
Data Mining and Machine Learning:

Fundamental Concepts and Algorithms
dataminingbook.info

Mohammed J. Zaki1 Wagner Meira Jr.2

1Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA

2Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 8: Itemset Mining

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 1 / 34

Frequent Itemset Mining

In many applications one is interested in how often two or more objects of interest
co-occur, the so-called itemsets.

The prototypical application was market basket analysis, that is, to mine the sets
of items that are frequently bought together at a supermarket by analyzing the
customer shopping carts (the so-called “market baskets”).

Frequent itemset mining is a basic exploratory mining task, since the since the
basic operation is to find the co-occurrence, which gives an estimate for the joint
probability mass function.

Once we mine the frequent sets, they allow us to extract association rules among
the itemsets, where we make some statement about how likely are two sets of
items to co-occur or to conditionally occur.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 2 / 34

Frequent Itemsets: Terminology

Itemsets: Let I = {x1,x2, . . . ,xm} be a set of elements called items. A set X ⊆ I
is called an itemset. An itemset of cardinality (or size) k is called a k-itemset.
Further, we denote by I(k) the set of all k-itemsets, that is, subsets of I with size
k .

Tidsets: Let T = {t1, t2, . . . , tn} be another set of elements called transaction
identifiers or tids. A set T ⊆ T is called a tidset. Itemsets and tidsets are kept
sorted in lexicographic order.

Transactions: A transaction is a tuple of the form 〈t,X 〉, where t ∈ T is a unique
transaction identifier, and X is an itemset.

Database: A binary database D is a binary relation on the set of tids and items,
that is, D ⊆ T ×I. We say that tid t ∈ T contains item x ∈ I iff (t,x) ∈D. In
other words, (t,x) ∈D iff x ∈ X in the tuple 〈t,X 〉. We say that tid t contains

itemset X = {x1,x2, . . . ,xk} iff (t,xi) ∈D for all i = 1,2, . . . ,k .

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 3 / 34

Database Representation

Let 2X denote the powerset of X , that is, the set of all subsets of X . Let
i : 2T → 2I be a function, defined as follows:

i (T) = {x | ∀t ∈ T , t contains x}

where T ⊆T , and i (T) is the set of items that are common to all the transactions
in the tidset T . In particular, i (t) is the set of items contained in tid t ∈ T .

Let t : 2I → 2T be a function, defined as follows:

t(X) = {t | t ∈ T and t contains X} (1)

where X ⊆ I, and t(X) is the set of tids that contain all the items in the itemset
X . In particular, t(x) is the set of tids that contain the single item x ∈ I.

The binary database D can be represented as a horizontal or transaction database

consisting of tuples of the form 〈t, i (t)〉, with t ∈ T .

The binary database D can also be represented as a vertical or tidset database

containing a collection of tuples of the form 〈x ,t(x)〉, with x ∈ I.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 4 / 34

Binary Database: Transaction and Vertical Format

D A B C D E

1 1 1 0 1 1

2 0 1 1 0 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 1

6 0 1 1 1 0

t i (t)
1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

t(x)
A B C D E

1 1 2 1 1
3 2 4 3 2
4 3 5 5 3
5 4 6 6 4

5 5
6

Binary Database Transaction Database Vertical Database

This dataset D has 5 items, I = {A,B ,C ,D,E} and 6 tids T = {1,2,3,4,5,6}.

The the first transaction is 〈1,{A,B ,D,E}〉, where we omit item C since
(1,C) 6∈D. Henceforth, for convenience, we drop the set notation for itemsets and
tidsets. Thus, we write 〈1,{A,B ,D,E}〉 as 〈1,ABDE 〉.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 5 / 34

Support and Frequent Itemsets

The support of an itemset X in a dataset D, denoted sup(X), is the number of
transactions in D that contain X :

sup(X) =
∣

∣{t | 〈t, i (t)〉 ∈D and X ⊆ i (t)}
∣

∣= |t(X)|

The relative support of X is the fraction of transactions that contain X :

rsup(X) =
sup(X)

|D|

It is an estimate of the joint probability of the items comprising X .

An itemset X is said to be frequent in D if sup(X)≥minsup, where minsup is a
user defined minimum support threshold.

The set F to denotes the set of all frequent itemsets, and F (k) denotes the set of
frequent k-itemsets.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 6 / 34

Frequent Itemsets
Minimum support: minsup = 3

t i (t)
1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

sup itemsets
6 B

5 E ,BE

4 A,C ,D,AB,AE ,BC ,BD,ABE

3 AD,CE ,DE ,ABD,ADE ,BCE ,BDE ,ABDE

Transaction Database Frequent Itemsets

The 19 frequent itemsets shown in the table comprise the set F . The sets of all frequent
k-itemsets are

F (1) = {A,B,C ,D,E}

F (2) = {AB,AD,AE ,BC ,BD,BE ,CE ,DE}

F (3) = {ABD,ABE ,ADE ,BCE ,BDE}

F (4) = {ABDE}

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 7 / 34

Itemset Mining Algorithms: Brute Force

The brute-force algorithm enumerates all the possible itemsets X ⊆ I, and for each such
subset determines its support in the input dataset D. The method comprises two main
steps: (1) candidate generation and (2) support computation.

Candidate Generation: This step generates all the subsets of I, which are called
candidates, as each itemset is potentially a candidate frequent pattern. The candidate
itemset search space is clearly exponential because there are 2|I| potentially frequent
itemsets.

Support Computation: This step computes the support of each candidate pattern X and
determines if it is frequent. For each transaction 〈t, i (t)〉 in the database, we determine
if X is a subset of i (t). If so, we increment the support of X .

Computational Complexity: Support computation takes time O(|I| · |D|) in the worst
case, and because there are O(2|I|) possible candidates, the computational complexity of
the brute-force method is O(|I| · |D| · 2|I|).

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 8 / 34

Brute Force Algorithm

BruteForce (D, I, minsup):
1 F ← ∅ // set of frequent itemsets

2

3 foreach X ⊆ I do
4 sup(X) ← ComputeSupport (X ,D)
5 if sup(X)≥minsup then
6 F ←F ∪

{

(X ,sup(X))
}

7 return F

ComputeSupport (X ,D):
1 sup(X)← 0
2 foreach 〈t, i (t)〉 ∈D do
3 if X ⊆ i (t) then
4 sup(X)← sup(X)+ 1

5 return sup(X)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 9 / 34

Itemset lattice and prefix-based search tree

Itemset search space is a lattice
where any two itemsets X and Y

are connected by a link iff X is an
immediate subset of Y , that is,
X ⊆ Y and |X |= |Y |− 1.

Frequent itemsets can enumerated
using either a BFS or DFS search
on the pref ix tree, where two
itemsets X ,Y are connected by a
link iff X is an immediate subset
and prefix of Y . This allows one to
enumerate itemsets starting with
an empty set, and adding one more
item at a time.

∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 10 / 34

Level-wise Approach: Apriori Algorithm

If X ⊆ Y , then sup(X)≥ sup(Y), which leads to the following two observations:
(1) if X is frequent, then any subset Y ⊆ X is also frequent, and (2) if X is not
frequent, then any superset Y ⊇ X cannot be frequent.

The Apriori algorithm utilizes these two properties to significantly improve the
brute-force approach. It employs a level-wise or breadth-first exploration of the
itemset search space, and prunes all supersets of any infrequent candidate, as no
superset of an infrequent itemset can be frequent. It also avoids generating any
candidate that has an infrequent subset.

In addition to improving the candidate generation step via itemset pruning, the
Apriori method also significantly improves the I/O complexity. Instead of counting
the support for a single itemset, it explores the prefix tree in a breadth-first
manner, and computes the support of all the valid candidates of size k that
comprise level k in the prefix tree.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 11 / 34

The Apriori Algorithm

Apriori (D, I, minsup):
1 F ← ∅

2 C(1)←{∅} // Initial prefix tree with single items

3 foreach i ∈ I do Add i as child of ∅ in C(1) with sup(i)← 0
4 k← 1 // k denotes the level

5 while C(k) 6= ∅ do

6 ComputeSupport (C(k),D)

7 foreach leaf X ∈ C(k) do
8 if sup(X)≥minsup then F ←F ∪

{

(X ,sup(X))
}

9 else remove X from C(k)

10 C(k+1)← ExtendPrefixTree (C(k))
11 k← k + 1

12 return F (k)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 12 / 34

Apriori Algorithm

ComputeSupport (C(k),D):
1 foreach 〈t, i (t)〉 ∈D do
2 foreach k-subset X ⊆ i (t) do
3 if X ∈ C(k) then sup(X)← sup(X)+ 1

ExtendPrefixTree (C(k)):
1 foreach leaf Xa ∈ C

(k) do
2 foreach leaf Xb ∈ sibling(Xa),such that b > a do
3 Xab← Xa ∪Xb

// prune if there are any infrequent subsets

4 if Xj ∈ C
(k), for all Xj ⊂ Xab, such that |Xj |= |Xab|− 1 then

5 Add Xab as child of Xa with sup(Xab)← 0

6 if no extensions from Xa then
7 remove Xa and its ancestors with no extensions from C(k)

8 return C(k)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 13 / 34

Itemset Mining: Apriori Algorithm
Infrequent itemsets in gray

D C(1)

t i (t)
1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

∅(6)

A(4) B(6) C (4) D(4) E (5)

C(2)

∅(6)

A(4)

AB(4) AC (2) AD(3) AE (4)

B(6)

BC (4) BD(4) BE (5)

C (4)

CD(2) CE (3)

D(4)

DE (3)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 14 / 34

Itemset Mining: Apriori Algorithm

C(3)

∅(6)

A(4)

AB(4)

ABD(3) ABE (4)

AD(3)

ADE (3)

B(6)

BC (4)

BCE (3)

BD(4)

BDE (3)

C(4)

∅(6)

A(4)

AB(4)

ABD(3)

ABDE (3)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 15 / 34

Apriori Algorithm: Prefix Search Tree and Pruning

∅

A(4) B(6) C (4) D(4) E (5)

AB(4) AC (2) AD(3) AE (4) BC (4) BD(4) BE (5) CD(2) CE (3) DE (3)

ABC ABD(3) ABE (4) ACD ACE ADE (3) BCD BCE (3) BDE (3) CDE

ABCD ABCE ABDE (3) ACDE BCDE

ABCDE

Level 1

Level 2

Level 3

Level 4

Level 5

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 16 / 34

Apriori Algorithm: Details

Let C(k) denote the prefix tree comprising all the candidate k-itemsets.

Apriori begins by inserting the single items into an initially empty prefix tree to populate
C(1).

The support for the current candidates is obtained via ComputeSupport procedure that
generates k-subsets of each transaction in the database D, and for each such subset it
increments the support of the corresponding candidate in C(k) if it exists. Next, we
remove any infrequent candidate.

The leaves of the prefix tree that survive comprise the set of frequent k-itemsets F (k),
which are used to generate the candidate (k + 1)-itemsets for the next level. The
ExtendPrefixTree procedure employs prefix-based extension for candidate generation.
Given two frequent k-itemsets Xa and Xb with a common k − 1 length prefix, that is,
given two sibling leaf nodes with a common parent, we generate the (k + 1)-length
candidate Xab = Xa ∪Xb. This candidate is retained only if it has no infrequent subset.
Finally, if a k-itemset Xa has no extension, it is pruned from the prefix tree, and we
recursively prune any of its ancestors with no k-itemset extension, so that in C(k) all
leaves are at level k.

If new candidates were added, the whole process is repeated for the next level. This
process continues until no new candidates are added.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 17 / 34

Tidset Intersection Approach: Eclat Algorithm

The support counting step can be improved significantly if we can index the
database in such a way that it allows fast frequency computations.

The Eclat algorithm leverages the tidsets directly for support computation. The
basic idea is that the support of a candidate itemset can be computed by
intersecting the tidsets of suitably chosen subsets. In general, given t(X) and
t(Y) for any two frequent itemsets X and Y , we have

t(XY) = t(X)∩ t(Y)

The support of candidate XY is simply the cardinality of t(XY), that is,
sup(XY) = |t(XY)|.

Eclat intersects the tidsets only if the frequent itemsets share a common prefix,
and it traverses the prefix search tree in a DFS-like manner, processing a group of
itemsets that have the same prefix, also called a pref ix equivalence class.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 18 / 34

Eclat Algorithm

// Initial Call: F ← ∅,P←
{

〈i ,t(i)〉 | i ∈ I, |t(i)| ≥minsup
}

Eclat (P, minsup, F):
1 foreach 〈Xa,t(Xa)〉 ∈ P do
2 F ←F ∪

{

(Xa,sup(Xa))
}

3 Pa←∅
4 foreach 〈Xb,t(Xb)〉 ∈ P , with Xb > Xa do
5 Xab = Xa ∪Xb

6 t(Xab) = t(Xa)∩ t(Xb)
7 if sup(Xab)≥minsup then
8 Pa← Pa ∪

{

〈Xab,t(Xab)〉
}

9 if Pa 6= ∅ then Eclat (Pa, minsup, F)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 19 / 34

Eclat Algorithm: Tidlist Intersections
Infrequent itemsets in gray

∅

A

1345

AB

1345

ABD

135

ABDE

135

ABE

1345

AC

45
AD

135

ADE

135

AE

1345

B

123456

BC

2456

BCD

56
BCE

245

BD

1356

BDE

135

BE

12345

C

2456

CD

56
CE

245

D

1356

DE

135

E

12345

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 20 / 34

Diffsets: Difference of Tidsets

The Eclat algorithm can be significantly improved if we can shrink the size of the
intermediate tidsets. This can be achieved by keeping track of the differences in
the tidsets as opposed to the full tidsets.

Let Xa = {x1, . . . ,xk−1,xa} and Xb = {x1, . . . ,xk−1,xb}, so that
Xab = Xa ∪Xb = {x1, . . . ,xk−1,xa,xb}.

The diffset of Xab is the set of tids that contain the prefix Xa, but not the item Xb

d (Xab) = t(Xa) \ t(Xab) = t(Xa) \ t(Xb)

We can obtain an expression for d (Xab) in terms of d (Xa) and d (Xb) as follows:

d (Xab) = d (Xb) \d (Xa)

which means that we can replace all intersection operations in Eclat with diffset
operations.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 21 / 34

Diffsets: Difference of Tidsets

Given T = 123456:

d (A) = T \ 1345= 26 d (B) = T \ 123456= ∅

d (C) = T \ 2456= 13 d (D) = T \ 1356= 24

d (E) = T \ 12345= 6

For instance, the diffsets of AB and AC are given as

d (AB) = d (B) \d (A) = ∅ \ {2,6}= ∅

d (AC) = d (C) \d (A) = {1,3} \ {2,6}= 13

and their support values are

sup(AB) = sup(A)−|d (AB)|= 4− 0= 4

sup(AC) = sup(A)−|d (AC)|= 4− 2= 2

The new prefix equivalence class PA is:

PA =
{

〈AB,∅,4〉,〈AD,4,3〉,〈AE ,∅,4〉
}

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 22 / 34

Algorithm dEclat

// Initial Call: F ← ∅,

P←
{

〈i ,d (i),sup(i)〉 | i ∈ I,d (i) = T \ t(i),sup(i)≥minsup
}

dEclat (P, minsup, F):
1 foreach 〈Xa,d (Xa),sup(Xa)〉 ∈ P do
2 F ←F ∪

{

(Xa,sup(Xa))
}

3 Pa←∅
4 foreach 〈Xb,d (Xb),sup(Xb)〉 ∈ P , with Xb > Xa do
5 Xab = Xa ∪Xb

6 d (Xab) = d (Xb) \d (Xa)
7 sup(Xab) = sup(Xa)−|d (Xab)|
8 if sup(Xab)≥minsup then
9 Pa← Pa ∪

{

〈Xab,d (Xab),sup(Xab)〉
}

10 if Pa 6= ∅ then dEclat (Pa, minsup, F)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 23 / 34

dEclat Algorithm: Diffsets
support shown within brackets; infrequent itemsets in gray

∅

A

(4)
26

AB

(4)
∅

ABD

(3)
4

ABDE

(3)
∅

ABE

(4)
∅

AC

(2)
13

AD

(3)
4

ADE

(3)
∅

AE

(4)
∅

B

(6)
∅

BC

(4)
13

BCD

(2)
24

BCE

(3)
6

BD

(4)
24

BDE

(3)
6

BE

(5)
6

C

(4)
13

CD

(2)
24

CE

(3)
6

D

(4)
24

DE

(3)
6

E

(5)
6

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 24 / 34

Frequent Pattern Tree Approach: FPGrowth Algorithm

The FPGrowth method indexes the database for fast support computation via the
use of an augmented prefix tree called the frequent pattern tree (FP-tree).

Each node in the tree is labeled with a single item, and each child node represents
a different item. Each node also stores the support information for the itemset
comprising the items on the path from the root to that node.

The FP-tree is constructed as follows. Initially the tree contains as root the null
item ∅. Next, for each tuple 〈t,X 〉 ∈D, where X = i (t), we insert the itemset X
into the FP-tree, incrementing the count of all nodes along the path that
represents X .

If X shares a prefix with some previously inserted transaction, then X will follow
the same path until the common prefix. For the remaining items in X , new nodes
are created under the common prefix, with counts initialized to 1. The FP-tree is
complete when all transactions have been inserted.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 25 / 34

Frequent Pattern Tree

The FP-tree is a prefix compressed representation of D. For most compression
items are sorted in descending order of support.

Transactions
BEAD
BEC
BEAD
BEAC
BEACD
BCD

∅(1)

B(1)

E (1)

A(1)

D(1)

∅(2)

B(2)

E (2)

A(1)

D(1)

C (1)

∅(3)

B(3)

E (3)

A(2)

D(2)

C (1)

∅(4)

B(4)

E (4)

A(3)

C (1) D(2)

C (1)

∅(5)

B(5)

E (5)

A(4)

C (2)

D(1)

D(2)

C (1)

∅(6)

B(6)

C (1)

D(1)

E (5)

A(4)

C (2)

D(1)

D(2)

C (1)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 26 / 34

FPGrowth Algorithm: Rationale

Given an FP-tree R , projected FP-trees are built for each frequent item i in R in
increasing order of support in a recursive manner.

To project R on item i , we find all the occurrences of i in the tree, and for each
occurrence, we determine the corresponding path from the root to i . The count of
item i on a given path is recorded in cnt(i) and the path is inserted into the new
projected tree RX , where X is the itemset obtained by extending the prefix P with
the item i . While inserting the path, the count of each node in RX along the given
path is incremented by the path count cnt(i).

The base case for the recursion happens when the input FP-tree R is a single
path. FP-trees that are paths are handled by enumerating all itemsets that are
subsets of the path, with the support of each such itemset being given by the least
frequent item in it.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 27 / 34

FPGrowth Algorithm

// Initial Call: R← FP-tree(D), P←∅, F ← ∅
FPGrowth (R, P, F , minsup):

1 Remove infrequent items from R

2 if IsPath(R) then // insert subsets of R into F

3 foreach Y ⊆ R do
4 X ← P ∪Y
5 sup(X)←minx∈Y {cnt(x)}

6 F ←F ∪
{

(X ,sup(X))
}

7 else // process projected FP-trees for each frequent item i

8 foreach i ∈ R in increasing order of sup(i) do
9 X ← P ∪{i}

10 sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i

11

12 F ←F ∪
{

(X ,sup(X))
}

13 RX ←∅ // projected FP-tree for X

14

15 foreach path ∈ PathFromRoot(i) do
16 cnt(i)← count of i in path

17 Insert path, excluding i , into FP-tree RX with count cnt(i)

18 if RX 6= ∅ then FPGrowth (RX , X , F , minsup)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 28 / 34

Projected Frequent Pattern Tree for D

FP-Tree Add BC ,cnt = 1 Add BEAC ,cnt = 1 Add BEA,cnt = 2
∅(6)

B(6)

C (1)

D(1)

E (5)

A(4)

C (2)

D(1)

D(2)

C (1)

∅(1)

B(1)

C (1)

∅(2)

B(2)

C (1) E (1)

A(1)

C (1)

∅(4)

B(4)

C (1) E (3)

A(3)

C (1)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 29 / 34

FPGrowth Algorithm: Frequent Pattern Tree Projection

∅(6)

B(6)

C (1)

D(1)

E (5)

A(4)

C (2)

D(1)

D(2)

C (1)

∅(4)

B(4)

C (1) E (3)

A(3)

C (1)

∅(4)

B(4)

E (3)

A(2)

∅(4)

B(4)

E (4)

∅(5)

B(5)

RD RC RA RE

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 30 / 34

Association Rules

An association rule is an expression

X
s,c
−→ Y

where X and Y are itemsets and they are disjoint, that is, X ,Y ⊆ I, and
X ∩Y = ∅. Let the itemset X ∪Y be denoted as XY .

The support of the rule is the number of transactions in which both X and Y

co-occur as subsets:

s = sup(X −→ Y) = |t(XY)|= sup(XY)

The relative support of the rule is defined as the fraction of transactions where X

and Y co-occur, and it provides an estimate of the joint probability of X and Y :

rsup(X −→ Y) =
sup(XY)

|D|
= P(X ∧Y)

The conf idence of a rule is the conditional probability that a transaction contains
Y given that it contains X :

c = conf (X −→ Y) = P(Y |X) =
P(X ∧Y)

P(X)
=

sup(XY)

sup(X)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 31 / 34

Generating Association Rules

Given a frequent itemset Z ∈F , we look at all proper subsets X ⊂ Z to compute
rules of the form

X
s,c
−→ Y , where Y = Z \X

where Z \X = Z −X .

The rule must be frequent because

s = sup(XY) = sup(Z)≥minsup

We compute the confidence as follows:

c =
sup(X ∪Y)

sup(X)
=

sup(Z)

sup(X)

If c ≥minconf , then the rule is a strong rule. On the other hand, if
conf (X −→ Y)< c , then conf (W −→ Z \W)< c for all subsets W ⊂ X , as
sup(W)≥ sup(X). We can thus avoid checking subsets of X .
Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 32 / 34

Association Rule Mining Algorithm

AssociationRules (F , minconf):
1 foreach Z ∈F , such that |Z | ≥ 2 do
2 A←

{

X | X ⊂ Z ,X 6= ∅
}

3 while A 6= ∅ do
4 X ←maximal element in A
5 A←A\X// remove X from A
6 c← sup(Z)/sup(X)
7 if c ≥minconf then
8 print X −→ Y , sup(Z), c
9 else

10 A←A\
{

W |W ⊂ X
}

// remove all subsets of X from A

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 33 / 34

Data Mining and Machine Learning:

Fundamental Concepts and Algorithms
dataminingbook.info

Mohammed J. Zaki1 Wagner Meira Jr.2

1Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY, USA

2Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Chapter 8: Itemset Mining

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Machine Learning Chapter 8: Itemset Mining 34 / 34

