira J©?
1Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA
2Department of Computer Science

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 26: Deep Learning

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

Dac
1/98

Recurrent Neural Networks

Multilayer perceptrons are feed-forward networks in whidte tinformation ows in
only one direction, namely from the input layer to the outplatyer via the hidden
layers. In contrast, recurrent neural networks (RNNs) arendsnically driven (e.g.,
temporal), with afeedbackloop between two (or more) layers, which makes then
ideal for learning from sequence data.

The task of an RNN is to learn a function that predicts the tagsequencer
given the input sequenc¥ . That is, the predicted outputo; on input x; should
be similar or close to the target responge, for each time pointt.

To learn dependencies between elements of the input seqieant RNN maintains
a sequence om-dimensional hidden state vectols 2 R™, whereh, captures the
essential features of the input sequences up to titmEhe hidden vectoth; at
time t depends on the input vector; at time t and the previous hidden state
vectorh; ; fromtimet 1, and itis computed as follows:

[he = f"(W. x; + W/ hy 1+ by)])

Here,f " is the hidden state activation function, typically tanh oreRU.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 2/98

Recurrent Neural Network

W; bp

Wi W o;bo

[m] = =
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning

Recurrent Neural Networks

It is important to note that all the weight matrices and biasutors are
independentf the timet. For example, for the hidden layer, the same weight
matrix W, and bias vectonby, is used and updated while training the model, ove
all time stepst.

This is an example gbarameter sharingr weight tying between di erent layers or
components of a neural network. Likewise, the input weighttmaW ;, the
output weight matrix W , and the bias vectob, are all shared across time.

This greatly reduces the number of parameters that need toldmned by the
RNN, but it also relies on the assumption that all relevangjgential features can
be captured by the shared parameters.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 4/98

RNN unfolded in time.

t=0 t=1 t=2 t= 1 t=
01 02 I;I 0o 1 o]
A A : A A
Wb Wb | W ;b Wb
|
|
ho > h,; h, F-—- ———=>| h > h
W by W h;bn W,; by
A A A A
Wi Wi Wi Wi

[m] (=) = =
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 5/98

Training an RNN

For training the network, we compute the error twssbetween the predicted and
response vectors over all time steps. For example, the sgliarror loss is given as

1 X
B= Ba=j, ky ok

On the other hand, if we use a softmax activation at the outdayer, then we use
the cross-entropy loss, given as

X X X
E = E. = Yi In(og)

t=1 t=1i=1

wherey, = (Vi1;Yi2; Vip)' 2 RP and o =(01;02; ;0p)" 2 RP.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 6/98

Feed-forward in Time

The feed-forward process starts at tinte= 0, taking as input the initial hidden
state vectorhg, which is usually set to O or it can be user-speci ed, say fram
previous prediction step. Given the current set of paramgteve predict the

output o; at each time stept = 1;2; ; .

0= f° W] h+ b,

=f° WOT{h WiTXt+\{¥r;rht 1t bh}"'bo

ht

fO W, " Whx +w/fh fhwfxlt{wghw by + +by +bo
Z

hy

We can observe that the RNN implicitly makes a prediction é&swery pre x of the
input sequence, since; depends on all the previous input vectorg;X2; X,
but not on any future inputsx;+1; ;X .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 7198

Backpropagation in Time

Once the the output sequent® = ho;;0,; ;0 i is generated, we can compute
the error in the predictions using the squared error (or c-@ntropy) loss
function, which can in turn be used to compute the net gradieectors that are
backpropagated from the output layers to the input layers fach time step.

Let E,, denote the loss on input vectot; from the input sequence

X =hq;Xo; X .

De ne ¢ as the net gradient vector for the output vectar, i.e., the derivative of
the error functionk,, with respect to the net value at each neuron @, given as

o G . G . | @ !
‘ @etq’ @ety’ ' @etg

whereoy =(0;1;0;2; ;otp)T 2 RP is the p-dimensional output vector at time,
and nety is the net value at output neurom; at time t.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 8/98

Backpropagation in Time

time t

Likewise, let [‘ denote the net gradient vector for the hidden state neurdnsat

h _ @xt . @Xt . . @Xt !
t @1et[hl, @'etthz,
whereh; = (hy1;ho;

" @et

hm)T 2 R™ is the m-dimensional hidden state vector at
time t, and nettih is the net value at hidden neuron; at time t.

Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

=

) Q¥
Chapter 26: Deep Learning

9/98

RNN: Feed-forward step

ho > hy > hy ---- > ———=> h 1 > h
Wh:bp W h; b W bp

[m] = =
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning

RNN:Backpropagation step

I=0 =1 1=2 1=3 I = = +1
01 02 0 1 (o}
0 o [1] 0 0
1 2 L, 1
, 4
//
o o L . > o
° o 4 o
N N /// ° y D
hy h, h 4 h
h - - _—— e |e=-=-=--A -
CIE 1 1 v [© i‘ h €7 n
we 5| T [we 5| 3 b 1| wh
//
7
7
7
7/
7/
7/
4 >

Zaki & Meira Jr. (RPI and UFMG)

(=)
Data Mining and Machine Learning

Chapter 26: Deep Learning

11/98

Computing Net Gradients

The key step in backpropagation is to compute the net gradgirt reverse order,
starting from the output neurons to the input neurons via theédden neurons.

The backpropagation step reverses the ow direction for cartipg the net
gradients ¢ and {‘ as shown in the backpropagation graph.In particular, the ne
gradient vector at the outputo; can be computed as follows:

[;=@ @x[])

where is the element-wise or Hadamard product.

On the other hand, the net gradients at each of the hidden layreed to account
for the incoming net gradients from; and fromh;. ;.Thus, the net gradient
vector forh; (fort = 1;2;:::; 1) is given as

?:@th Wo P+ Wy 4y] €]

Note that for h , it depends only oro .Finally, note that the net gradients do not
have to be computed fohg or for any of the input neurong,, since these are leaf
nodes in the backpropagation graph, and thus do not backpra@taghe gradients

beyond those neurons.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 12/98

Reber grammar automata.
S

Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

PENE
13/98

RNN

Reber grammar automata

We use an RNN to learn the Reber grammar, which is generatexbraling to the
automata.Let = fBEP,S T,V.Xg denote the alphabet comprising the seven
symbols. Further, lets denote a terminal symbol.

Starting from the initial node, we can generate strings thallow the Reber
grammar by emitting the symbols on the edges. If there are tvamsitions out of
a node, each one can be chosen with equal probability.

The sequencdB; T;S;S X, X T;V:V,E is a valid Reber sequence (with the
corresponding state sequent®; 1;2;2;2;4;3;3;5;6;7i). On the other hand, the
sequencdB; P, T; X S;B is not a valid Reber sequence, since there is no edge o
of state 3 with the symbolX

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 14/98

RNN

Reber grammar automata

The task of the RNN is to learn to predict the next symbol forakaof the
positions in a given Reber sequence. For training, we geadReber sequences
from the automata.

Let Sx = hs;;s; ;s i be a Reber sequence. The corresponding true oufpuis
then given as the set of next symbols from each of the edgegngathe state
corresponding to each position By .

For example, consider the Reber sequeige= hB;P;T;V; V. B, with the state
sequence = h0;1;3;3;5;6;7i. The desired output sequence is then given as
Sy = fP|T;T|V;T|V;P|V;E $g, where$ is the terminal symbol.

Here, P|T denotes that the next symbol can be eithBror T. We can see thaGy
comprises the sequence of possible next symbols from eattheddtates in
(excluding the start state 0).

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 15/98

RNN

Reber grammar automata

To generate the training data for the RNN, we have to convehnttsymbolic
Reber strings into numeric vectors. We do this via a binargading of the
symbols, as follows:

(1,0,0;0;,0,0,0)"
(0;1;0;0;0;0;0)"
(0;0;1;0;0;,0;,0) "
(0;0;0;1;0;0;0) "
(0:0,0,0;1;0;0)"
(0;0;0;0;0;1;0) "
(0;0;0;0;0;0;1)"
(0;0;0;0;0;0;0)"

LX< -Hnovmow

That is, each symbol is encoded by a 7-dimensional binaryovewith a 1 in the
column corresponding to its position in the ordering of syoigin . The
terminal symbol$ is not part of the alphabet, and therefore its encoding is @8.
Finally, to encode the possible next symbols, we follow ailamiinary encoding
with a 1 in the column corresponding to the allowed symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 16/98

RNN

Reber grammar automata

For example, the choic®|T is encoded a$0;0;1;0;1;0;0)" . Thus, the Reber
sequencesy and the desired output sequen& are encoded as:

X Y

X1 X2 X3 X4 X5 Xe || Y1 Yo Y3 Y4 Y5 Ve

B P T V V E|PT TV TV PV E $
B| 1 0 0 0 0 0 0 0 0 0 0 0
E|O O O O 0 1 0 0 0 0 1 0
P/O 1 0 O O O 1 0 0 1 0 O
Ss|0 O O O o0 o 0 0 0 0 0 O
T|I0O 0O 1 0 0 O 1 1 1 0 0 O
Vi|io0 0 0 1 1 0 0 1 1 1 0 0
X| 0 0 0 0 0 0 0 0 0 0 0 0

Zaki & Meira Jr. (RPI and UFMG)

=} (=) = = b
Data Mining and Machine Learning Chapter 26: Deep Learning 17/98

RNN

Reber grammar automata

For training, we generate = 400 Reber sequences with a minimum length of 30
The maximum sequence length is= 52. Each of these Reber sequences is use
to create a training pair(X ;Y) as described above.

Next, we train an RNN withm = 4 hidden neurons using tanh activation. The
input and ouput layer sizes are determined by the dimendionaf the encoding,
namelyd = 7 andp = 7. We use a sigmoid activation at the output layer, treatin
each neuron as independent. We use the binary cross entropy finction.

The RNN is trained for = 10000 epochs, using gradient step size 1 and the
entire set of 400 input sequences as the batch size. The RNMehtearns the

training data perfectly, making no errors in the predictiofi the set of possible

next symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 18/98

RNN

Reber grammar automata

We test the RNN model on 100 previously unseen Reber seqsegmath
minimum length 30, as before). The RNN makes no errors on thst sequences.
On the other hand, we also trained an MLP with a single hiddayer, with sizem
varying between 4 and 100.

Even afterr = 10000 epochs, the MLP is not able to correctly predict any bét
output sequences perfectly. It makes 2.62 mistakes on ayen@er sequence for
both the training and testing data. Increasing the numberegochs or the
number of hidden layers does not improve the MLP performance

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 19/98

Bidirectional RNNs

An RNN makes use of a hidden stake that depends on the previous hidden
state h; 1 and the current inputx; at time t. In other words, it only looks at
information from the past.

A bidirectional RNN (BRNN)extends the RNN model to also g€ information
from the future.

In particular, a BRNN maintains a backward hidden state vedp 2 R™ that
depends on the next backward hidden stdig ; and the current inputx;. The
output at time t is a function of bothh; andb;. In particular, we compute the
forward and backward hidden state vectors as follows:

he = f"(W X+ W/ h, 1+ bp)

4
btsz(WiEXt+ngt+1+bb) @

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 20/98

Bidirectional RNNs

The output at timet is computed only when both, and b, are available, and is
given as

oy = fO(W o hy + W b, + by)

It is clear that BRNNs need the complete input before they campute the
output.

We can also view a BRNN as having two sets of input sequencasiety the
forward input sequencX = hx1;X2; ;X i and the reversed input sequence
XT=h ;x q;:::5%Xq0, with the corresponding hidden statdg and b, which
together determine the outpub;. Thus, a BRNN is comprised of two stacked
RNNs with independent hidden layers that jointly determitee output.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 21/98

Bidirectional RNN: Unfolded in time.

t=0 t=1 t=2
o * ;]
1
1
Who | Who;bo Wio | Whoibo :
Wh;bn !
Wby hy — ha ——— = Pk
ho
by ~—| b2 L g ~©___-
Wo;bp A
1
1
Win | Wip Win | Wip :
1
Zaki & Meira (RPI and UFMG)

Data Mining and Machine Learning

t= 1 t= = +1
0o 1 o
Who | Who;bo Wio | Whoibo
W;bn
h . — |
b1
b -~ b Wy; by
Wby
Win | Wi Win | Wi
X 1 X
[m] = = =
Deep Learning 22/98

Gated RNNs: Long Short-Term Memory Networks

One of the problems in training RNNSs is their susceptibilityeither the vanishing
gradientor the exploding gradienproblem. For example, consider the task of
computing the net gradient vector{‘ for the hidden layer at time, given as

h
{=@, Wo ¢+ Wp £y
Assume for simplicity that we use a linear activation furatj i.e., @th =1, and

let us ignore the net gradient vector for the output layer,ciasing only on the
dependence on the hidden layers. Then for an input sequefitength , we have

h_ hoo_ h y_ 2 h _ t h
= Wh L= Wh(Wh L)= Wy o= =W,

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 23/98

Gated RNNs: Long Short-Term Memory Networks

We can observe that the net gradient from timea ects the net gradient vector
at time t as a function ofw,, ', i.e., as powers of the hidden weight mati .
Let the spectral radiusof W4, de ned as the absolute value of its largest
eigenvalue, be given gs;j.

It turns out that if j 1j < 1, then Wﬁ I Oask!1l ,thatis, the gradients
vanish as we train on long sequences.

On the other hand, iff 1j > 1, then at least one element (W,'j becomes
unbounded and thusW,f 11 ask!l |, thatis, the gradients explode as we
train on long sequences.

It is clear that the net gradients scale according to the aigalues ofW ..
Therefore, ifj 1j< 1, thenj 1j! Oask!1l ,andsincg 4j j ;j for all

i=1,2, ;m,then necessarily ;j! 0 as well. That is, the gradients vanish. Or
the other hand, iff j> 1, thenj 4j*!1 ask!1 , and the gradients explode.

Therefore, for the error to neither vanish nor explode, thgestral radius ofwW y,
should remain 1 or very close to it.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 24/98

Gated RNNs: Long Short-Term Memory Networks

Long short-term memory (LSTM) networks alleviate the vanisty gradients
problem by usinggate neurondo control access to the hidden states. Consider
the m-dimensional hidden state vectdr; 2 R™ at time t. In a regular RNN, we
update the hidden state as follows:

he= "W/ x,+ W/ hy 1+ by)

Let g 2f 0;1g™ be a binary vector. If we take the element-wise productgoand
hy, namely,g h;, then elements ofy act as gates that either allow the
corresponding element df; to be retained or set to zero.

The vectorg thus acts as logical gate that allows selected element$ofo be
remembered or forgotten. However, for backpropagation wedeéi erentiable
gates for which we use sigmoid activation on the gate neurons sat tieir value
lies in the rang€0; 1].

Like a logical gate, such neurons allow the inputs to be caetgdly remembered if
the value is 1, or forgotten if the value is 0. In addition, thallow a weighted
memory, allowing partial remembrance of the elementshof for values between 0
and 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 25/98

Di erentiable Gates

As an example, consider a hidden state vector
hy= 094 105 039 097 @90 T
First consider a logical gate vector
g= 011 0 1"
Their element-wise product gives
g hi= 0 105 039 0 Q90"

We can see that the rst and fourth elements have been forigot
Now consider a di erentiable gate vector

g= 01 0 1 Q9 05
The element-wise product af and h; gives
g hi= 0094 0 039 0873 045 "

Now, only a fraction speci ed by an element gf is retained as a memory after
the element-wise product.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 26/98

Gated RNNs: Long Short-Term Memory Networks

To see how gated neurons work, we consider an RNN wifiorget gate In a
regular RNN, assuming tanh activation, the hidden state toeds updated
unconditionally, as follows:

he=tanh W/ x;+ W h; 1+ by,

Instead of directly updatindy;, we will employ the forget gate neurons to control
how much of the previous hidden state vector to forget whemgaiting its new
value, and also to control how to update it in light of the newput X;.

Given inputx; and previous hidden stath; ;, we rst compute a candidate
update vectoru, as follows:

[ug=tanh W[x,+W.h 1+b,] (5)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 27/98

Gated RNNs: Long Short-Term Memory Networks

Using the forget gate, we can compute the new hidden statetareas follows:

[= ohoar() ou | (6)

We can see that the new hidden state vector retains a fractafrthe previous
hidden state values, and a (complementary) fraction of thendidate update
values. Observe that if , = 0, i.e., if we want to entirely forget the previous
hidden state, then 1 |, = 1, which means that the hidden state will be updatec
completely at each time step just like in a regular RNN.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 28/98

product.

RNN with a forget gate ;

Recurrent connections shown in gray, forget gate shown doulelined.

denotes element-wise

Ot
AW,;b,
(M)
W ! ' 1W
h I A hu
[l ?
1,
t > —

- U
W;bt

l Wb
Xt us Mu
Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

29/98

Gated RNNs: Long Short-Term Memory Networks

A forget gate vector , is a layer that depends on the previous hidden state laye
hy 1 and the current input layek;; these connections are fully connected, and a
speci ed by the corresponding weight matric#g, andW , and the bias vector
b . On the other hand, the output of the forget gate layer, needs to modify the
previous hidden state laydr; ;, and therefore, both , and h; ; feed into what

is essentially a newlement-wisgyroduct layer, denoted by .

Finally, the output of this element-wise product layer isegsas input to the new
hidden layerh; that also takes input from another element-wise gate that
computes the output from the candidate update vectoy and the complemented
forget gate, 1 .

Thus, unlike regular layers that are fully connected and da weight matrix and
bias vector between the layers, the connections betweerand h; via the
element-wise layer are all one-to-one, and the weights ated at the value 1 with
bias 0. Likewise the connections betweenand h; via the other element-wise
layer are also one-to-one, with weights xed at 1 and bias at 0

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 30/98

Gated RNNs

Example

Let m= 5. Assume that the previous hidden state vector and the cdatk
update vector are given as follows:

he 1= 094 105 039 097 09 '
u= 05 25 1.0 05 08"

Let the forget gate and its complement be given as follows:
,= 09 1 0 01 05"
1 ,=01 01 Q9 05"

The new hidden state vector is then computed as the weighteoh ©f the
previous hidden state vector and the candidate update vecto

he= ¢ he1+(1)
=09 1 0 Q1 05' 094 105 039 097 09 '+
01 0 1 Q9 05' 05 25 10 05 08
= 0:846 105 0 Q097 Q45 '+ 005 0 1.0 045 040 '

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 31/98

Gated RNNs: Long Short-Term Memory Networks

Computing Net Gradients

The net gradients at the outputs are computed by considerthg partial
derivatives of the activation function@,’) and the error function @y,):

=@ @y

For the other layers, we can reverse all the arrows to detaemthe dependencies
between the layers. The net gradien{ at update layer neurom at time t is
given as

oo @ _ @ @et! @i _
' @ety @et] @ @ety

¢ @ W) 1o

h
where@é%“: %f i he 1i+(1) uyg=1 4, and we use the fact that

the updat'e layer uses &@nh activation function.
Across all neurons, we obtain the net gradient @t as follows:

P @) @ oueow)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 32/98

Gated RNNs: Long Short-Term Memory Networks

The net gradient ; at forget gate neuron at time t is given as

_ @ _ @ @et] @

— h) . . :
i @letﬁ = @lettP @ti @1etﬁ I ((ht 1 Utl) tl(l tl)

Across all neurons, we obtain the net gradient af as follows:

t:F (hy 1 uy) e (@)

Considering all the layers, including the output, forget,daie and element-wise
layers, the complete net gradient vector at the hidden lagétime t is given as:

h _ o u h
t=Wo (+Wh 1+ Why i1t 1 t+1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 33/98

RNN with a forget gate unfolded in time
Recurrent connectionsin gray

01 02
Wo;bo Wo;bo
ho \ hi \ hy |
A
r—# r—é
1 1 * 1, *
L~ S w . — S w
W Wy Wy W hu
T X1 1 t X2 1
W ;b W y;by W ;b Wby
Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

Chapter 26: Deep Learning

34/98

Long Short-Term Memory (LSTM) Networks

LSTMs use di erentiable gate vectors to control the hiddetate vectorh,, as
well as another vectoc; 2 R™ called theinternal memoryvector.

In particular, LSTMs utilize threegate vectors an input gate vector { 2 R™, a
forget gate vector , 2 R™, and an output gate vectot ; 2 R™.

Like a regular RNN, an LSTM also maintains a hidden state eedor each time
step. However, the content of the hidden vector is seledyivepied from the
internal memory vector via the output gate, with the interhememory being
updated via the input gate and parts of it forgotten via therfet gate.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 35/98

LSTM neural network

Recurrent connections shown in gray, gate layers shown doublined.

ngngs

uiby
Zaki & Meira Jr. (RPI and UFMG)

W, ;b
"]
Data Mining and Machine Learning

Chapter 26: Deep Learning

LSTM neural network

At each time stept, the three gate vectors are updated as follows:

¢ = WTXt+W;]rht 1+b
= WTx+W[h 1+b @)
!t: W!T-X1+Wr-]|—!ht 1+b!

Each of the gate vectors conceptually plays a di erent rateain LSTM network.
The input gate vector ; controls how much of the input vector, via the candidate
update vectoruy, is allowed to in uence the memory vectar,.

The forget gate vector , controls how much of the previous memory vector to
forget, and nally the output gate vector ; controls how much of the memory
state is retained for the hidden state.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 37/98

LSTM neural network

Given the current inpuix; and the previous hidden state; ;, an LSTM rst
computes a candidate update vectag after applying thetanh activation:

[ug=tanh W[x.+ W h; 1+ by,] (8)

It then applies the di erent gates to compute the internal mmry and hidden
state vectors:

Ct
hy

t U+ Ct1

+ tanh(c;) ©)

The memory vectorc; at time t depends on the current update vectas and the
previous memory; 1. However, the input gate ; controls the extent to which
u; in uencesc;, and the forget gate , controls how much of the previous
memory is forgotten.

On the other hand, the hidden stath; depends on a tanh activated internal
memory vectorc, but the output gate! ; controls how much of the internal
memory is re ected in the hidden state.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 38/98

LSTM neural network

Finally, the output of the networko, is obtained by applying the output activation
function f° to an a ne combination of the hidden state neuron values:

o, = f°(W/ h; + by)

LSTMs can typically handle long sequences since the netigrdad for the internal
memory states do not vanish over long time steps. This is lneea by design, the
memory statec; ; attimet 1 is linked to the memory state, at time t via
implicit weights xed at 1 and biases xed at 0, with linear &eation. This allows
the error to ow across time steps without vanishing or exging.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 39/98

LSTM neural network unfolded in time

Recurrent connections in gray

o

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 40/98

y Wby

Training LSTMs

During backpropagation the net gradient vector at the outplatyer at timet is
computed by considering the partial derivatives of the aation function, @,’,
and the error function,@,,, as follows:

=@ @

where we assume that the output neurons are independent. fiéegradient
vector ¢ at c, is therefore given as:

— h
tc_ t ! t (1 Ct Ct)+ ;:+1 t+1
Across all forget gate neurons, the net gradient vector isrifore given as
_ C 1
= ¢ G (t) t

The input gate also has only one incoming edge in backpropagatrom c,, via
the element-wise multiplication; u;, with sigmoid activation. In a similar
manner, as outlined above for, , the net gradient , at the input gate ; is
given as:

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 41/98

Training LSTMs

The same reasoning applies to the update candidatewhich also has an
incoming edge front, via ; u; and tanh activation, so the net gradient vector
i at the update layer is

= 0 0 (@ oueow)

Likewise, in backpropagation, there is one incoming conimecto the output gate
from h; via! ; tanh(c.) with sigmoid activation, therefore

i= 0 tanh(c) (1 'o) !

Finally, to compute the net gradients at the hidden layer,tadhat gradients ow
back toh; from the following layersu;+1; t+1; (+1;! t+1 ando. Therefore,
the net gradient vector at the hidden state vectof is given as

h _ o} ! u
t = Wo ¢+ Wh og* Wi g ¥ Wi g ¥ Wy g

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 42/98

Embedded Reber grammar automata

=] =) - = £ DA

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 43/98

Ok

LSTM

Example

We use an LSTM to learn the embedded Reber grammar, which iegeed
according to the automata.This automata has two copies o&tReber automata

From the states,, the top automata is reached by following the edge labeled
whereas the bottom automata is reached via the edge lab@ðe states of the
top automata are labeled aky;t;; ;t7, whereas the states of the bottom
automata are labeled ago;p1; ;p7. Finally, note that the stateey can be
reached from either the top or the bottom automata by followg the edges
labeledT and P, respectively.

The rst symbol is alwaysB and the last symbol is alway® However, the
important point is that the second symbol is always the sansetlae second last
symbol, and thus any sequence learning model has to leasltng range
dependency. For example, the following is a valid embeddelleR sequence:
Sx =mBT,BT,SSXXT,V\VETHE.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 44198

LSTM

Example

The task of the LSTM is to learn to predict the next symbol foaeh of the

positions in a given embedded Reber sequence. For traimggeneraten = 400

embedded Reber sequences with a minimum length of 40, angesbthem into

training pairs(X;Y) using the binary encoding.The maximum sequence length i
= 64.

Given the long range dependency, we used an LSTM with 20 hidden neurons
(smaller values ofm either need more epochs to learn, or have trouble learning t
grammar). The input and output layer sizes are determinedtbg dimensionality
of encoding, namelyl = 7 andp = 7. We use sigmoid activation at the output
layer, treating each neuron as independent.

Finally, we use the binary cross entropy error function. Tt®&TM is trained for

r = 10000 epochs (using step size= 1 and batch size 400); it learns the training
data perfectly, making no errors in the prediction of the sdtpmssible next
symbols.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 45/98

LSTM

Example

We test the LSTM model on 100 previously unseen embedded Redguences
(with minimum length 40, as before). The trained LSTM makes Brrors on the
test sequences. In particular, it is able to learn the longga dependency betweer
the second symbol and the second last symbol, which mustyswaatch.

The embedded Reber grammar was chosen since an RNN has ér¢edoining the
long range dependency. Using an RNN with= 60 hidden neurons, using

r = 25000 epochs with a step size of= 1, the RNN can perfectly learn the
training sequences. That is, it makes no errors on any of tB@ 4raining
sequences.

However, on the test data, this RNN makes a mistake in 40 outhaf 100 test
sequences. In fact, in each of these test sequences it makastlg one error; it
fails to correctly predict the second last symbol.

These results suggest that while the RNN is able to memoritbe long range
dependency in the training data, it is not able to generaltampletely on unseen
test sequences.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 46/98

Convolutional Neural Networks

A convolutional neural network (CNN) is essentiallylacalizedand sparse
feedforward MLP that is designed to exploit spatial and/aerhporal structure in
the input data.

In a regular MLP all of the neurons in layérare connected to all of the neurons
in layerl + 1. In contrast, a CNN connects a contiguous or adjacent sulisfet
neurons in layef to a single neuron in the next layér+ 1.

Di erent sliding windows comprising contiguous subsetsngfurons in layet
connect to di erent neurons in layer+ 1.

Furthermore, all of these sliding windows ugarameter sharingthat is, the same
set of weights, called dter , is used for all sliding windows. Finally, di erent
Iters are used to automatically extract features from layefor use by layet + 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 47/98

1D Convolution

Given a vectom 2 R¥, de ne the summation operator as one that adds all the
elements of the vector. That is,

X«
sum@) = a
i=1

A 1D convolutionbetweenx andw, denoted by the asterisk symbol is de ned
as

X w= sumxg(l) w sumxg(n k+1) w

where s the element-wise product, so that

X«
sumxg(i) w = Xitj 1 W, (20)
i=1

fori=1;2; :n k+ 1. We can see that the convolution of2 R" andw 2 R¥
results in a vector of lengtm k+ 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 48/98

1D Convolution

Zaki & Meir:

(RPI and UFMG)

ta Mining and Machine Learning

=

Chapter 26: Deep Learning

49/98

Example

1D Convolution

Figure shows a vectax with n= 7 and a lter w =(1,0;2)T with window size
k = 3. The rst window of x of size 3 isx3(1)=(1;3; 1)". Therefore, we have
sumsz(1) w)=sum (1;3; 1T

(1;0;2)T =sum (L0, 2)T
The convolution steps for di erent sliding windows af with the Iter w are
is given as

= 1
shown in the gure. The convolutiox w has sizen k+ 1=7 3+ 1=5, and

x w=(1,754, 1T

Zaki & Meira Jr. (RPI and UFMG)

=}
Data Mining and Machine Learning

=

Chapter 26: Deep Learning

50/98

2D Convolution

Given ak k matrix A 2 R¥ k, de ne the summation operator as one that adds
all the elements of the matrix. That is,

X X
sum@) = &;j
i=1j=1
The 2D convolutionof X and W , denotedX W, is de ned as:
0
sum X (1;1) W sum Xg(Ln k+1) W
X W= : :
sum Xy(n k+ 1;1) W sum Xx(n k+1L;n k+1) W

where is the element-wise product of «(i;j) and W, so that

o X Xk
sum X (i;j) W = Xita Lj+b 1 Wab (11)
a=1b=1

fori;j=12; ;n k+ 1. The convolution ofX 2 R" "andW 2 R¥ ¥ results
ina(n k+1) (n k+ 1) matrix.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 51/98

w

1

1Jo]_[2]6 4

0

w

0
1

1
0

w

1
0

6

2
4
4

0
1

112]2|1
3(114[2
2(1]13]4
112]3]1

112]2|1

3|11[4]|2
2|11(3[4
112]3]1

112]2]1
3|1(4]2

2|11(3[4
112]3]|1

w

1
0

2

6|4

0
1

0
1

1
0

w

1
0

4
8

6
4

2
4

0
1

1{2]2|1
3|1]4|2
2|1|3]4
1/2]3]1

1(2]|2|1
3|1(4|2
2(1[3]4

1/2]3]1

1/2]2]1
3|1(4]|2
2(1[3]4

1{2]3][1

0
1

1
0

w

ﬁ\64
|

0
1

1
0

L

w

1
0

4
8

6
4

2
4

0
1

1(2]|2]1

3[1[4]|2

2|1|3]4
1/2]3]1

1(2]|2]1
3[(1[4]|2

2(1[3]4
1/2]3]1

112]2]1
3]1]4]2
2|1|3|4
1/2|3]1

52/98

Chapter 26: Deep Learning

Data Mining and Machine Learning

Zaki & Meira Jr. (RPI and UFMG)

2D Convolution

Example

Figure shows a matriX with n= 4 and a lter W with window sizek = 2. The
convolution of the rst window ofX, namelyX ,(1;1), with W is given as:

. _ 1 2 10 _ 1 0 _
sum X 2(1;1) W =sum 31 o 1 “sum 4 =2
The convolution steps for di erent 2 2 sliding windows oK with the lter W
are shown in the gure. The convolutioX W has size 3 3, since

n k+1=4 2+ 1= 3, andis given as

0

1
2 6 4

X W=@4 4 @A
4 4 4

Zaki & Meira Jr. (RPI and UFMG)

o F
Data Mining and Machine Learning Chapter 26: Deep Learning

53/98

3D Convolution

Let W be ak k r tensor of weights, called 8D lter, with k nandr m.
Let X(i;j;q) denote thek k r subtensor ofX starting at rowi, columnj and
channelq, as illustrated in the gure, with1 i;j n k+ 1, and
1 g m r+1.
Given ak k r tensorA 2 R* kK T de ne the summation operator as one that
adds all the elements of the tensor. That is,

X X X

sum(@) = jiq
i=1j=1q=1

wherea;;j.q is the element ofA at row i, columnj, and channely. The 3D
convolutionof X and W, denotedX W, is de ned as:

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 54/98

3D Convolution

0
sum Xk(1;1;1) W sum Xg(L;n k+1;1) W
% sum X (2,1;1) W sum X (2;n k+1;1) W
0 sum Xg(n k+1;1;1) W sum Xg(n k+1n k+11) W
sum Xk(1;1;2) W sum Xg(L;n k+1;2) W
% sum Xy(21;,2) W sum Xy(2;n k+1;2) W
X W= E E
sum Xg(n k+1;1,2) W sum Xg(n k+1n k+12 W
0 : : :
sum Xi(L;L;m r+1) W sum Xi(L;n k+1m r+1) W
% sum Xg(2;L;m r+1) W sum Xg(2;n k+1Lm r+1) W
sum Xg(n k+L;Lm r+1) W sum Xg(n k+1L;n k+1m r+1) W
o =] = = =

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 55/98

3D Convolution

where

is the element-wise product of «(i;j;q) and W, so that

sum X (i;j;q) W

X X X
= Xi+a 1j+b Ligtc 1 Wab;c (12)
a=1lb=1c=1
fori;j=1,2, ;n k+1landg=1;2, ;m
convolution ofX 2 R" " ™ andW 2 R* ¥ T results in a
(n k+1) (n k+1) (m

r+ 1. We can see that the
r + 1) tensor.

Zaki & Meira Jr. (RPI and UFMG)

=}
Data Mining and Machine Learning

=

Chapter 26: Deep Learning

Q>

56 /98

3D subtensoX i(i;j;q)
k k

r subtensor of X starting at row i, column j, and channelg.

o Xijg+r 1 Xij+L,g+r 1 Xizj+k 1;q/+,r/1
Xi+ Ljig+r 1 Xi+Lj+lg+r 1 Xi+ Lj+k Lg+r 1
Xiijg+1 Xiij+Lg+1 Xisi+k @;q+’f Xi+k Lj+k Lg+r 1
el Xi+ Lj;g+1 Xi+1j+Lg+1 Xi+1;;+'k’ L,g+1 ks
Xiii:q Xiij+ 1,9 Xij+k 1,q | Xi+k Lj+k Lg+1 //’/
Xi+Lj;qg X+1j+1Lq Xi+1j+k 1q o
Xi+k 1j:g Xi+k Lj+1q Xi+k 1j+k Lg /,/'/

o (=) = £ 9ac
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 57/98

3D Convolution

Zaki & Meira

(RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

58/98

3D Convolution

Zaki & Meira

(RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

59/98

3D Convolution

Zaki & Meira

(RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

60/98

3D Convolution

Zaki & Meira Jr.

(RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

61/98

3D Convolution

Example

Figures show a 3 3 3tensorX withn=3andm=3,anda2 2 3 lter W
with window sizek = 2 andr = 3. The convolution of the rst window ofX ,
namelyX,(1;1), with W is given as

) _ 1 1|12 1j]12 2 1 1j]1 0|0 1
sum X,(1;1) W =sum > 1‘3 1‘2 1 2 0‘0 1‘1 0
- sum 1 1|2 o0 2 -5
- 4 00 12 0

where we stack the di erent channels horizontally. The cofution steps for
dierent2 2 3 sliding windows oKX with the Iter W are shown in gure.
The convolutionX W has size 2 2, sincen k+1=3 2+ 1= 2 and
r=m= 3;itis given as

5 11

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 62/98

Filter Bias

LetW beak k m 3D lter. Recall that when we convolv&' andW , we

geta(n k+1) (n k+ 1) matrix at layerl + 1. However, so far, we have

ignored the role of the bias term in the convolution. Le? R be a scalar bias

value forWw, and IetZL(i;j) denote thek k m; subtensor ofZ' at position

(i;j). Then, the net signal at neurom; * in layer| + 1 is given as
net'*'=sum Z,(i;j) W +b

and the value of the neuromi';’j'1 is obtained by applying some activation functior
f to the net signal

Zit=1 sumZ,(i;j) W +b

The activation function can be any of the ones typically usacheural networks,
for example, identity, sigmoid, tanh, ReLU and so on.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 63/98

Multiple 3D Filters

We can observe that one 3D IteW with a corresponding bias terrh results in
a(n k+1) (n k+ 1) matrix of neurons in layet+ 1. Therefore, if we
desirem;, ; channels in layet+ 1, then we needn;.; dierent kK k m lters
W 4 with a corresponding bias terr,, to obtain the

(. k+1) (n k+1) my, tensor of neuron values at layér 1, given as

Z"t= Zll=1f sumZ,(i;j) Wq +bq

ij=1;2;n 0 k+1and q=1;2;00 myy g
In summary, a convolution layer takes as inputthe n, m, tensorz' of
neurons from layet, and then computes th@+; nN+1 Misq tensorZ'* ! of
neurons for the next layelr+ 1 via the convolution o' with a set ofmj+1
dierent 3D lters of size k k mj, followed by adding the bias and applying
some non-linear activation functioh. Note that each 3D Iter applied toZ'
results in a new channel in layér 1. Thereforem,,, Iters are used to yield
m+ 1 channels at layel + 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 64/98

/

OOl—\;L\N
el Ll I

AN W - [W

/
\

RN[wl-
N[k IN
wlw(hlN
R[N/

/

Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

Multiple 3D lters.

\

Chapter 26: Deep Learning

Multiple 3D Filters

Figure shows how applying di erent Iters yield the chansdior the next layer.

It shows a4 4 2tensorZ' with n= 4 andm= 2. It also shows two di erent
2 2 2 lters W, andW , with k=2 andr = 2.

Sincer = m= 2, the convolution ofZ' andW (for i = 1;2) results ina 3 3
matrix sincen k+ 1=4 2+ 1= 3.

However,W ; yields one channel and/ , yields a second channel, so that the
tensor for the next layeZ " * has size 3 3 2, with two channels (one per lter).

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 66/98

Padding and Striding

One of the issues with the convolution operation is that theesof the tensors will
necessarily decrease in each successive CNN layer.

If layer| has sizen, n, m;, and we use Iters of siz&k k m;, then each
channel in layet + 1 will have sizén, k+ 1) (n k+1).

That is the number of rows and columns for each successivedewill shrink by
k 1 and that will limit the number of layers the CNN can have.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 67/98

To get around this limitation, a simple solution is to pad datensor along both
the rows and columns in each channel by some default valyscafly zero.

For uniformity, we always pad by adding the same number ofs@w the top and
at the bottom, and likewise the same number of columns on tb &nd on the
right.

With padding p, the implicit size of layet tensor is then

(m+2p) (m+2p) m. Assume that each lteris of siz& k m, and
assume there aren.; Iters, then the size of the layet + 1 tensor will be

(n+2p k+1) (m+2p k+1) myq. Since we want to preserve the size c
the resulting tensor, we need to have

n+2p k+1 n;whichimpliesp= —=

With padding, we can have arbitrarily deep convolutionaldes in a CNN.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 68/98

Padding 2D Convolution

p=0ep=1
ZI
12211 W Z1+1
311(4(2]|1 0 11| 9
211|343 1 = 11|12
112|311 1 8|7
411(3|2]|1
ZI
o|jof0(0|0O|O]|O 7 1+1
0|1(2|2|1|1|0 w 65742
0|3|1(4]|2|1|0 0 6711/ 9|5
0|2(1({3|4|3]|0 1 = 14|9|11/12| 6
0(1|2|3|1|1(0 1 718 6
0(4|2|3|2|1(0 5|5 2
ojofoj0|0|0O]|O

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 69/98

Padding

Example

Figure shows a 2D convolution without and with padding. lags with a
convolution of a5 5 matrixZ' (n=5)witha3 3 lter W (k= 3), which
results in a 3 3 matrix sincen k+ 1=5 3+ 1= 3. Thus, the size of the next
layerZ'*! has decreased.

On the other hand, zero padding' usingp = 1 results in a 7 7 matrix as shown
in the gure Sincep = 1, we have an extra row of zeros on the top and bottom,
and an extra column of zeros on the left and right. The contn of the
zero-paddedX with W now results in a 5 5 matrix Z'** (since 7 3+ 1= 5),
which preserves the size.

If we wanted to apply another convolution layer, we couldaead the resulting
matrix Z'** with p = 1, which would again yield a 55 matrix for the next layer,
using a 3 3 lter. This way, we can chain together as many convoluticayérs as
desired, without decrease in the size of the layers.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 70/98

Striding is often used to sparsify the number of sliding woag used in the
convolutions. That is, instead of considering all possibi@dows we increment
the index along both rows and columns by an integer vaduel called thestride
A 3D convolution ofZ' of sizen, n, m with a lter W of sizek k m,
using strides, is given as:

sum ZL(1;1) W sum Z}(1;1+s) W sum ZL(L;1+t s) V
| sum ZL(1+s;1) W sum Z}(1+s;1+s) W sum Z}(1+ s;1+ t s)
Z W= . . .
sumZl(1+t s;1) W sumZi(1+t s1+s) W sum Z}(1+t s;1+t)
I(k
wheret = "'T . We can observe that using stridge the convolution of

Z'2R" M M owith W 2 RK ¥ M results in a(t + 1) (t + 1) matrix.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 71/98

72/98

Chapter 26: Deep Learning

o+ | o o
WOll W011

— O | O — O[O
|| | |||
N[|| N NS [N
|—/_24333 |7_24333
N[|| N | N | [| N |
A MmN | < A MmN ||

Z|+1
719

Data Mining and Machine Learning

o|-|o ol
z|o|—|- z|o||—
—|o|o —|o|o
A A [|| A A [||
NS || NN
(@)
m NN [T [0 o o] [N |™D|™[™
N N
o
= N[|- N Ao
‘A
N ., Ao (N - |||

Zaki & Meira Jr. (RPI and UFMG)

Striding

Example

Figure shows 2D convolution using stride= 2 on a5 5 matrix Z' (n, = 5) with
a lter W of size 3 3 (k= 3). Instead of the default stride of one, which would
resultina 3 3 matrix, we geta(t+ 1) (t+1)= 2 2 matrixZ'"?, since

in kK s 3"_1
= T 5
We can see that the next window index increasesstglong the rows and
columns. For example, the rst window iz'3(1; 1) and thus the second window is
Z45(1;1+ s)= Z4(1;3). Next, we move down by a stride sf= 2, so that the third
window isZ5(1+ s;1) = Z5(3;1), and the nal window isZ5(3;1+ s)= Z5(3;3)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 73/98

CNNs also use other types of aggregation functions in addito summation,
such as average and maximurAvg-Pooling If we replace the summation with
the average value over the element-wise productz(b(i;j;q) and W , we get

i _ I
avg Z,(i;j;q) W —aVQS %% i Ziya 1;j+b Ligtc 1 Wabic
c=1:20 r

e sumZ,(i;j;q) W

Max-Pooling If we replace the summation with the maximum value over the
element-wise product oZ | (i;j;q) and W, we get

I giee _ |
max Z,(i;j;q) W = Tgx " Zita 1;+b Ligrc 1 Wabic (13)
L2 ik
1;2;

ol

o oo
i

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 74198

Max-Pooling in CNNs

Typically, max-pooling is used more often than avg-pooli#gso, for pooling it is
very common to set the stride equal to the lter sizes € k), so that the
aggregation function is applied over disjoikt k windows in each channel ia'.

More importantly, in pooling, the IterW is by default takento be & k 1
tensor all of whose weights are xed as 1, so that = 1, ¢ 1. In other words,
the Iter weights are xed at 1 and are not updated during baciqpagation.
Further, the Iter uses a xed zero bias (that ish = 0).

Finally, note that pooling implicitly uses an identity agtition function. As such,
the convolution ofZ' 2 R" ™ ™ with W 2 R¥ ¥ 1 using strides = k, results in

atensorz'** of size % Tom.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 75/98

Max-pooling

Stride: s= 2

z! z!

11221 W 1221 W
3(1]4]2 1)1 31142 1|1
211134 = 211|134 =
11231 1{2(3]1

z' z!

1221 W 7141 1{2]2]1 W 7141
31142 1|1 3(4||]|3]1]4]2 3|4
2(1/3]4 1=H2134 = 2]
11231 1(2(3]|1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 76/98

Max-Pooling

Example

Figure shows max-pooling on a 44 matrix Z' (n, = 4), using window sizé = 2
and strides = 2 that equals the window size. The resulting lay@f" ! thus has
size 2 2, sinceb";'c: b‘z‘c: 2. We can see that the Ite'W has xed weights
equal to 1.

The convolution of the rst window ofZ', namelyZ}(1;1), with W is given as

1 2 11

max Z,(1;1) W =max = max =3

1 2
3 1 11 31

The other convolution steps are shown in the Figure.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 77198

Deep CNNs

In a typical CNN architecture, one alternates between a cdation layer (with
summation as the aggregation function, and learnable Ilt®eights and bias
term) and a pooling layer (say, with max-pooling and xed dt of ones).

The intuition is that, whereas the convolution layer leartte lters to extract
informative features, the pooling layer applies an aggtemafunction like max (or
avg) to extract the most important neuron value (or the mean ofd@meuron
values) within each sliding window, in each of the channels.

Starting from the input layer, a deep CNN is comprised of nmpikti, typically
alternating, convolution and pooling layers, followed byeoor more fully
connected layers, and then the nal output layer.

For each convolution and pooling layer we need to choose thelow sizek as
well as the stride valus, and whether to use padding or not. We also have to
choose the non-linear activation functions for the conwaua layers, and also the
number of layers to consider.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 78/98

Training: Convolutional neural network

To see how to train CNNs we will consider a network with a singd&volution

layer and a max-pooling layer, followed by a fully conneck@gbr.For simplicity,
we assume that there is only one channel for the inputand further, we use

only one lter.

input convolution max-pooling fully connected output
=0 =1 =2 =3 I=4
1 2 3
X | V4 — Z > Z > O
W o; bo 2 W2 b2 Wgbs | o
1
N Ny 3 p
Np No o m k2= n3

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 79/98

Deep CNNs

Feed-forward Phase

Let D = fX;;y;gL, denote the training data, comprising tensors
Xi2Rm "o Mo (with mg= 1 for ease of explanation) and the corresponding
response vectoy; 2 RP. Given a training pai(X;y) 2 D, in the feed-forward
phase, the predicted outpub is given via the following equations:

Zt=f1 (X Wy)+ by

z2=27" sz;maxlkz ko

28=13 W}z%+ b,

0=1° W]z3+ b,

where s,.max denotes max-pooling with strids,.

o F =] .
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 80/98

Deep CNNs

Backpropagation Phase

Let 1, 2 and ® denote the net gradient vectors at layets 1;2;3,
respectively, and let ® denote the net gradient vector at the output layer.

The output net gradient vector is obtained in the regular mer by computing the
partial derivatives of the loss function@x) and the activation function @ °):

°=@° @«
assuming that the output neurons are independent.

Since layell = 3 is fully connected to the output layer, and likewise the
max-pooling layet = 2 is fully connected tdZ 3, the net gradients at these layers
are computed as in a regular MLP

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 81/98

Deep CNNs

Backpropagation Phase

Let last step follows from the fact that@® 2= 1, since max-pooling implicitly uses
an identity activation function. Consider the net gradieni} at neuronzij1 in layer
I = 1 wherei;j=1;2; ;n;.

1_ 2 Loifi=i andj=]

! 0 otherwise

In other words, the net gradient at neurozﬁ1 in the convolution layer is zero if
this neuron does not have the maximum value in its window.

Otherwise, if it is the maximum, the net gradient backpropags from the
max-pooling layer to this neuron and is then multiplied byetpartial derivative of
the activation function.

The n; n; matrix of net gradients * comprises the net graidents;}L for all
j=12 ;n.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 82/98

Convolutional neural network

Input Convolution

Max-pooling

Convolution

Max-pooling Fully Connected Layers
g ~t~t—9
10
28 28 1 24 24 6

416
k4 5=
e 120 84

Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

CNN

Example

Figure shows a CNN for handwritten digit recognition. This CNdNtrained and
tested on the MNIST dataset, that contains 60,000 trainingiages and 10,000
test images. Some examples of handwritten digits from MNI&E shown in
gure.

Each input image is a 28 28 matrix of pixel values between 0 to 255, which are
divided by 255, so that each pixel lies in the intery@j1]. The corresponding
(true) output y; is a one-hot encoded binary vector that denotes a digit frorto0
9; the digit 0 is encoded as; = (1;0;0;0;0;0;0;0;0;0)T, the digit 1 as
e,=(0;1;0;0;0;0;0;0;0;0)", and so on.

In our CNN model, all the convolution layers use stride equabhe, and do not
use any padding, whereas all of the max-pooling layers usdesequal to the
window size. Since each input is a 288 pixels image of a digit with 1 channel
(grayscale), we haveg = 28 andmg = 1, and therefore, the inpuk = 2% is a

N hg mg=28 28 1tensor. The rst convolution layer uses; = 6 lters,
with k; = 5 and strides; = 1, without padding.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 84/98

CNN

Example

Thus, each Iterisa5 5 1 tensor of weights, and across the six lIters the
resulting layer = 1 tensorZ?! has size 24 24 6, with

n=n ki+1=28 5+ 1=24andm;= 6. The second hidden layer is a
max-pooling layer that usek, = 2 with a stride ofs, = 2.

Since max-pooling by default uses a xed el = 1, «, 1, the resulting tensor

Z? has size 12 12 6, with n, = E—; = 224 = 12, andm; = 6. The third layer
is a convolution layer withmgz = 16 channels, with a window size & = 5 (and
stride s3 = 1), resulting in the tensoiZ ® of size 8 8 16, where

ns=n, ks+1=12 5+ 1=38.

This is followed by another max-pooling layer thjat ygaes= 2 ands; = 2, which

yields the tensoZ * thatis 4 4 16, wheren, = E—j = % = 4, andmy = 16.

The next three layers are fully connected as in a regular MRR.of the

4 4 16= 256 neurons in layer= 4 are connected to laydr= 5, which has 120
neurons. ThusZ® is simply a vector of length 120, or it can be considered a
degenerate tensor of size 1201 1.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 85/98

CNN

Example

Layerl = 5 is also fully connected to layér= 6 with 84 neurons, which is the last
hidden layer. Since there are 10 digits, the output lagecomprises 10 neurons,
with softmax activation function. The convolution laye®® and Z 3, and the fully
connected layerg ® and Z°, all use ReLU activation.

We train the CNN model om = 60000 training images from the MNIST dataset;
we train for 15 epochs using step size= 0:2 and using cross-entropy error (Since
there are 10 classes).

Training was done using minibatches, using batch size of0LO8fter training the
CNN model, we evaluate it on the test dataset of 10,000 imagése CNN model
makes 147 errors on the test set, resulting in an error ratel @7%.

Figure shows examples of images that are misclassi ed byGhiN. We show the
true labely for each image and the predicted lab&l(converted back from the
one-hot encoding to the digit label). We show three exampigseach of the
labels. For example, the rst three images on the rst row af@er the case when
the true label isy = 0, and the next three examples are for true lalyet 1, and
so on. We can see that several of the misclassi ed images aigynincomplete or
erroneous, and hard to classify correctly even by a human.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 86/98

CNN

Example

For comparison, we also train a deep MLP with two (fully corted) hidden
layers with the same sizes as the two fully connected layefsre the output layer
in the CNN shown in gure.

Therefore, the MLP comprises the layeXs, Z°, 2, and o, with the input

28 28 images viewed as a vector of site 784. The rst hidden layer has size
n; = 120, the second hidden layer has size= 84, and the output layer has size
p= 10. We use RelLU activation function for all layers, excepé thutput, which
uses softmax. We train the MLP model for 15 epochs on the ti@jndataset with
n= 60000 images, using step size= 0:5. On the test dataset, the MLP made
264 errors, for an error rate of 2.64%.

Figure shows the number of errors on the test set after eachabpof training for
both the CNN and MLP model; the CNN model achieves signi carttigtter
accuracy than the MLP.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 87/98

MNIST: Incorrect predictions

. s s s s 5
1w 1 1 1 - 1
e 1 1 1 1 1
P m 2 2 2 P
2 2 2 2 2 2
[- e s s B e o R e

<
1l
N
o
I
o

y=20=8 y=20=7 y=30=2 y=30=5 y=30=8

<
1l
»
[}
I
N

y=40=

I
N
<
1l
»
[=)
1l
~

y=50=6

I
<
1
u
o
1
w
<
1
u
o
1
w

Zaki & Meir:

(RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 88/98

MNIST: Incorrect predictions

5 B s s s s
1 1 1 1 1 M
e 1 1 1 M 5
2| 2| M 2| 2| 2| 2|
2 = = s - =
TR B R R 65wk m E o s ko ® moE s W B m w6 s hm k m ® o 5 ko m m o ®

y=80=6 y=80=3 y=80=2 y=90

9;0

1
IN
<
1
©
o
|
o

o o o of of o
5| B B B B B
1 10 10 10 10 1
2 2) | 2| 2
2| 2| 2| 2| 25| 2

5 5 ®m ® ¢ 5 1 B ®m & ¢t W % m s 6 5 W 5 ®m & ¢ § B B m 5 6 5 0 5 ®m 5
Zaki & Meir: (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 89/98

MNIST: CNN versus Deep MLP

Prediction error as a function of epochs.

6,000

4,000

errors

2,000

Zaki & Meira

[m] = =
(RPI and UFMG) Data Mining and Machine Learning

Chapter 26: Deep Learning 90/98

Regularization

Regularization is an approach whereby we constrain the mhpdeameters to
reduce over tting, by reducing the variance at the cost otcheasing the bias
slightly. In general, for any learning mod#l, if L(y;¥) is some loss function for a
given inputx, and denotes all the model parameters, whefee M(xj) . The
learning objective is to nd the parameters that minimizegHoss over all
instances:

. Xn .
min J() = Lyi:9) = Ly M(xij))

i=1 i=1

>3

With regularization, we add a penalty on the parameters to obtain the
regularized objective:

) X0
min J() = Liyi;9)+ RO (14)

i=1

where 0 is the regularization constant.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 91/98

L2 Regularization for Deep Learning

We rst consider the case of a multilayer perceptron with ohielden layer, and
then generalize it to multiple hidden layers. The set of dletparameters of the
model are

= fWh;bn;Wo:bog
The L, regularized objective is therefore given as
minJ()= B+ 5 R,(WoiWn)= B+ KW k2 + KW okZ

The regularized objective tries to minimize the individwagights for pairs of
neurons between the input and hidden, and hidden and outpyets. This has
the e ect of adding some bias to the model, but possibly rethgcvariance, since
small weights are more robust to changes in the input dataennts of the
predicted output values. The gradient update rule using tiegularized weight
gradient matrix is given as

W, =W, rwo=Wo zZ .+ W, =W, W, z .
=(1) Wo z 4

[o]

L, regularization is also calledeight decay since the updated weight matrix uses
decayed weights from the previous step, using the decayofatt

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 92/98

Deep MLPs

Given the error functiork,, the L, regularized objective function is

minJ()= B+ 5 R, (WoiWiiiii

:Ex+

Kk W/
I=0
where the set of all the parameters of the model is

= fWyo;bo;Wq;by; ;Wy;bng. Based on the derivation for the one hidden
layer MLP from above, the regularized gradient is given as:

[rw=z (Y W |

(15)
and the update rule for weight matrices is

[wisw rw=a w200y | o
_forll = OI; 1; :h, where where ' is the net gradient vector for the hidden neuron:
in layerl.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning

Chapter 26: Deep Learning 93/98

Dropout Regularization

The idea behind dropout regularization is to randomly seteatain fraction of the
neuron values in a layer to zero during training time. The adsrto make the
network more robust and to avoid over tting at the same tim&y dropping
random neurons for each training point, the network is fald® not rely on any
speci ¢ set of edges.

From the perspective of a given neuron, since it cannot ralyatl its incoming
edges to be present, it has the e ect of not concentrating thight on specic
input edges, but rather the weight is spread out among theaming edges.

The net e ect is similar toL, regularization since weight spreading leads to small
weights on the edges. The resulting model with dropout isréfere more resilient
to small perturbations in the input, which can reduce oveirtg at a small price

in increased bias. However, note that whlle regularization directly changes the
objective function, dropout regularization is a form sfructural regularization

that does not change the objective function, but instead dgas the network
topology in terms of which connections are currently activeinactive.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 94/98

Dropout Regularization

MLP with One Hidden Layer

During the training phase, for each input, we create a random mask vector to
drop a fraction of the hidden neurons. Formally, le [0; 1] be the probability of
keeping a neuron, so that the dropout probability is Ir.

We create am-dimensional multivariate Bernoulli vectar 2 f 0;1g™, called the
masking vectareach of whose entries is 0 with dropout probability X, and 1
with probabilityr. Let u=(ug;up; ;uym)T, where

0 with probability 1 r
1 with probabilityr

The feed-forward step is then given as

z=1" by+ W, x
z=u z
0=1f° bo+ W, 2

where is the element-wise multiplication.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 95/98

Inverted Dropout

There is one complication in the basic dropout approach afyavamely, the
expected output of hidden layer neurons is di erent duringihing and testing,
since dropout is not applied during the testing phase (af&dli we do not want
the predictions to be randomly varying on a given test inpudyith r as the
probability of retaining a hidden neuron, its expected outalue is

E[z]=r z+(1 r) O=r1 Z

On the other hand, since there is no dropout at test time, thetputs of the
hidden neurons will be higher at testing time. So one ideacistale the hidden
neuron values by at testing time. On the other hand, there is a simpler apprbac
calledinverted dropoutthat does not need a change at testing time. The idea is
to rescale the hidden neurons after the dropout step durihg training phase, as
follows:

z=1 bp+ W, x
1
r

N
I

u z
o=f bo+W,z

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 96/98

Dropout in Deep MLPs

Dropout regularization for deep MLPs is done in a similar mannLetr, 2 [0;1],
for 1= 1;2; ;h denote the probability of retaining a hidden neuron for layeso
that 1 r is the dropout probability. One can also use a single ratr all the
layers by setting; = r. De ne the masking vector for hidden layér u' 2 f 0;1g™,
as follows:

(
- 0 with probability 1
1 with probabilityr,

The feed-forward step between layeand| + 1 is then given as

Z'=f b+w' 2!

1

2=> u
fi

. 17)

using inverted dropout.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 26: Deep Learning 97/98

Zaki & Meira Jr. (RPI and UFMG)

Data Mining and Machine Learning:

Fundamental Concepts and Algorithms
dataminingbook.info

Mohammed J. Zaki Wagner Meira J©?
1Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA
2Department of Computer Science

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 26: Deep Learning

Data Mining and Machine Learning

=

Chapter 26: Deep Learning

