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Input and Feature Space

For mining and analysis, it is important to find a suitable data representation. For
example, for complex data such as text, sequences, images, and so on, we must
typically extract or construct a set of attributes or features, so that we can
represent the data instances as multivariate vectors.

Given a data instance x (e.g., a sequence), we need to find a mapping φ, so that
φ(x) is the vector representation of x .

Even when the input data is a numeric data matrix a nonlinear mapping φ may be
used to discover nonlinear relationships.

The term input space refers to the data space for the input data x and feature

space refers to the space of mapped vectors φ(x).
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Sequence-based Features

Consider a dataset of DNA sequences over the alphabet Σ= {A,C ,G ,T}.
One simple feature space is to represent each sequence in terms of the probability
distribution over symbols in Σ. That is, given a sequence x with length |x |=m,
the mapping into feature space is given as

φ(x) = {P(A),P(C ),P(G ),P(T )}

where P(s) = ns
m

is the probability of observing symbol s ∈Σ, and ns is the
number of times s appears in sequence x .

For example, if x = ACAGCAGTA, with m= |x |= 9, since A occurs four times, C
and G occur twice, and T occurs once, we have

φ(x) = (4/9,2/9,2/9,1/9) = (0.44,0.22,0.22,0.11)

We can compute larger feature spaces by considering, for example, the probability
distribution over all substrings or words of size up to k over the alphabet Σ.
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Nonlinear Features

Consider the mapping φ that takes as input a vector x = (x1,x2)
T ∈R

2 and maps
it to a “quadratic” feature space via the nonlinear mapping

φ(x) = (x2
1 ,x

2
2 ,
√

2x1x2)
T ∈R

3

For example, the point x = (5.9,3)T is mapped to the vector

φ(x) = (5.92,32,
√

2 · 5.9 · 3)T = (34.81,9,25.03)T

We can then apply well-known linear analysis methods in the feature space.
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Kernel Method

Let I denote the input space, which can comprise any arbitrary set of objects, and let
D = {x i}ni=1 ⊂ I be a dataset comprising n objects in the input space. Let φ : I →F be
a mapping from the input space I to the feature space F .

Kernel methods avoid explicitly transforming each point x in the input space into the
mapped point φ(x) in the feature space. Instead, the input objects are represented via
their pairwise similarity values comprising the n× n kernel matrix, defined as

K =











K (x1,x1) K (x1,x2) · · · K (x1,xn)
K (x2,x1) K (x2,x2) · · · K (x2,xn)

...
...

. . .
...

K (xn,x1) K (xn,x2) · · · K (xn,xn)











K : I ×I →R is a kernel function on any two points in input space, which should satisfy
the condition

K (x i ,x j ) = φ(x i )
T
φ(x j )

Intuitively, we need to be able to compute the value of the dot product using the original
input representation x , without having recourse to the mapping φ(x).
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Linear Kernel

Let φ(x)→ x be the identity kernel. This leads to the linear kernel, which is
simply the dot product between two input vectors:

φ(x)Tφ(y) = xTy =K (x ,y)

For example, if x1 =
(

5.9 3
)T

and x2 =
(

6.9 3.1
)T

, then we have

K (x1,x2) = xT
1 x2 = 5.9× 6.9+ 3× 3.1 = 40.71+ 9.3= 50.01

4.5 5.0 5.5 6.0 6.5
2

2.5

3.0

X1

X2

bC
x1 bC

x2

bC
x3

bC x4

bC
x5

K x1 x2 x3 x4 x5

x1 43.81 50.01 47.64 36.74 42.00
x2 50.01 57.22 54.53 41.66 48.22
x3 47.64 54.53 51.97 39.64 45.98
x4 36.74 41.66 39.64 31.40 34.64
x5 42.00 48.22 45.98 34.64 40.84
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Kernel Trick

Many data mining methods can be kernelized that is, instead of mapping the
input points into feature space, the data can be represented via the n× n kernel
matrix K , and all relevant analysis can be performed over K .

This is done via the kernel trick, that is, show that the analysis task requires only
dot products φ(x i )

Tφ(x j) in feature space, which can be replaced by the
corresponding kernel K (x i ,x j) = φ(x i )

Tφ(x j) that can be computed efficiently in
input space.

Once the kernel matrix has been computed, we no longer even need the input
points x i , as all operations involving only dot products in the feature space can be
performed over the n× n kernel matrix K .
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Kernel Matrix

A function K is called a positive semidefinite kernel if and only if it is
symmetric:

K (x i ,x j) =K (x j ,x i )

and the corresponding kernel matrix K for any subset D ⊂ I is positive
semidefinite, that is,

aTKa ≥ 0, for all vectors a ∈R
n

which implies that
n

∑

i=1

n
∑

j=1

aiajK (x i ,x j)≥ 0, for all ai ∈R, i ∈ [1,n]
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Dot Products and Positive Semi-definite Kernels

Positive Semidefinite Kernel

If K (x i ,x j ) represents the dot product φ(x i )
Tφ(x j) in some feature space, then K is a

positive semidefinite kernel.

First, K is symmetric since the dot product is symmetric, which also implies that K is
symmetric.

Second, K is positive semidefinite because

a
T
Ka =

n
∑

i=1

n
∑

j=1

aiajK (x i ,x j)

=

n
∑

i=1

n
∑

j=1

aiajφ(x i )
T
φ(x j )

=

(

n
∑

i=1

aiφ(x i )

)T




n
∑

j=1

ajφ(x j )





=

∥

∥

∥

∥

∥

n
∑

i=1

aiφ(x i )

∥

∥

∥

∥

∥

2

≥ 0
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Empirical Kernel Map

We now show that if we are given a positive semidefinite kernel K : I ×I →R,
then it corresponds to a dot product in some feature space F .

Define the map φ as follows:

φ(x) =
(

(K (x1,x),K (x2,x), . . . ,K (xn,x)
)T

∈R
n

The empirical kernel map is defined as

φ(x) =K−1/2 ·
(

(K (x1,x),K (x2,x), . . . ,K (xn,x)
)T

∈R
n

so that the dot product yields

φ(x i)
Tφ(x j) =

(

K−1/2 K i

)T(

K−1/2 K j

)

=KT
i

(

K−1/2K−1/2
)

K j

=KT
i K−1 K j

where K i is the ith column of K . Over all pairs of mapped points, we have
{

KT
i K−1 K j

}n

i,j=1
=K K−1 K =K
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Data-specific Mercer Kernel Map

The Mercer kernel map also corresponds to a dot product in feature space.

Since K is a symmetric positive semidefinite matrix, it has real and non-negative
eigenvalues. It can be decomposed as follows:

K =UΛU
T

where U is the orthonormal matrix of eigenvectors u i = (ui1,ui2, . . . ,uin)
T ∈R

n

(for i = 1, . . . ,n), and Λ is the diagonal matrix of eigenvalues, with both arranged in
non-increasing order of the eigenvalues λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0:
The Mercer map φ is given as

φ(x i ) =
√
ΛU i

where U i is the ith row of U .
The kernel value is simply the dot product between scaled rows of U :

φ(x i )
T
φ(x j) =

(√
ΛU i

)T (√
ΛU j

)

=U
T
i ΛU j
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Polynomial Kernel

Polynomial kernels are of two types: homogeneous or inhomogeneous.

Let x ,y ∈R
d . The (inhomogeneous) polynomial kernel is defined as

Kq(x ,y) = φ(x)Tφ(y) = (c + x
T
y)q

where q is the degree of the polynomial, and c ≥ 0 is some constant. When c = 0 we
obtain the homogeneous kernel, comprising only degree q terms. When c > 0, the
feature space is spanned by all products of at most q attributes.
This can be seen from the binomial expansion

Kq(x ,y) = (c + x
T
y)q =

q
∑

k=1

(

q

k

)

c
q−k

(

x
T
y
)k

The most typical cases are the linear (with q = 1) and quadratic (with q = 2) kernels,
given as

K1(x ,y) = c + x
T
y

K2(x ,y) = (c + x
T
y)2
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Gaussian Kernel

The Gaussian kernel, also called the Gaussian radial basis function (RBF) kernel,
is defined as

K (x ,y) = exp

{

−‖x − y‖2

2σ2

}

where σ > 0 is the spread parameter that plays the same role as the standard
deviation in a normal density function.

Note that K (x ,x) = 1, and further that the kernel value is inversely related to the
distance between the two points x and y .

A feature space for the Gaussian kernel has infinite dimensionality.
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Basic Kernel Operations in Feature Space

Basic data analysis tasks that can be performed solely via kernels, without
instantiating φ(x).

Norm of a Point: We can compute the norm of a point φ(x) in feature space as
follows:

‖φ(x)‖2
= φ(x)Tφ(x) =K (x ,x)

which implies that ‖φ(x)‖=
√

K (x ,x).

Distance between Points: The distance between φ(x i ) and φ(x j) is

‖φ(x i )−φ(x j)‖2
= ‖φ(x i )‖2

+ ‖φ(x j)‖2 − 2φ(x i)
Tφ(x j)

=K (x i ,x i )+K (x j ,x j)− 2K (x i ,x j)

which implies that

‖φ(x i )−φ(x j)‖=
√

K (x i ,x i )+K (x j ,x j)− 2K (x i ,x j)
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Basic Kernel Operations in Feature Space

Kernel Value as Similarity: We can rearrange the terms in

‖φ(x i )−φ(x j)‖2
=K (x i ,x i )+K (x j ,x j)− 2K (x i ,x j)

to obtain

1

2

(

‖φ(x i )‖2 + ‖φ(x j)‖2 −‖φ(x i )−φ(x j)‖2
)

=K (x i ,x j) = φ(x i)
Tφ(x j)

The more the distance ‖φ(x i)−φ(x j)‖ between the two points in feature space,

the less the kernel value, that is, the less the similarity.

Mean in Feature Space: The mean of the points in feature space is given as
µφ = 1/n

∑n

i=1φ(x i). Thus, we cannot compute it explicitly. However, the the
squared norm of the mean is:

‖µφ‖2 =µ
T
φµφ =

1

n2

n
∑

i=1

n
∑

j=1

K (x i ,x j)

The squared norm of the mean in feature space is simply the average of the values
in the kernel matrix K .
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Basic Kernel Operations in Feature Space

Total Variance in Feature Space: The total variance in feature space is obtained by
taking the average squared deviation of points from the mean in feature space:

σ
2

φ =
1

n

n
∑

i=1

‖φ(x i )−µφ‖2 =
1

n

n
∑

i=1

K (x i ,x i )−
1

n2

n
∑

i=1

n
∑

j=1

K (x i ,x j )

Centering in Feature Space We can center each point in feature space by subtracting
the mean from it, as follows:

φ̂(x i ) = φ(x i )−µφ

The kernel between centered points is given as

K̂ (x i ,x j) = φ̂(x i )
T
φ̂(x j)

=K (x i ,x j )−
1

n

n
∑

k=1

K (x i ,xk)−
1

n

n
∑

k=1

K (x j ,xk)+
1

n2

n
∑

a=1

n
∑

b=1

K (xa,xb)

More compactly, we have:

K̂ =

(

I − 1

n
1n×n

)

K

(

I − 1

n
1n×n

)

where 1n×n is the n× n matrix of ones.
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Basic Kernel Operations in Feature Space

Normalizing in Feature Space: The dot product between normalized points in
feature space corresponds to the cosine of the angle between them

φn(x i)
Tφn(x j) =

φ(x i )
Tφ(x j)

‖φ(x i)‖ · ‖φ(x j)‖
= cosθ

If the mapped points are both centered and normalized, then a dot product
corresponds to the correlation between the two points in feature space.

The normalized kernel matrix, K n, can be computed using only the kernel
function K , as

K n(x i ,x j) =
φ(x i )

Tφ(x j)

‖φ(x i)‖ · ‖φ(x j)‖
=

K (x i ,x j)
√

K (x i ,x i ) ·K (x j ,x j)

K n has all diagonal elements as 1.
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Spectrum Kernel for Strings

Given alphabet Σ, the l-spectrum feature map is the mapping φ : Σ∗ →R
|Σ|l from the set

of substrings over Σ to the |Σ|l -dimensional space representing the number of
occurrences of all possible substrings of length l , defined as

φ(x) =
(

· · · ,#(α), · · ·
)T

α∈Σl

where #(α) is the number of occurrences of the l-length string α in x .

The (full) spectrum map considers all lengths from l = 0 to l =∞, leading to an infinite
dimensional feature map φ : Σ∗ →R

∞:

φ(x) =
(

· · · ,#(α), · · ·
)T

α∈Σ∗

where #(α) is the number of occurrences of the string α in x .

The (l-)spectrum kernel between two strings x i ,x j is simply the dot product between
their (l-)spectrum maps:

K (x i ,x j) = φ(x i )
T
φ(x j)

The (full) spectrum kernel can be computed efficiently via suffix trees in O(n+m) time
for two strings of length n and m.
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Diffusion Kernels on Graph Nodes

Let S be some symmetric similarity matrix between nodes of a graph G = (V ,E ).
For instance, S can be the (weighted) adjacency matrix A or the Laplacian matrix
L=A−∆ (or its negation), where ∆ is the degree matrix for an undirected graph
G , defined as ∆(i , i) = di and ∆(i , j) = 0 for all i 6= j , and di is the degree of
node i .

Power Kernels: Summing up the product of the base similarities over all l-length
paths between two nodes, we obtain the l-length similarity matrix S(l), which is
simply the lth power of S , that is,

S(l) = S l

Even path lengths lead to positive semidefinite kernels, but odd path lengths are
not guaranteed to do so, unless the base matrix S is itself a positive semidefinite
matrix.

Power kernel K can be obtained via the eigen-decomposition of S l :

K = S l =
(

UΛUT
)l
=U

(

Λl
)

UT
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Exponential Diffusion Kernel

The exponential diffusion kernel we can obtain a new kernel between nodes of a graph by
paths of all possible lengths, but damps the contribution of longer paths

K =

∞
∑

l=0

1

l!
β
l
S
l

= I +βS +
1

2!
β

2
S

2 +
1

3!
β

3
S

3 + · · ·

= exp
{

βS
}

where β is a damping factor, and exp{βS} is the matrix exponential. The series on the
right hand side above converges for all β ≥ 0.

Substituting S=UΛUT the kernel can be computed as

K = I +βS +
1

2!
β

2
S

2 + · · ·

=U











exp{βλ1} 0 · · · 0
0 exp{βλ2} · · · 0
...

...
. . . 0

0 0 · · · exp{βλn}











U
T

where λi is an eigenvalue of S .
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Von Neumann Diffusion Kernel

The von Neumann diffusion kernel is defined as

K =

∞
∑

l=0

β lS l

where β ≥ 0. Expanding and rearranging the terms, we obtain

K = (I −βS)−1

The kernel is guaranteed to be positive semidefinite if |β|< 1/ρ(S), where
ρ(S) = maxi{|λi |} is called the spectral radius of S , defined as the largest
eigenvalue of S in absolute value.
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Graph Diffusion Kernel: Example

v1

v4 v5

v3 v2

Adjacency and degree matrices are given as

A=













0 0 1 1 0
0 0 1 0 1
1 1 0 1 0
1 0 1 0 1
0 1 0 1 0













∆=













2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2












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Graph Diffusion Kernel: Example

Let the base similarity matrix S be the negated Laplacian matrix

S =−L=A−D =













−2 0 1 1 0
0 −2 1 0 1
1 1 −3 1 0
1 0 1 −3 1
0 1 0 1 −2













The eigenvalues of S are as follows:

λ1 = 0 λ2 =−1.38 λ3 =−2.38 λ4 =−3.62 λ5 =−4.62

and the eigenvectors of S are

U =

















u1 u2 u3 u4 u5

0.45 −0.63 0.00 0.63 0.00
0.45 0.51 −0.60 0.20 −0.37
0.45 −0.20 −0.37 −0.51 0.60
0.45 −0.20 0.37 −0.51 −0.60
0.45 0.51 0.60 0.20 0.37
















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Graph Diffusion Kernel: Example

Assuming β = 0.2, the exponential diffusion kernel matrix is given as

K = exp
{

0.2S
}

=U











exp{0.2λ1} 0 · · · 0
0 exp{0.2λ2} · · · 0
...

...
. . . 0

0 0 · · · exp{0.2λn}











UT

=













0.70 0.01 0.14 0.14 0.01
0.01 0.70 0.13 0.03 0.14
0.14 0.13 0.59 0.13 0.03
0.14 0.03 0.13 0.59 0.13
0.01 0.14 0.03 0.13 0.70













Assuming β = 0.2, the von Neumann kernel is given as

K =U(I − 0.2Λ)−1UT =













0.75 0.02 0.11 0.11 0.02
0.02 0.74 0.10 0.03 0.11
0.11 0.10 0.66 0.10 0.03
0.11 0.03 0.10 0.66 0.10
0.02 0.11 0.03 0.10 0.74












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