
SPARCL: Efficient and Effective Shape-based Clustering

Vineet Chaoji∗, Mohammad Al Hasan, Saeed Salem, and Mohammed J. Zaki
Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 12180

{chaojv, alhasan, salems, zaki}@cs.rpi.edu

Abstract

CLUSTERING is one of the fundamental data mining
tasks. Many different clustering paradigms have been de-
veloped over the years, which include partitional, hierar-
chical, mixture model based, density-based, spectral, sub-
space, and so on. The focus of this paper is on full-
dimensional, arbitrary shaped clusters. Existing methods
for this problem suffer either in terms of the memory or time
complexity (quadratic or even cubic). This shortcoming has
restricted these algorithms to datasets of moderate sizes.In
this paper we propose SPARCL, a simple and scalable al-
gorithm for finding clusters with arbitrary shapes and sizes,
and it has linear space and time complexity. SPARCL con-
sists of two stages – the first stage runs a carefully initialized
version of the Kmeans algorithm to generate many small
seed clusters. The second stage iteratively merges the gen-
erated clusters to obtain the final shape-based clusters. Ex-
periments were conducted on a variety of datasets to high-
light the effectiveness, efficiency, and scalability of ourap-
proach. On the large datasets SPARCL is an order of mag-
nitude faster than the best existing approaches.

1. Introduction

Given a set ofn objects ind-dimensional space, cluster
analysis assigns the objects intok groups such that each ob-
ject in a group is more similar to other objects in its group
as compared to objects in other groups. This notion of cap-
turing similarity between objects lends itself to a varietyof
applications. As a result, cluster analysis plays an impor-
tant role in almost every area of science and engineering,
including bioinformatics, market research, privacy and se-
curity, image analysis, web search and so on.

Due to the large number of potential application do-
mains, many flavors of clustering algorithms have been
proposed [7]. Based on the mode of operation, they
can be broadly categorized as variance-based, hierarchical,
partitional, spectral, probabilistic/fuzzy and density-based.
However, the common task among all algorithms is that

∗Part of the work was done when the author was visiting Nokia Re-
search Center, Palo Alto

they compute the similarities (distances) among the data
points to solve the clustering problem. The definition of
similarity or distance varies based on the application do-
main. If the clusters are of globular (spherical) shape and
are of comparable size, typical distortion minimization cri-
teria of Kmeans works well. However, in applications like
image segmentation or spatial data mining, the above does
not hold in general, since clusters in these applications gen-
erally are a dense set of points that can represent (physical)
objects of arbitrary shapes. The Kmeans distortion mini-
mization criteria fails to isolate those objects since it favors
compact and spherical shaped clusters. In this paper, our
focus is on this arbitrary-shape clustering task.

Shape-based clustering remains of active interest, and
several previous approaches have been proposed; spec-
tral [13], density-based (DBSCAN [3]), and nearest-
neighbor graph based (Chameleon [8]) approaches are the
most successful among the many shape-based clustering
methods. However, they either suffer from poor scalabil-
ity or are very sensitive to the choice of the parameter val-
ues. On the one hand, simple and efficient algorithms like
Kmeans are unable to mine arbitrary-shaped clusters, and
on the other hand, clustering methods that can cluster such
datasets are not very efficient. Considering the data gen-
erated by current sources (e.g., geo-spatial satellites) there
is a need for efficient algorithms in shape-based clustering
domain that can scale to much larger datasets.

In this paper, we propose a simple, yet highly scalable
algorithm for mining clusters of arbitrary shapes, sizes and
densities. We call our new algorithm SPARCL (which is an
anagram of the bold letters inShAPe-basedCLusteRing).
In order to achieve this we exploit the linear (in the num-
ber of objects) runtime of Kmeans based algorithms while
avoiding its drawbacks. Recall that Kmeans based algo-
rithms assign all points to the nearest cluster center; thusthe
center represents a set of objects that collectively approxi-
mates the shape of ad dimensional polyhedron1. When
the number of centers are few, each such polyhedron cov-
ers a larger region, thus leading to incorrect partitioningof
a dataset with arbitrary shapes. Increasing the number of

1Each cluster boundary is a linear hyperplane, resulting in apolyhe-
dron. As the number of clusters increase, the cluster boundary tends to
resemble a hypersphere

centers reduces the region covered by each center. SPARCL
exploits this observation by first using a smart strategy for
sampling objects from the entire dataset. These objects are
used as initial seeds of the Kmeans algorithm. On termi-
nation, Kmeans algorithm yields a set of centers. In the
second step, a similarity metric for each pair of centers is
computed. The similarity graph representing pairwise sim-
ilarity between the centers is partitioned to generate the de-
sired final number of clusters. To summarize we made the
following key contributions in this work:

1. We define a new function that captures similarity be-
tween a pair of cluster centers, which is suitable for
arbitrary shaped clusters.

2. We propose a new, highly scalable algorithm,
SPARCL, for arbitrary shaped clusters, that combines
partitional and hierarchical clustering in the two phases
of its operation. The overall complexity of the algo-
rithm is linear in the number of objects in the dataset.

3. SPARCL takes only two parameters – number of initial
centers and the number of final clusters expected from
the dataset. Note that the number of final clusters to
find is typically a hyper-parameter of most clustering
algorithms.

4. We perform a variety of experiments on both real
and synthetic shape clustering datasets to show the
strengths and weaknesses of our approach. We show
that our method is an order of magnitude faster than
the best current approaches.

2. Related Work

Here we review some of the pioneering methods in arbi-
trary shape clustering. DBSCAN [3] was one of the earliest
algorithms that addressed arbitrary shape clustering. It de-
fines two parameters –epsandMinPts. A point is labeled as
acore pointif the number of points within itsepsneighbor-
hood is at leastMinPts. A cluster is defined as the maximal
set of “reachable” core points. Points that are not core and
not reachable from a core are labeled as noise. The main ad-
vantages of DBSCAN are that it does not require the num-
ber of desired clusters as an input, and it explicitly identifies
outliers. On the flip side, DBSCAN can be quite sensitive to
the values ofepsandMinPts, and choosing correct values
for these parameters is not that easy. DBSCAN is an expen-
sive method, since in general it needs to compute theeps
neighborhood for each point, which takesO(n2) time, espe-
cially with increasing dimensions; this time can be brought
down toO(n log n) in lower dimensional spaces, via the use
of spatial index structures likeR∗-trees. DENCLUE [6] is
another density based clustering algorithm based on kernel
density estimation. Clusters are determined by identifying
density attractorswhich are local maximas of the density
function. DENCLUE shares some of the same limitations
of DBSCAN, namely, sensitivity to parameter values, and

its complexity isO(n log m + m2), wheren is the num-
ber of points, andm is the number of populated cells. In
the worst casem = O(n), and thus its complexity is also
O(n2).

CURE [5] is a hierarchical agglomerative clustering al-
gorithm that handles shape-based clusters. It follows the
nearest neighbor distance to measure the similarity between
two clusters, but reduces the computational cost signifi-
cantly. The reduction is achieved by taking a set of repre-
sentative points from each cluster and engaging only these
points in similarity computations. CURE is still expensive
with its quadratic complexity, and more importantly, the
quality of clustering depends enormously on the sampling
quality. In [8], the authors show several examples where
CURE failed to obtain the desired shape-based clusters.

CHAMELEON [8] also formulates the shape-based
clustering as a graph partitioning algorithm. Am near-
est neighbor graph is generated for the input dataset, for a
given number of neighborsm. This graph is partitioned into
a predefined number of sub-graphs (also referred as sub-
clusters). The partitioned sub-graphs are then merged to ob-
tain the desired number of finalk clusters. CHAMELEON
introduces two measures –relative interconnectivityand
relative closeness– that determine if a pair of clusters can
be merged. Sub-clusters having high relative closeness and
relative interconnectivity are merged. CHAMELEON is ro-
bust to the presence of outliers, partly due to them-nearest
neighbor graph which eliminates these noise points. This
very advantage, turns into an overhead when the dataset
size becomes considerably large, since computing the near-
est neighbor graph can takeO(n2) time as the dimensions
increase.

The spectral clustering approach of Shi and Malik [13]
is also capable of handling arbitrary shaped clusters. They
represent the data points as a weighted undirected graph.
They formulate the arbitrary shape clustering problem as a
normalized min-cutproblem, and approximate it by com-
puting the eigen-vectors of the graphLaplacian matrix. Al-
though, based on strong theoretical foundation, this method,
unfortunately, is not scalable, due to its high computational
time and space complexity. It requiresO(n3) time to solve
the Eigensystem of the symmetric Laplacian matrix, and
storing the matrix also requires at leastΩ(n2) memory.
There are some variations of this general approach [14], but
all suffer from the poor scalabity problem.

Our proposed method SPARCL is based on the well
known family of Kmeans based algorithms, which are
widely popular for their simplicity and efficiency. Kmeans
based algorithms operate in an iterative fashion. From an
initial set ofk selected objects, the algorithm iteratively re-
fines the set of representatives with the objective of min-
imizing the mean squared distance (also known asdistor-
tion) from each object to its nearest representative. They are
related to Voronoi tessellation, which leads to convex poly-
hedra in metric spaces [11]. As a consequence, Kmeans

based algorithms are unable to partition spaces with non-
spherical clusters or in general arbitrary shapes. However,
in this paper we show that one can use Kmeans type al-
gorithms to obtain a set of seed representatives, which in
turn can be used to obtain the final arbitrary shaped clus-
ters. In this way, SPARCL retains the linear time complex-
ity in terms of the data points, and is surprisingly effective
as well, as we discuss next.

3. The SPARCL Approach
In this work we focus on a scalable algorithm for ob-

taining clusters with arbitrary shapes. In order to capture
arbitrary shapes, we want to divide such shapes into convex
pieces. This approach is motivated by the concept ofconvex
decomposition[11] from computational geometry.

Convex Decomposition: Due to the simplicity of deal-
ing with convex shapes, the problem of decomposing non-
convex shapes into a set of convex shapes has been of great
interest in the area of computational geometry. Aconvex de-
compositionis a partition, if the polyhedron is decomposed
into disjoint pieces; and it is a cover, if the pieces are over-
lapping. While algorithms for convex decomposition are
well understood in 2-dimensional space, the same cannot be
said about higher dimensions. In this work, we approximate
the convex decomposition of an arbitrary shape cluster by
the convex polyhedra generated by the Kmeans centers that
are within that cluster. Depending on the complexity of the
shape, higher number of centers may be required to obtain a
good approximation of that shape. Essentially, we can refor-
mulate the original problem of identifying arbitrary shaped
clusters in terms of a sampling problem. Ideally, we want to
minimize the number of centers, with the constraint that the
space covered by each center is a convex polyhedron. One
can identify this optimization problem as a modified version
of the facility location problem. In fact, this optimization
problem is exactly theMinimum Consistent Subset Cover
Problem (MCSC)[4]. Given a finite setS and a constraint,
the MCSC problem considers finding a minimal collection
T of subsets such that

⋃

C∈T C = S, whereC ⊂ S, and
eachC satisfies the given constraintc. In our case,S is the
set of points andc the convex polyhedron constraint. The
MCSC problem is NP-hard, and thus finding the optimal
centers is hard. We thus rely on the iterative Kmeans type
method to approximate the centers.

3.1. The SPARCL Algorithm

The pseudo-code for the SPARCL algorithm is given in
Fig. 1. The algorithm takes two input parameters. The
first onek is the final number of clusters desired. We re-
fer to these as thenatural clusters in the dataset, and like
most other methods, we assume that the user has a good
guess fork. In addition SPARCL requires another param-
eter K, which gives the number of seed centers to con-
sider to approximate a good convex decomposition; we also

refer to these seed centers aspseudo-centers. Note that
k < K ≪ n = |D|. Depending on the variant of Kmeans
used to obtain the seeds centers, SPARCL uses a third pa-
rametermp, denoting the number of nearest neighbors to
consider during a smart initialization of Kmeans that avoids
outliers as centers. The random initialization based Kmeans
does not require themp parameter.

SPARCL operates in two stages. In the first stage we
run the Kmeans algorithm on the entire dataset to obtainK

convex clusters. The initial set of centers for the Kmeans al-
gorithm may be chosen randomly, or in such a manner that
they are not outlier points. Following the Kmeans run, the
second stage of the algorithm computes a similarity met-
ric between every seed cluster pair. The resulting similarity
matrix can act as input either for a hierarchical or a spectral
clustering algorithm. It is easy to observe that this two-
stage refinement employs a cheaper (first stage) algorithm
to obtain a course grained clustering. The first phase has
complexityO(ndKe), whered is the data dimensionality
ande is the number of iterations Kmeans takes to converge,
which is linear inn. This approach considerably reduces
the problem space as we only have to computeO(K2) sim-
ilarity values in the second phase. For the second phase we
can use a more expensive algorithm to obtain the final set of
k natural clusters.

SPARCL(D, K, k, mp):
1. Cinit = seedcenter initialization (D, K, mp)
2. Cseed = Kmeans(Cinit, K)
3. forall distinct pairs(Ci, Cj) ∈ Cseed × Cseed

4. S(i, j) = compute similarity (Ci, Cj)
5. cluster centers(Cseed, S, k)

Figure 1: The SPARCL Algorithm

3.1.1 Phase 1 – Kmeans Algorithm

The first stage SPARCL is shown in steps 1 – 2 of Fig. 1.
This stage involves running the Kmeans algorithm with a set
of initial centersCinit (line 1), until convergence, at which
point we obtain the final seed clustersCseed. There is one
subtlety in this step; instead of using the mean point in each
iteration of Kmeans, we actually use an actual data point
in the cluster that is closest to the center mean. We do this
for two reasons. First, if the cluster centers are not actual
points in the dataset, chances are higher that points from
two different natural clusters would belong to a seed cluster,
considering that the clusters are arbitrarily shaped. When
this happens, the hierarchical clustering in the second phase
would merge parts of two different natural clusters. Second,
our approach is more robust to outliers, since the mean point
can get easily influenced by outliers. Fig. 2(a) outlines an
example. There are two natural clusters in the form of the
two rings. When we run a regular Kmeans, using the mean
point as the center representative, we obtain some seed cen-
ters that lie in empty space, between the two ring-shaped
clusters (e.g., 4, 5, and 7). By choosing an actual data point,

we avoid the “dangling” means problem, and are more ro-
bust to outliers, as shown in Fig. 2(b). This phase starts by

12

3

4
5

6

7

8

(a) Using mean point

1

2

3

4

5

6

7
8

(b) Using actual data point

Figure 2: Effect of Choosing mean or actual data point

selecting the initial set of centers for the Kmeans algorithm.
In order for the second stage to capture the natural clus-
ters in the datasets, it is important that the final set of seed
centers,Cseed, generated by the Kmeans algorithm satisfy
the following properties: 1) Points inCseed are not outlier
points, 2) Representatives inCseed are spread evenly over
the natural clusters.

In general, random initialization is fast, and works well.
However, selecting the centers randomly can violate either
of the above properties, which can lead to ill-formed clus-
ters for the second phase. Fig. 3 shows an example of such
a case. In Fig. 3(a) seed center 1 is almost an outlier point.
As a result the members belonging to seed center 1 come
from two different natural clusters. This results in the small
(middle) cluster merging with the larger cluster to its right.
In order to avoid such cases and to achieve both the prop-
erties mentioned above we utilize the outlier and density
insensitive selection of initial centers as described next.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

1

2
3

4 5

6

(a) Randomly selected centers

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5
6 Centers

(b) Natural cluster split

Figure 3: Bad Choice of Cluster Centers

Initialization using Local Outlier Factor: We use thelo-
cal outlier factor (LOF)criterion for selecting the initial set
of cluster centers. LOF was proposed in [1] as a measure for
determining the degree to which a point is an outlier. For a
pointx ∈ D, define the local neighborhood ofx, given the
minimum points thresholdmp as follows:

N(x, mp) = {y ∈ D | dist(x, y) ≤ dist(x, xmp)}

wherexmp is themp-th nearest neighbor ofx. Thedensity

of x is then computed as follows:

density(x, mp) =

(
∑

y∈N(x,mp) distance(x, y)

| N(x, mp) |

)−1

In summary, the LOF score ofx is the ratio of the aver-
age density of the points inN(x, mp) to density(x, mp).
Thus LOF value represents the extent to which a point is an
outlier. A point that belongs to a cluster has an LOF value
approximately equal to 1, since its density and the density of
its neighbors is approximately the same. LOF has three ex-
cellent properties: (1) It is very robust when the dataset has
clusters with different sizes and densities. (2) Even though
the LOF value may vary somewhat withmp, it is generally
robust in making the decision whether a point is an outlier
or not. (3) It leads to practically faster convergence of the
Kmeans algorithm, i.e., fewer iterations. The following ap-

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

12

3

4

5
6

7

89

1011
12

13

14 15

16
17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

(a) Centers selected on DS1 dataset

Figure 4: Local Outlier Based Center Selection

proach is used to select the initial seeds. Assume thei initial
centers have been chosen. To choose thei+1-th center, first
compute the distance of each point to each of thei chosen
centers, and sort them in decreasing order of distance. Next,
in that sorted order, pick the first point that is not an outlier
as the next seed. This process is repeated untilK initial
seeds have been chosen. Finally, run the Kmeans algorithm
to converge with those initial starting centers, to obtain the
final set of seed centersCseed. As an example of LOF-based
seed selection, Fig. 4 shows the initial set of centers for one
of the shape-based datasets. The overall complexity of this
approach isO(mp×K2×t×n), wheret ≪ n is the number
of outliers in the data.

3.1.2 Phase 2 – Merging Neighboring Clusters

As the output of the first phase of the algorithm, we have
a relatively small numberK of seed cluster centers (com-
pared to the size of the dataset) along with the point as-
signments for each cluster. During the second phase of the
algorithm, a similarity measure for each pair of seed clus-
ters is computed (see lines 3-4 in Fig. 1). The similarity
between clusters is then used to drive any clustering algo-
rithm that can use the similarity function to merge theK

seed clusters in the final set ofk natural clusters. We ap-
plied both hierarchical as well as spectral methods on the

similarity matrix. Since the size of the similarity matrix is
O(K2), as opposed toO(n2) even spectral methods can be
conveniently applied.
Cluster Similarity: Let us consider that thed-dimensional
points belonging to a clusterX are denoted byPX and sim-
ilarly points belonging to clusterY are denoted byPY . The
corresponding centers are denoted bycX and cY , respec-
tively. A similarity score is assigned to each cluster pair.
Conceptually, each cluster can be considered to represent
a Gaussian and the similarity captures the overlap between
the Gaussians. Intuitively, two clusters should have a high
similarity score if they satisfy the following conditions:

1. The clusters are close to each other in the Euclidean
space.

2. The densities of the two clusters are comparable,
which implies that one cluster is an extension of the
other.

3. The face (hyperplane) at which the clusters meet is
wide.

��
��
��
��

�
�
�
�

X2B Y0B
Y1B Y2B Y3B BYv

Center Y

ffx y

p
i

p
j

k

Center X

H

kV

p
k

XuB
X1B X0B

I i I j

Figure 5: Projection of points onto line between centers

Thecompute similarity function in Fig. 1 computes the
similarity for a given pair of centers. For computing the
similarity, points belonging to the two clusters are projected
on the vector connecting the two centers as shown in Fig. 5.
Even though the figure just shows points above the vector
being projected, this is merely for the convenience of ex-
position and illustration.fx represents the distance from
the centerX to the farthest projected imageIi of a point
pi belonging toX . Hi is the horizontal (along the vec-
tor joining the two centers) distance of the projection of
point pi from the center, andVi is the perpendicular (ver-
tical) distance of the point from its projection. The means
(mHX

andmHY
) and standard deviations (sHX

andsHY
) of

the horizontal distances for points belonging to the clusters
are computed. Similarly, means and standard deviations for
perpendicular distances are computed. A histogram with
bin size of si

2 (i ∈ {HX , HY }) is constructed for the pro-
jected points. The bins are numbered starting from the far-
thest projected pointfi (i ∈ X, Y), i.e., bin BX0

is the
first bin for the histogram constructed on points in cluster
X . The number of bins for clusterX is given by |BX |.
Then, we compute the average of horizontal distances for
points in each bin;dij

denotes the average distance for bin

j in clusteri. max bini = arg maxj dij
represents the bin

with the largest number of projected points in clusteri. The
number of points in binXi is given byN [Xi]. The ratio

N [Xi]
N [Xmax binX

] is denoted bysz ratioXi
.

Now, the size based similarity between two bins in clus-
tersX andY is given by the equation:

size sim(BXi
, BYj

) = sz ratio(BXi
) ∗ sz ratio(BYj

)
(1)

The distance-based similarity between two bins in clus-
ters X and Y is given by the following equation, where
dist(BXi

, BYj
) is the horizontal distance between the bins

Xi andYj :

dist sim(BXi
, BYj

) =
2 ∗ dist(BXi

, BYj
)

sHX
+ sHY

(2)

The overall similarity between the clustersX andY is
then given as

S(X, Y) =

t
∑

i=0

size sim(BXi
, BYi

)∗exp−dist sim(BXi
,BYi

)

(3)
wheret = min(|BX |, |BY |). Also, while projecting the
points onto the vector, we discarded points that had a ver-
tical distance greater than twice the vertical standard devia-
tion, considering them as noise points.

Let us look closely at the above similarity metric to un-
derstand how it satisfies the above mentioned three condi-
tions for good cluster similarity. Since the bins start from
the farthest projected points, for bordering clusters the dis-
tance betweenX0 andY0 will be very less. This gives a
small value todist sim(BX0

, BY0
). As a result, the expo-

nential function gets a high value due to the exponent taking
a low value. This causes the first term of the summation in
Equation 3 to be high, especially if thesize sim score is
also high. A high value for the first term indicates that the
two clusters are close by and that there are a large num-
ber of points along the surface of intersection of the two
clusters. If thesize sim(BX0

, BY0
) is small, which can

happen when the two clusters meet at a tangent point, the
first term in the summation will be small. This is exactly as
expected intuitively and captures conditions 1 and 3 men-
tioned above. Both thesize sim anddist sim measures
are averse to outliers and would give a low score for bins
containing outlier points. For outlier bins, thesz ratio will
have a low score, resulting in a lower score forsize sim.
Similarly, clusters having outlier points would tend to have
a high standard deviation, which would result in a low score
for dist sim.

We considered the possibility of extending the histogram
to multiple dimensions, along the lines of grid-based algo-
rithms, but the additional computational cost does not jus-
tify the improvement in the quality of the results. Finally,
once the similarity between pairs of seeds has been com-

puted, we can use spectral or hierarchical agglomerative
clustering to obtain the final set ofk natural clusters. For
our experiments, we used the agglomerative clustering al-
gorithm provided with CLUTO.

This similarity metric can be shown to be akernel. The
following lemmas regarding kernels allow us to prove that
the similarity function is a kernel.

Lemma 1 [12] κ1 and κ2 be kernels overX × X, X ⊆
R

n, f (.) a real-valued function onX. Then the following
functions are kernels:

i. κ(x, z) = κ1(x, z) + κ2(x, z),
ii. κ(x, z) = f (x)f (z),
iii. κ(x, z) = κ1(x, z)κ2(x, z),

Lemma 2 [12] Let κ1(x, z) be a kernel overX×X, where
x, z ∈ X. Then the functionκ(x, z) = exp(κ1(x, z)) is
also a kernel.

Theorem 3.1 FunctionS(X, Y) in Equation 3 is a kernel
function.
PROOF: Sincedist andsz ratio are real valued functions,
dist sim andsize sim are kernels by Lemma 1(ii). This
makesexp(−dist sim(., .)) a kernel by Lemma 2. Prod-
uct of size sim and exp(−dist sim(., .)) is a kernel by
Lemma 1(iii). And finally,S(X, Y) is a kernel since the
sum of kernels is also a kernel by Lemma 1(i).

The matrix obtained by computingS(X, Y) for all pairs of
clusters turns out to be akernel matrix. This nice property
provides the flexibility to utilize any kernel based methods,
such as spectral clustering [10] or kernel k-means [2], for
the second phase of SPARCL.

3.2. Complexity Analysis

The first stage of SPARCL starts with computing initial
K centers randomly or based on the local outlier factor. If
we use random initialization phase 1 takesO(Knde) time,
wheree is the number of Kmeans iterations. The time for
computing the LOF-based seeds isO(mp K2 n t), where
t is the number of outliers in the dataset, followed by the
O(Knde) time of Kmeans. The second phase of the al-
gorithm projects points belonging to every cluster pair on
the vector connecting the centers of the two clusters. The
projected points are placed in appropriate bins of the his-
togram. The projection and the histogram creation requires
time linear in the number of points in the seed cluster. For
the sake of simplifying the analysis, let us assume that each
seed cluster has the same number of points,n

K
. Projec-

tion and histogram construction requiresO(n
K

) time. In
practice only points from a cluster that lie between the two
centers are processed, reducing the computation by half
on an average. Since there areO(K2) pairs of centers,
the total complexity for generating the similarity map is

K2 × O(n
K

) = O(Kn). The final stage applies a hi-
erarchical or spectral algorithm to find the final set ofk

clusters. Spectral approach will takeO(K3) time in the
worst case, whereas agglomerative clustering will take time
O(K2 log K). Overall, the time for SPARCL isO(Knd)
(ignoring the small number of iterations it takes Kmeans to
converge) if using the random initialization, orO(K3mnd),
assumingmp = O(K), and using the LOF-based initializa-
tion. In our experiment evaluation, we obtained comparable
results using random initialization for datasets with uniform
density of clusters. With random initialization, the algo-
rithm runs in time linear in the number of points as well as
the dimensionality of the dataset.

4. Experiments and Results

Experiments were performed to compare the perfor-
mance of our algorithm with Chameleon [8], DBSCAN [3]
and spectral clustering [13]. The Chameleon code was ob-
tained as a part of the CLUTO [15]2 package. The DB-
SCAN implementation in Weka was used for comparison.
Similarly, for spectral clustering a Matlab implementation
SpectraLIB, 3 based on the Shi-Malik algorithm [13] was
used.

Even though the implementations are in different lan-
guages, some of which might be inherently slower than oth-
ers, the speedup due to our algorithm far surpasses any im-
plementation biases. All the experiments were performed
on a Mac G5 machine with a 2.66 GHz processor, running
the Mac 10.4 OS X. Our code is written in C++ using the
Computational Geometry Algorithms Library (CGAL). We
show results for both LOF based as well as random initial-
ization of seed clusters.

4.1. Datasets

4.1.1 Synthetic Datasets
We used a variety of synthetic and real datasets to test the
different methods. DS1, DS2, DS3, and DS4, shown in
Figs 7(a), 7(b), 7(c), and 7(d), have been used in previ-
ous studies including Chameleon and CURE. These are all
2d datasets with points ranging from 8000 to 100000. The
Swiss-roll dataset in Fig.7(e) is the classic non-linear man-
ifold used in non-linear dimensionality reduction [9]. We
split the manifold into four clusters to see how our methods
handle this case.

For the scalability tests, and for generating 3d datasets,
we wrote our own shape-based cluster generator. To gener-
ate a shape in 2d, we randomly choose points in the drawing
canvas and accept points which lie within our desired shape.
All the shapes are generated with point (0,0) as the origin.
To get complex shapes, we combine rotated and translated
forms of the basic shapes (circle, rectangle, ellipse, circu-
lar strip, etc.). Our 3d shape generation is built on the 2d

2http://glaros.dtc.umn.edu/gkhome/cluto/
3http://www.stat.washington.edu/spectral/

Name |D|(d) k SPARCL (LOF/Random) Chameleon DBSCAN Spectral
DS1 8000 (2) 6 5.74/1.277 4.02 14.16 -
DS2 10000 (2) 9 8.6/1.386 5.72 24.2 -
DS3 8000 (2) 8 6.88/1.388 4.24 14.52 -
DS4 100000 (2) 5 35.24/20.15 280.47 -

Swiss-roll 19200 (3) 4 23.92/17.89 19.38 -

Table 1: Runtime Performance on Synthetic Datasets. All times are reported in seconds. ‘-’ for Spectral method denotes the
fact that it ran out of memory for all these cases.

shapes. We randomly choose points in the 3 coordinates –
if the x andy coordinates satisfy the shape, we randomly
choose thez-axis from within a given range. This approach
generates true 3d shapes, and not only layers of 2d shapes.
Similar to the case for 2d, we combine rotated and translated
basic 3d shapes to get more sophisticated shapes. Once we
generate all the shapes, we randomly add noise (1% to 2%)
to the drawing frame. An example of a synthetic 3d dataset
is shown in Fig. 8(b). This 3d dataset has 100000 points,
and 10 clusters.

4.1.2 Real Datasets
We used two real shape-based datasets. The first is a set of
2d images from benign breast cancer. The actual images are
divided into 2d grid cells (80× 80) and the intensity level is
used to assign each grid to either a cell or background. The
final dataset contains only the actual cells, along with their
x andy co-ordinates.

The second dataset consists of protein structures. Pro-
teins are 3d objects where the coordinates of the atoms rep-
resent points. Since proteins are deposited in the protein
data bank (PDB) in different reference frames, the coordi-
nates of the protein are centered, as a preprocessing step.
We translate the proteins to get separated clusters. Once
the translation is done, we add the noise points. Our pro-
tein dataset has 15000 3d points obtained from the follow-
ing proteins: 1A1T (865 atoms), 1B24 (619 atoms), 1DWK
(11843 atoms), 1B25 (1342 atoms), and 331 noise points.

4.2. Results on Synthetic Datasets

Results of SPARCL on the synthetic datasets are shown
in Table 1, and in Figs 7(a), 7(b), 7(c), 7(d), and 7(e).
We refer the reader to [8] for the clustering results of
Chameleon and DBSCAN on datasets DS1-4. To summa-
rize, Chameleon is able to perfectly cluster these datasets,
whereas both DBSCAN and CURE make mistakes, or are
very dependent on the right parameter values to find the
clusters. As we can see SPARCL also perfectly identifies
the shape-based clusters in these datasets. On the non-
linear Swiss-roll dataset, SPARCL does make minor mis-
takes at the boundaries (Fig. 7(e)). The reason for this
is that SPARCL is designed mainly for full-space clusters,
whereas this is a 2d manifold embedded in a 3d space. Fur-
ther, it is a nonlinear subspace cluster. What is remarkable
is that SPARCL can actually find a fairly good clustering
even in this case.

Table 1 shows the characteristics of the synthetic datasets
along with their running times. The default parameters
for running Chameleon in CLUTO were retained (num-
ber of neighbors was set at 40). Parameters that were set
for Chameleon include the use of graph clustering method
(clmethod=graph) with similarity set to inverse of Eu-
clidean distance (sim=dist) and the use of agglomeration
(agglofrom=30), as suggested by the authors. Results for
both the LOF and random initialization are presented for
SPARCL. Also, we usedK = 50, 60, 70, 50 for each of
the datasets DS1-4, respectively. For swiss-roll we use
K = 530.

We can see that DBSCAN is 2-3 times slower than both
SPARCL and Chameleon on smaller datasets. However,
even for these small datasets, the spectral approach ran
out of memory. The times for SPARCL (with LOF) and
Chameleon are comparable for the smaller datasets, though
the random initialization gives the same results and can be
3-4 times faster. For the larger DS4 dataset SPARCL has
an order of magnitude faster performance, showing the real
strength of our approach. For DBSCAN we do not show
the results for DS4 and Swiss-roll since it returned only one
cluster, even when we played with different parameter set-
tings.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

s
e

c
)

of points x 1000 (d=2)

SPARCL(random)
SPARCL(lof)

Chameleon
DBScan

Figure 6: Scalability Results on Dataset DS5

4.2.1 Scalability Experiments
Using our synthetic dataset generator, we generated DS5, in
order to perform experiments on varying number of points,
varying densities and varying noise levels. For studying
the scalability of our approach, different versions of DS5
were generated with different number of points, but keep-
ing the number of clusters constant at 13. The noise level
was kept at 1% of the dataset size. Fig. 6 compares the
runtime performance of Chameleon, DBScan and our ap-
proach for dataset sizes ranging from 100000 points to 1

(a) Results on DS1 (b) Results on D2 (c) Results on D3 (d) Results on D4

(e) Results on Swiss-roll (f) SPARCL (K = 100) (g) DBSCAN (minPts=150,
eps=0.05)

(h) Chameleon (agglofrom=30,
sim=dist, clmethods=graph)

Figure 7: Clustering Quality on Synthetic Datasets

million points. We chose not to go beyond 1 million as the
time taken by Chameleon and DBSCAN was quite large. In
fact, we had to terminate DBSCAN beyond 100K points.
Fig. 6 shows that our approach, with random initialization,
is around 22 times faster than Chameleon while it is around
12 time faster when LOF based initialization is considered.
Note that the time for LOF also increases as the size of
the dataset increases. For Chameleon, the parametersag-
glofrom, sim, clmethodwere set to 30,dist andgraph, re-
spectively. For DBSCAN theepswas set at 0.05 andMinPts
was set at 150 for the smallest dataset.MinPts was in-
creased linearly with the size of the dataset. In our case, for
all datasets,K = 100 seed centers were selected for the first
phase andmp was set to 15. Figs 7(f), 7(g) and 7(h) shows
the clusters obtained as a result of executing our algorithm,
DBSCAN and Chameleon on the dataset DS5 of size 50K
points. We can see that DBSCAN makes the most mistakes,
whereas both SPARCL and Chameleon do well. Scalability
experiments were performed on 3d datasets as well. Re-
sult for one of those datasets is shown in Fig. 8(b). The
3d dataset consists of shapes in full 3d space (and not 2d
shapes embedded in 3d space). The dataset contained ran-
dom noise too (2% of the dataset size). As seen in Fig. 8(a),
SPARCL (with random initialization) can be more than four
times as fast as Chameleon.

4.2.2 Clustering Quality
Since two points in the same cluster can be very far apart,
traditional metrics such as cluster diameter, k-Means/k-
Medoid objective function (sum of squared errors), com-
pactness (avg. intra-cluster distance over the avg. inter-

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 100 200 300 400 500 600

T
im

e
 (

s
e

c
)

of points x 1000 (d=3)

SPARCL(lof)
SPARCL(random)

Chameleon

(a) (b)

Figure 8: Clustering Results on 3D Dataset

cluster distance), etc. are generally not appropriate for
shape-based clustering. We apply supervised metrics,
wherein the true clustering is known apriori, to evaluate
clustering quality. Popular supervised metrics includepu-
rity, Normalized Mutual Information, rank index, etc. In
this work, we use purity as the metric of choice due to
its intuitive interpretation. Given the true set of clus-
ters (referred to asclasseshenceforth to avoid confusion),
CT = {c1, c2, . . . , cL} and the clusters obtained from
SPARCLCS = {s1, s2, . . . , sM}, purity is given by the ex-
pression:

purity(CS, CT) =
1

N

∑

k

max
j

‖sk ∩ cj‖ (4)

whereN is the number of points in the dataset. Purity lies
in the range [0,1], with a perfect clustering corresponding
to purity value of 1.

Since DS1-DS4 and the real datasets do not provide the

class information, experiments were conducted on vary-
ing sizes of the DS5 dataset. The class information was
recorded during the dataset generation. Fig. 9(a) shows
the purity score for clusters generated by SPARCL and
CHAMELEON (parametersagglofrom=100, sim=dist, cl-
method=graph). Since these algorithms cluster noise points
differently, for fair comparison they are ignored while com-
puting the purity, although the noise points are retained dur-
ing the algorithm execution. Note that for datasets larger
than 600K, CHAMELEON did not finish in reasonable
time. When CHAMELEON was run with the default pa-
rameters, which runs much faster, the purity score lowered
to 0.6.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

P
u

ri
ty

 s
co

re

Dataset Size (x1000)

Sparcl(lof)
Chameleon

(a) Varying Dataset Size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 120 180 240 300 360 420 480 540

P
u

ri
ty

 s
co

re

K

(b) Varying # of seed-clusters

Figure 9: Cluster Quality

4.2.3 Varying Number of Clusters
Experiments were conducted to see the impact of varying
the number of natural clustersk. To achieve this, the DS5
dataset was replicated by tiling the dataset in a grid form.
Since the DS5 dataset contains 13 natural clusters, a1 × 3
tiling contains 39 natural clusters (see Fig. 10(a)). The num-
ber of points are held constant at 180K. The number of natu-
ral clusters are varied from 13 to 117. The number of seed-
clusters are set at 5 times number of natural clusters, i.e,
K = 5k. We see that SPARCL finds most of the clusters
correctly, but it does make one mistake, i.e., the center ring
has been split into two. Here we find that since there are
many more clusters, the time to compute the LOF goes up.
In order to obtain each additional center the LOF method
examines a constant number of points, resulting in a linear
relation between the number of clusters and the runtime.
Thus we prefer to use the random initialization approach
when the number of clusters are large. With that SPARCL
is still 4 times faster than Chameleon (see Fig. 10(b)).
Even though Chameleon produces results competent with
that of SPARCL, it requires tuning the parameters to obtain
these results. Especially when the nearest neighbor graph
contains disconnected components CHAMELEON tends to
break natural clusters in an effort to return the desired num-
ber of clusters. Hence CHAMELEON expects the user to
have a certain degree of intuition regarding the dataset in or-
der to set parameters that would yield the expected results.

4.2.4 Varying Number of Dimensions
Synthetic data generator SynDECA (http://cde.
iiit.ac.in/ ˜ soujanya/syndeca/) was used to
generate higher dimensional datasets. The number of points
and clusters were set to 500K and 10, respectively. 5% of

(a) 1x3 grid tiling. Results of
SPARCL

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

T
im

e
 (

s
e

c
)

of natural clusters (d=2)

SPARCL(lof)
SPARCL(random)

Chameleon

(b) Varying number of natural clus-
ters.

Figure 10: Varying Number of Natural Clusters

the points were uniformly distributed as noise points. Syn-
DECA can generate regular (circle, ellipse, square and rect-
angle) as well as random/irregular shapes. Although Syn-
DECA can generate subspace clusters, for our experiments
full dimensional clusters were generated. Fig. 11(b) shows
the runtime for both LOF based and random initialization
of seed clusters. With increasing number of dimensions,
LOF computation takes substantial time. This effect can be
attributed to a combination of two effects. First, since a kd-
tree is used for nearest-neighbor queries the performance
degrades with increasing dimensionality. Second, since we
keep the number of points constant in this experiment, the
sparsity of the input space increases for higher dimensions.
On the other hand, random initialization is computationally
inexpensive. Fig. 11(a) shows the purity for higher dimen-
sions. Both SPARCL and CHAMELEON perform well on
this measure.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14 16

P
u

ri
ty

 s
c
o

re

of dimensions

SPARCL(lof)
SPARCL(random)

Chameleon

(a) Purity

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16

T
im

e
 (

s
e

c
)

of dimensions

SPARCL(lof)
SPARCL(random)

Chameleon

(b) Runtime

Figure 11: Varying Number of Dimensions
4.2.5 Varying Number of Seed-Clusters (K)
SPARCL has a single parameter, K. Fig. 9(b) shows the ef-
fect of changing K on the quality of the clustering. The
dataset used is same as in Fig. 10(a), with 300K points. As
seen in the figure, the purity stabilizes around K=180 and
remains almost constant till K=450. As K is increased fur-
ther, a significant number of seed-centers lie between two
clusters. As a result SPARCL tends to merge parts of one
cluster with the other, leading to a gradual decline in the
purity. Overall, the figure shows that SPARCL is fairly in-
sensitive to the K value.

4.3. Results on Real Datasets
We applied SPARCL on the protein dataset. As shown

in Fig. 12 SPARCL is able to perfectly identify the four
proteins. On this dataset, Chameleon returns the same re-
sult. The results on the benign cancer datasets are shown
in Fig. 13. Here too SPARCL successfully identifies the

regions of interest. We do not show the time for the
real datasets since the datasets are fairly small and both
Chameleon and SPARCL perform similarly.

0

100

200

020406080100120140160180200

0

10

20

30

40

50

60

70

80

90

100

Figure 12: Protein Dataset

(a) (b)

(c) (d)

(e) (f)

Figure 13: Cancer Dataset: (a),(c),(e) are the actual benign
tissue images. (b),(d),(f) gives the clustering of the corre-
sponding tissues by SPARCL.

5. Conclusions
In this paper, we made use of a very simple idea, namely,

to capture arbitrary shapes by means of convex decomposi-
tion, via the use of the highly efficient Kmeans approach.
By selecting a large enough number of seed clustersK, we
are able to capture most of the dense areas in the dataset.
A similarity metric is defined that captures the extent to
which points from the two clusters come close to thed-
dimensional hyperplane separating them. The similarity is

computed rapidly by projecting all the points in the two
clusters on the line joining the two centers (which is rem-
iniscent of linear discriminant analysis). We then apply
a merging based approach to obtain the final set of user-
specified (natural) clusters.

Our experimental evaluation shows that this simple ap-
proach, SPARCL, is quite effective in finding arbitrary
shaped-based clusters in a variety of 2d and higher dimen-
sional datasets. It has similar accuracy as Chameleon, a
state of the art shape-based method, and at the same time it
is over an order of magnitude faster, since its running time is
essentially linear in the number of points as well as dimen-
sions. In general SPARCL works well for full-space clus-
ters, and is not yet tuned for subspace shape-based clusters,
which we plan to tackle in future work.

References

[1] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. Lof:
Identifying density-based local outliers. InACM SIGMOD
Int. Conf. On Management of Data, 2000.

[2] I. S. Dhillon, Y. Guan, and B. Julis. Kernel k-means, spectral
clustering and normalized cuts. InProc. of KDD, 2004.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. InACM SIGKDD, pages 226–231,
1996.

[4] B. J. Gao, M. Ester, J.-Y. Cai, O. Schulte, and H. Xiong.
The minimum consistent subset cover problem and its appli-
cations in data mining. InACM SIGKDD, pages 310–319,
2007.

[5] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clus-
tering algorithm for large databases. InACM SIGMOD In-
ternational Conference on Management of Data, pages 73–
84, 1998.

[6] A. Hinneburg and D. Keim. An efficient approach to clus-
tering in multimedia databases with noise. In4th Int’l Conf.
on Knowledge Discovery and Data Mining, 1999.

[7] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[8] G. Karypis, E.-H. S. Han, and V. Kumar. Chameleon: Hi-
erarchical clustering using dynamic modeling.Computer,
32(8):68–75, 1999.

[9] J. Lee and M. Verleysen.Nonlinear Dimensionality Reduc-
tion. Springer, 2007.

[10] A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. InProc. of NIPS, 2001.

[11] A. Okabe, B. Boots, and K. Sugihara.Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wi-
ley & Sons, 1992.

[12] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pat-
tern Analysis. Cambridge University Press, 2004.

[13] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

[14] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-
ing. In 18th Annual Conference on NIPS, 2004.

[15] Y. Zhao and G. Karypis. Hierarchical clustering algorithms
for document datasets.Data Mining and Knowledge Dis-
covery, 10(2):141–168, 2005.

