
Knowledge and Information Systems (2001) 3: 1–29
c© 2001 Springer-Verlag London Ltd.

Parallel Data Mining for Association Rules on
Shared-Memory Systems

S. Parthasarathy1, M. J. Zaki2, M. Ogihara3, W. Li4

1Department of Computer and Information Sciences, Ohio State University, Columbus, OH, USA
2Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
3Department of Computer Science, University of Rochester, Rochester, NY, USA
4Intel Corporation, Santa Clara, CA, USA

Abstract. In this paper we present a new parallel algorithm for data mining of association
rules on shared-memory multiprocessors. We study the degree of parallelism, synchroniza-
tion, and data locality issues, and present optimizations for fast frequency computation.
Experiments show that a significant improvement of performance is achieved using our
proposed optimizations. We also achieved good speed-up for the parallel algorithm.

A lot of data-mining tasks (e.g. association rules, sequential patterns) use complex
pointer-based data structures (e.g. hash trees) that typically suffer from suboptimal data
locality. In the multiprocessor case shared access to these data structures may also result
in false sharing. For these tasks it is commonly observed that the recursive data structure
is built once and accessed multiple times during each iteration. Furthermore, the access
patterns after the build phase are highly ordered. In such cases locality and false sharing
sensitive memory placement of these structures can enhance performance significantly.
We evaluate a set of placement policies for parallel association discovery, and show that
simple placement schemes can improve execution time by more than a factor of two. More
complex schemes yield additional gains.

Keywords: Association rules; Improving locality; Memory placement; Parallel data mining;
Reducing false sharing

1. Introduction

Discovery of association rules is an important problem in database mining.
The prototypical application is the analysis of sales or basket data (Agrawal et
al, 1996). Basket data consists of items bought by a customer along with the

Received 24 May 1999
Revised 20 Jun 2000
Accepted 6 Jul 2000

2 S. Parthasarathy et al.

transaction identifier. Besides the retail sales example, association rules have been
shown to be useful in domains such as decision support, telecommunications
alarm diagnosis and prediction, university enrollments, etc.

Due to the huge size of data and amount of computation involved in data
mining, parallel computing is a crucial component for any successful large-scale
data-mining application. Past research on parallel association mining (Park et
al, 1995b; Agrawal and Shafer, 1996; Cheung et al, 1996b; Han et al, 1997; Zaki
et al, 1997e) has been focused on distributed-memory (also called shared-nothing)
parallel machines. In such a machine, each processor has private memory and
local disks, and communicates with other processors only via passing messages.
Parallel distributed-memory machines are essential for scalable massive paral-
lelism. However, shared-memory multiprocessor systems (SMPs), often called
shared-everything systems, are also capable of delivering high performance for
low to medium degree of parallelism at an economically attractive price. SMP
machines are the dominant types of parallel machines currently used in industry.
Individual nodes of even parallel distributed-memory machines are increasingly
being designed to be SMP nodes. A shared-memory system offers a single mem-
ory address space that all processors can access. Processors communicate through
shared variables in memory and are capable of accessing any memory location.
Synchronization is used to coordinate processes. Any processor can also access
any disk attached to the system. The programming architecture on these machines
is quite different from that on distributed-memory machines, which warrants the
development of new algorithms for achieving good performance.

Modern processor speeds are improving by 50–100% every year, while mem-
ory access times are improving by only 7% every year (Hennessey and Patter-
son, 1995). Memory latency (due to the gap between processor and memory
subsystems) is therefore becoming an increasingly important performance bottle-
neck in modern multiprocessors. While cache hierarchies alleviate this problem
to an extent, data locality optimization (i.e., having as much as possible of the
data local to the processor cache) is crucial for improving performance of data-
intensive applications like data mining. Furthermore, in shared-memory (SMP)
systems the local processor caches have to be kept coherent with one another. A
key to efficiency is to minimize the cost of maintaining coherency. The elimina-
tion of false sharing (i.e., the problem where coherence is maintained even when
memory locations are not shared) is an important step towards achieving this
objective.

This paper presents a new parallel algorithm for mining association rules
on shared-memory multiprocessor systems. We present novel techniques for load
balancing the computation in the enumeration of frequent associations. We
additionally present new optimizations for balancing the hash tree data structure
to enable fast counting. The recursive data structures found in association mining
(such as hash trees, lists, etc.) typically exhibit poor locality, and shared access
to these structures may also introduce false sharing. Unfortunately traditional
locality optimizations found in the literature (Carr et al, 1994; Anderson and
Lam, 1993) cannot be used directly for such structures, since they can be applied
only to array-based programs. The arbitrary allocation of memory in data-
mining applications also makes detecting and eliminating false sharing a difficult
proposition. In this paper we also describe techniques for improving locality and
reducing false sharing. We propose a set of policies for controlling the allocation
and memory placement of dynamic data structures. The schemes are based on
a detailed understanding of the access patterns of the program, and memory

Parallel Association Mining 3

is allocated in such a way that data likely to be accessed together is grouped
together (memory placement) while minimizing false sharing.

We experimentally evaluate the performance of our new algorithm and opti-
mizations. We achieve excellent speed-up of up to eight on 12 processors. We show
that the proposed optimizations for load balancing, hash tree balancing, and fast
counting are extremely effective, with up to 40% improvements over the base case.
For the locality-enhancing and false-sharing minimizing techniques, we show that
simple placement schemes can be quite effective, and for the datasets we looked
at improve the execution time by a factor of two. More complex schemes yield
additional gains. These results are directly applicable to other mining tasks like
quantitative associations (Srikant and Agrawal, 1996), multi-level (taxonomies)
associations (Srikant and Agrawal, 1995), and sequential patterns (Agrawal and
Srikant, 1995), which also use hash tree-based structures.

The rest of the paper is organized as follows. We describe the sequential
association algorithm in Section 2, and the parallel algorithm in Section 3. The
optimizations for balancing the hash tree, and fast subset checking, are presented
in Section 4. Section 5 describes the custom placement policies for improving
locality and reducing false sharing. We next present our experimental results in
Section 6. Relevant related work is discussed in Section 7, and we present our
conclusions in Section 8.

2. Sequential Association Mining

The problem of mining associations over basket data was introduced in Agrawal
et al (1993). It can be formally stated as: Let I = {i1, i2, . . . , im} be a set of
m distinct attributes, also called items. Each transaction T in the database D
of transactions has a unique identifier, and contains a set of items, called an
itemset, such that T ⊆ I, i.e. each transaction is of the form < TID, i1, i2, . . . , ik >.
An itemset with k items is called a k-itemset. A subset of length k is called
a k-subset. An itemset is said to have a support s if s% of the transactions
in D contain the itemset. An association rule is an expression A ⇒ B, where
itemsets A,B ⊂ I, and A∩B = ∅. The confidence of the association rule, given as
support(A∪B)/support(A), is simply the conditional probability that a transaction
contains B, given that it contains A. The data-mining task for association rules
can be broken into two steps. The first step consists of finding all frequent itemsets,
i.e., itemsets that occur in the database with a certain user-specified frequency,
called minimum support. The second step consists of forming implication rules
among the frequent itemsets (Agrawal and Srikant, 1994). The second step is
relatively straightforward. Once the support of frequent itemsets is known, rules
of the form X −Y ⇒ Y (where Y ⊂ X) are generated for all frequent itemsets X,
provided the rules meet the desired confidence. On the other hand the problem of
identifying all frequent itemsets is hard. Given m items, there are potentially 2m

frequent itemsets. However, only a small fraction of the whole space of itemsets is
frequent. Discovering the frequent itemsets requires a lot of computation power,
memory and I/O, which can only be provided by parallel computers.

2.1. Sequential Association Algorithm

Our parallel shared-memory algorithm is built on top of the sequential Apriori
association mining algorithm proposed in Agrawal et al (1996). During iteration

4 S. Parthasarathy et al.

F1 = {frequent 1-itemsets };
for (k = 2; Fk−1 6= ∅; k + +)

Ck = Set of New Candidates;
for all transactions t ∈ D

for all k-subsets s of t
if (s ∈ Ck) s.count + +;

Fk = {c ∈ Ck|c.count > min sup};
Set of all frequent itemsets =

⋃
k Fk;

Fig. 1. Sequential association mining.

k of the algorithm a set of candidate k-itemsets is generated. The database is then
scanned and the support for each candidate is found. Only the frequent k-itemsets
are retained for future iterations, and are used to generate a candidate set for the
next iteration. A pruning step eliminates any candidate which has an infrequent
subset. This iterative process is repeated for k = 1, 2, 3 . . . , until there are no more
frequent k-itemsets to be found. The general structure of the algorithm is given
in Fig. 1. In the figure Fk denotes the set of frequent k-itemsets, and Ck the set
of candidate k-itemsets. There are two main steps in the algorithm: candidate
generation and support counting.

2.1.1. Candidate Itemset Generation

In candidate itemsets generation, the candidates Ck for the k-th pass are generated
by joining Fk−1 with itself, which can be expressed as

Ck = {x | x[1 : k − 2] = A[1 : k − 2] = B[1 : k − 2], x[k − 1] = A[k − 1],

x[k] = B[k − 1], A[k − 1] < B[k − 1], where A,B ∈ Fk−1}
where x[a : b] denotes items at index a through b in itemset x. Before inserting x
into Ck , we test whether all (k − 1)-subsets of x are frequent. If there is at least
one subset that is not frequent the candidate can be pruned.

Hash tree data structure: The candidates are stored in a hash tree to facilitate
fast support counting. An internal node of the hash tree at depth d contains a
hash table whose cells point to nodes at depth d + 1. The size of the hash table,
also called the fan-out, is denoted as H. All the itemsets are stored in the leaves
in a sorted linked list. To insert an itemset in Ck , we start at the root, and at
depth d we hash on the d-th item in the itemset until we reach a leaf. The itemset
is then inserted in the linked list of that leaf. If the number of itemsets in that leaf
exceeds a threshold value, that node is converted into an internal node. We would
generally like the fan-out to be large, and the threshold to be small, to facilitate
fast support counting. The maximum depth of the tree in iteration k is k. Figure 2
shows a hash tree containing candidate 3-itemsets, and Fig. 3 shows the structure
of the internal and leaf nodes in more detail. The different components of the
hash tree are as follows: hash tree node (HTN), hash table (HTNP), itemset list
header (ILH), list node (LN), and the itemsets (Itemset). It can be seen that an
internal node has a hash table pointing to nodes at the next level, and an empty
itemset list, while a leaf node has a list of itemsets.

Parallel Association Mining 5

Candidate Hash Tree (C)3
Hash Function: h(i) = i mod 2

DEPTH 0

DEPTH 1

DEPTH 2

0 1

3 5

7 10 11 1312986

2 4

LEAVES

ABE
ADE
CDE

A,C,EB,D

B,D

B,D B,D B,D B,D

B,DA,C,E

A,C,E A,C,E A,C,E A,C,E

A,C,E

ABD ACD ACEBCEBCDBDE ABC

Fig. 2. Candidate hash tree.

HTNHTN

HASH TREE NODE (HTN): INTERNAL

A

B

C

A

B

A

D

E E

ListNode (LN)

HASH TREE NODE (HTN): LEAF

3-Itemset

Itemset_List = NULL

Itemset_List:

Hash_Table = NULL

Hash_Table:

HTN_Pointer_Array

Fig. 3. Structure of internal and leaf nodes.

2.1.2. Support Counting

To count the support of candidate k-itemsets, for each transaction T in the
database, we conceptually form all k-subsets of T in lexicographical order. For
each subset we then traverse the hash tree and look for a matching candidate,
and update its count.

Hash tree traversal: The search starts at the root by hashing on successive items
of the transaction. At the root we hash on all transaction items from 0 through
(n − k + 1), where n is the transaction length and k the current iteration. If we
reach depth d by hashing on item i, then we hash on the remaining items i
through (n − k + 1) + d at that level. This is done recursively, until we reach a

6 S. Parthasarathy et al.

leaf. At this point we traverse the linked list of itemsets and increment the count
of all itemsets that are contained in the transaction (note: this is the reason for
having a small leaf threshold value).

2.1.3. Frequent Itemset Example

Once the support for the candidates has been gathered, we traverse the hash
tree in depth first order, and all candidates that have the minimum support are
inserted in Fk , the set of frequent k-itemsets. This set is then used for candidate
generation in the next iteration.

For a simple example demonstrating the different steps, consider an example
database, D = {T1 = (1, 4, 5), T2 = (1, 2), T3 = (3, 4, 5), T4 = (1, 2, 4, 5)}, where Ti

denotes transaction i. Let the minimum support value be 2. Running through the
iterations, we obtain

F1 = {(1), (2), (4), (5)}
C2 = {(1, 2), (1, 4), (1, 5), (2, 4), (2, 5), (4, 5)}
F2 = {(1, 2), (1, 4), (1, 5), (4, 5)}
C3 = {(1, 4, 5)}
F3 = {(1, 4, 5)}

Note that while forming C3 by joining F2 with itself, we get three potential
candidates, (1, 2, 4), (1, 2, 5), and (1, 4, 5). However only (1, 4, 5) is a true candidate.
The first two are eliminated in the pruning step, since they have a 2-subset which
is not frequent, namely the 2-subsets (2, 4) and (2, 5), respectively.

3. Parallel Association Mining on SMP Systems

In this section we present the design issues in parallel data mining for association
rules on shared memory architectures. We separately look at the two main steps:
candidate generation, and support counting.

3.1. Candidate Itemsets Generation

3.1.1. Optimized Join and Pruning

Recall that in iteration k, Ck is generated by joining Fk−1 with itself. The naive

way of doing the join is to look at all
(|Fk−1|

2

)
combinations. However, since Fk−1

is lexicographically sorted, we can partition the itemsets in Fk−1 into equivalence
classes S0, . . . , Sn, based on their common k−2 prefixes (class identifier). k-itemsets

are formed only from items within a class by taking all
(|Si|

2

)
item pairs and

prefixing them with the class identifier. In general we have to consider
∑n

i=0

(|Si|
2

)
combinations instead of

(|Fk−1|
2

)
combinations.

While pruning a candidate we have to check if all k of its (k − 1)-subsets are
frequent. Since the candidate is formed by an item pair from the same class, we
need only check for the remaining k − 2 subsets. Furthermore, assuming all Si
are lexicographically sorted, these k − 2 subsets must come from classes greater
than the current class. Thus, to generate a candidate, there must be at least k − 2

Parallel Association Mining 7

equivalence classes after a given class. In other words we need consider only the
first n − (k − 2) equivalence classes.

Adaptive hash table size (H): Having equivalence classes also allows us to accu-
rately adapt the hash table size H for each iteration. For iteration k, and for a
given threshold value T, i.e., the maximum number of k-itemsets per leaf, the total
k-itemsets that can be inserted into the tree is given by the expression THk . Since

we can insert up to
∑n

i=0

(|Si|
2

)
itemsets, we get the expression THk >

∑n
i=0

(|Si|
2

)
.

This can be solved to obtain

H >

(∑n
i=0

(|Si|
2

)
T

)1/k

3.1.2. Computation Balancing

Let the number of processors P = 3, k = 2, and F1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
There is only one resulting equivalence class since the k− 2 (= 0) length common
prefix is null. The number of 2-itemsets generated by an itemset, called the work
load due to itemset i, is given as wi = n − i − 1, for i = 0, . . . , n − 1. For example,
itemset 0 contributes nine 2-itemsets {01, 02, 03, 04, 05, 06, 07, 08, 09}. There are
different ways of partitioning this class among P processors.

Block partitioning: A simple block partition generates the assignment A0 =
{0, 1, 2}, A1 = {3, 4, 5} and A2 = {6, 7, 8, 9}, where Ap denotes the itemsets
assigned to processor p. The resulting workload per processor is: W0 = 9+8+7 =
24, W1 = 6 + 5 + 4 = 15 and W2 = 3 + 2 + 1 = 6, where Wp =

∑
i∈Ap

wi. We

can clearly see that this method suffers from a load imbalance problem.

Interleaved partitioning: A better way is to do an interleaved partition, which
results in the assignment A0 = 0, 3, 6, 9, A1 = 1, 4, 7 and A2 = 2, 5, 8. The
workload is now given as W0 = 9 + 6 + 3 = 18, W1 = 8 + 5 + 2 = 15 and
W2 = 7 + 4 + 1 = 12. The load imbalance is much smaller; however, it is still
present.

Bitonic partitioning (single equivalence class): In Cierniak et al (1997) we propose
a new partitioning scheme, called bitonic partitioning, for load balancing that can
be applied to the problem here as well. This scheme is based on the observation
that the sum of the workload due to itemsets i and (2P − i − 1) is a constant:

wi + w2P−i−1 = n − i − 1 + (n − (2P − i − 1) − 1) = 2n − 2P − 1

We can therefore assign itemsets i and (2P − i − 1) as one unit with uniform
work (2n − 2P − 1). If n mod 2P = 0 then perfect balancing results. The case
n mod 2P 6= 0 is handled as described in Cierniak et al (1997).

The final assignment is given as A0 = {0, 5, 6},A1 = {1, 4, 7}, and A2 =
{2, 3, 8, 9}, with corresponding workload given as W0 = 9 + 4 + 3 = 16, W1 =
8 + 5 + 2 = 15 and W2 = 7 + 6 + 1 = 14. This partition scheme is better than the
interleaved scheme and results in almost no imbalance. Figure 4 illustrates the
difference between the interleaved and bitonic partitioning schemes.

8 S. Parthasarathy et al.

Processors
a) Work Load per Itemset

Itemset Processors

0

b) Bitonic Partitioning c) Interleaved Partitioning

2 4 60 8 210 210

W
or

k
L

oa
d T

ot
al

 W
or

k
L

oa
d

T
ot

al
 W

or
k

L
oa

d

0

2

4

6

8

0(9) 1(8)

3(6)4(5)5(4)

2(7)

14

15

16

18

15

12

0(9) 2(7)1(8)

3(6) 4(5) 5(4)

6(3)

7(2)

8(1)

9(0)

6(3) 7(2) 8(1)
9(0)

Fig. 4. Bitonic partitioning.

Bitonic partitioning (multiple equivalence classes): Above we presented the simple
case of C1, where we only had a single equivalence class. In general we may have
multiple equivalence classes. Observe that the bitonic scheme presented above
is a greedy algorithm, i.e., we sort all the wi (the workload due to itemset i),
extract the itemset with maximum wi, and assign it to processor 0. Each time we
extract the maximum of the remaining itemsets and assign it to the least loaded
processor. This greedy strategy generalizes to the multiple equivalence class as
well (Zaki et al, 1996), the major difference being workloads in different classes
may not be distinct.

3.1.3. Adaptive Parallelism

Let n be the total number of items in the database. Then there are potentially
(
n
k

)
frequent k-itemsets that we would have to count during iteration k. However, in
practice the number is usually much smaller, as is indicated by our experimental
results. We found that support counting dominated the execution time to the tune
of around 85% of the total computation time for the databases we consider in
Section 6. On the other hand, for iterations with a large number of k itemsets
there was sufficient work in the candidate generation phase. This suggests a need
for some form of dynamic or adaptive parallelization based on the number of
frequent k-itemsets. If there are not a sufficient number of frequent itemsets, then
it is better not to parallelize the candidate generation.

Parallel Association Mining 9

3.1.4. Parallel Hash Tree Formation

We could choose to build the candidate hash tree in parallel, or we could let the
candidates be temporarily inserted in local lists (or hash trees). This would have
to be followed by a step to construct the global hash tree.

In our implementation we build the tree in parallel. We associate a lock with
each leaf node in the hash tree. When processor i wants to insert a candidate
itemset into the hash tree it starts at the root node and hashes on successive items
in the itemsets until it reaches a leaf node. At this point it acquires a lock on this
leaf node for mutual exclusion while inserting the itemset. However, if we exceed
the threshold of the leaf, we convert the leaf into an internal node (with the lock
still set). This implies that we also have to provide a lock for all the internal
nodes, and the processors will have to check if any node is acquired along its
downward path from the root. With this locking mechanism, each process can
insert the itemsets in different parts of the hash tree in parallel.

3.2. Support Counting

For this phase, we could either split the database logically among the processors
with a common hash tree, or split the hash tree with each processor traversing
the entire database. We will look at each case below.

3.2.1. Partitioned vs. Common Candidate Hash Tree

One approach in parallelizing the support counting step is to split the hash tree
among the processors. The decisions for computation balancing directly influence
the effectiveness of this approach, since each processor should ideally have the
same number of itemsets in its local portion of the hash tree. Another approach
is to keep a single common hash tree among all the processors.

3.2.2. Partitioned vs. Common Database

We could either choose to logically partition the database among the processors,
or each processor can choose to traverse the entire database for incrementing the
candidate support counts.

Balanced database partitioning: In our implementation we partition the database
in a blocked fashion among all the processors. However, this strategy may not
result in balanced work per processor. This is because the workload is a function
of the length of the transactions. If lt is the length of the transaction t, then

during iteration k of the algorithm we have to test whether all the
(
lt
k

)
subsets of

the transaction are contained in Ck . Clearly the complexity of the workload for
a transaction is given as O(min(lt

k, lt
lt−k)), i.e., it is polynomial in the transaction

length. This also implies that a static partitioning will not work. However, we
could devise static heuristics to approximate a balanced partition. For example,
one static heuristic is to estimate the maximum number of iterations we expect, say
T . We could then partition the database based on the mean estimated workload

for each transaction over all iterations, given as (
∑T

k=1

(
li
k

)
)/T . Another approach

is to re-partition the database in each iteration. In this case it is important
to respect the locality of the partition by moving transactions only when it is

10 S. Parthasarathy et al.

absolutely necessary. We plan to investigate different partitioning schemes as part
of future work.

3.3. Parallel Data Mining: Algorithms

Based on the discussion in the previous section, we consider the following algo-
rithms for mining association rules in parallel:

– Common candidate partitioned database (CCPD): This algorithm uses a com-
mon candidate hash tree across all processors, while the database is logically
split among them. The hash tree is built in parallel (see Section 3.1.4). Each
processor then traverses its local database and counts the support for each
itemset. Finally, the master process selects the frequent itemsets.

– Partitioned Candidate Common Database (PCCD): This has a partitioned can-
didate hash tree, but a common database. In this approach we construct a
local candidate hash tree per processor. Each processor then traverses the en-
tire database and counts support for itemsets only in its local tree. Finally the
master process performs the reduction and selects the frequent itemsets for the
next iteration.

Note that the common candidate common database (CCCD) approach results
in duplicated work, while the partitioned candidate partitioned database (PCPD)
approach is more or less equivalent to CCPD on shared-memory systems. For
this reason we did not implement these parallelizations.

4. Optimizations: Tree Balancing and Fast Subset Checking

In this section we present some optimizations to the association rule algorithm.
These optimizations are beneficial for both sequential and parallel implementa-
tion.

4.1. Hash Tree Balancing

Although the computation balancing approach results in balanced workload, it
does not guarantee that the resulting hash tree is balanced.

Balancing C2 (no pruning): We’ll begin by a discussion of tree balancing for
C2, since there is no pruning step in this case. We can balance the hash tree
by using the bitonic partitioning scheme described above. We simply replace
P , the number of processors with the fan-out H for the hash table. We label
the n frequent 1-itemsets from 0 to n − 1 in lexicographical order, and use
P = H to derive the assignments A0, . . . ,AH−1 for each processor. Each Ai is
treated as an equivalence class. The hash function is based on these equivalence
classes, which is simply given as, h(i) = Ai, for i = 0, . . . ,H. The equivalence
classes are implemented via an indirection vector of length n. For example, let
F1 = {A,D, E, G,K,M,N, S, T , Z}. We first label these as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Assume that the fan-out H = 3. We thus obtain the three equivalence classes
A0 = {0, 5, 6}, A1 = {1, 4, 7}, and A2 = {2, 3, 8, 9}, and the indirection vector is
shown in Table 1. Furthermore, this hash function is applied at all levels of the

Parallel Association Mining 11

Table 1. Indirection vector.

Label 0 1 2 3 4 5 6 7 8 9

Hash value 0 1 2 2 1 0 0 1 2 2

hash tree. Clearly, this scheme results in a balanced hash tree as compared to
the simple g(i) = i mod H hash function (which corresponds to the interleaved
partitioning scheme from Section 3.1.1).

Balancing Ck(k > 2): Although items can be pruned for iteration k > 3, we use
the same bitonic partitioning scheme for C3 and beyond. Below we show that
even in this general case bitonic hash function is very good as compared to the
interleaved scheme. Theorem 1 below establishes an upper and lower bound on
the number of itemsets per leaf for the bitonic scheme.

Theorem 1. Let k > 1 denote the iteration number, I = {0, . . . , d − 1} the set of
items, H the fan-out of the hash table, T = {0, . . . , H −1} the set of equivalence
classes modulo H, T = Tk the total number of leaves in Ck , and G the family of
all size k ordered subsets of I, i.e., the set of all k-itemsets that can be constructed
from items in I. Suppose d

2H is an integer and d
2H ,H > k. Define the bitonic

hash function h : I → T by

h(i) = i mod H if 0 6 (i mod 2H) < H and 2H − 1 − (i mod 2H) otherwise,

and the mapping S : G → T from k-itemsets to the leaves of Ck by S(a1, . . . , ak) =
(h(a1), . . . , h(ak)). Then for every leaf B = (b1, . . . , bk) ∈ T, the ratio of the
number of k-itemsets in the leaf (‖S−1(B)‖) to the average number of itemsets
per leaf (‖G‖/‖T‖) is bounded above and below by the expression

e
− k2

d/H 6
‖S−1(B)‖
‖G‖/‖T‖ 6 e

k2

d/H

A proof of the above theorem can be found in Zaki et al (1996). We also obtain
the same lower and upper bound for the interleaved hash function. However, the
two functions behave differently. Note that the average number of k-itemsets per

leaf ‖G‖/‖T‖ is
(
2wH
k

)
/Hk ≈ (2w)k

k!
. Let α(w) denote this polynomial. We say that

a leaf has a capacity close to the average if its capacity, which is a polynomial in

w of degree at most k, is of the form (2w)k

k!
+ β(w), with β(w) being a polynomial

of degree at most k − 2.
For the bitonic hash function, a leaf specified by the hash values (a1, . . . , ak)

has capacity close to α(w) if and only if ai 6= ai+1 for all i, 1 6 i 6 k − 1. Thus,
there are H(H − 1)k−1 such leaves, and so, (1 − H−1)k−1 fraction of the leaves
have capacity close to α(w). Note also that clearly, (1 − H−1)k−1 approaches 1.

On the other hand, for the interleaved hash function, a leaf specified by
(a1, . . . , ak) has capacity close to α(w) if and only if ai 6= ai+1 for all i, and the num-
ber of i such that ai < ai+1 is equal to (k−1)/2. So, there is no such leaf if k is even.
For odd k > 3, the ratio of the ‘good’ leaves decreases as k increases, achieving a
maximum of 2/3 when k = 3. Thus, at most 2/3 of the leaves achieve the average.

From the above discussion it is clear that while both the simple and bitonic
hash function have the same maximum and minimum bounds, the distribution
of the number of itemsets per leaf is quite different. While a significant portion

12 S. Parthasarathy et al.

of the leaves are close to the average for the bitonic case, only a few are close in
the simple hash function case.

4.2. Short-Circuited Subset Checking

Recall that while counting the support, once we reach a leaf node, we check
whether all the itemsets in the leaf are contained in the transaction. This node
is then marked as VISITED to avoid processing it more than once for the same
transaction. A further optimization is to associate a VISITED flag with each node
in the hash tree. We mark an internal node as VISITED the first time we touch
it. This enables us to preempt the search as soon as possible. We would expect
this optimization to be of greatest benefit when the transaction sizes are large.
For example, if our transaction is T = {A,B, C, D, E}, k = 3, fan-out = 2, then
all the 3-subsets of T are: {ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE,
BDE, CDE}. Figure 2 shows the candidate hash tree C3. We have to increment
the support of every subset of T contained in C3. We begin with the subset
ABC , and hash to node 11 and process all the itemsets. In this downward path
from the root we mark nodes 1, 4, and 11 as visited. We then process subset
ADB, and mark node 10. Now consider the subset CDE. We see in this case
that node 1 has already been marked, and we can preempt the processing at this
very stage. This approach can, however, consume a lot of memory. For a given
fan-out H, for iteration k, we need additional memory of size Hk to store the
flags. In the parallel implementation we have to keep a VISITED field for each
processor, bringing the memory requirement to P · Hk . This can still get very
large, especially with increasing number of processors. In Zaki et al (1996) we
show a mechanism which further reduces the memory requirement to only k · H.
The approach in the parallel setting yields a total requirement of k · H · P.

5. Memory Placement Policies for Association Mining

In this section we describe a set of custom memory placement policies for im-
proving the locality and reducing false sharing for parallel association mining. To
support the different policy features we implemented a custom memory placement
and allocation library. In contrast to the standard Unix malloc library, our library
allows greater flexibility in controlling memory placement. At the same time it
offers a faster memory freeing option, and efficient reuse of pre-allocated memory.
Furthermore it does not pollute the cache with boundary tag information.

5.1. Improving Reference Locality

It was mentioned in the introduction that it is extremely important to reduce
the memory latency for data-intensive applications like association mining by
effective use of the memory hierarchy. In this section we consider several memory
placement policies for the hash tree recursive structure used in the parallel
mining algorithm. All the locality-driven placement strategies are directed in the
way in which the hash tree and its building blocks (hash tree nodes, hash table,
itemset list, list nodes, and the itemsets) are traversed with respect to each other.
The specific policies we looked at are described below.

Parallel Association Mining 13

Common candidate partitioned database (CCPD): This is the original program
that includes calls to the standard Unix memory allocation library available on
the target platform.

Simple placement policy (SPP): This policy does not use the data structure
access patterns. All the different hash tree building blocks enumerated above
are allocated memory from a single region. This scheme does not rely on any
special placement of the blocks based on traversal order. Placement is implicit
in the order of hash tree creation. Data structures with consecutive calls to
the memory allocation routine are adjacent in memory. The runtime overhead
involved for this policy is minimal. There are three possible variations of the
simple policy depending on where the data structures reside: (1) common region:
all data structures are allocated from a single global region; (2) individual
regions: each data structure is allocated memory from a separate region specific
to that structure; and (3) grouped regions: data structures are grouped together
using program semantics and allocated memory from the same region. The SPP
scheme in this paper uses the common region approach.

Localized placement policy (LPP): This is an instance of a policy grouping
related data structures together using local access information present in a single
subroutine. In this policy we utilize a ‘reservation’ mechanism to ensure that a
list node (LN) with its associated itemset (Itemset) in the leaves of the final hash
tree are together whenever possible, and that the hash tree node (HTN) and the
itemset list header (ILH) are together. The rationale behind this placement is the
way the hash tree is traversed in the support counting phase. An access to a
list node is always followed by an access to its itemset, and an access to a leaf
hash tree node is followed by an access to its itemset list header. This contiguous
memory placement of the different components is likely to ensure that when one
component is brought into the cache, the subsequent component is also brought
in, thus improving the cache hit rate and the locality.

Global placement policy (GPP): This policy uses global access information to
apply the placement policy. We utilize the knowledge of the entire hash tree
traversal order to place the hash tree building blocks in memory, so that the next
structure to be accessed lies in the same cache line in most cases. The construction
of the hash tree proceeds in a manner similar to SPP. We then remap the entire
tree according the tree access pattern in the support counting phase. In our case
the hash tree is remapped in a depth-first order, which closely approximates
the hash tree traversal. The remapped tree is allocated from a separate region.
Remapping costs are comparatively low and this policy also benefits by delete
aggregation and the lower maintenance costs of our custom library.

5.1.1. Custom Placement Example

A graphical illustration of the CCPD, simple placement policy, and the global
placement policy appears in Fig. 5. The figure shows an example hash tree
that has three internal nodes (HTN#1, HTN#10, HTN#3), and two leaf nodes
(HTN#12, HTN#5). The numbers that follow each structure show the creation
order when the hash tree is first built. For example, the very first memory
allocation is for hash tree node HTN#1, followed by the hash table HTNP#2,
and so on. The very last memory allocation is for Itemset#14. Each internal

14 S. Parthasarathy et al.

C

D

E

B

D

E

Itemset List

LN#6 LN#8

It
e

m
se

t#
7

It
e

m
se

t#
9

A

B

C

A

B

C

Itemset List

LN#13

It
e

m
se

t#
1

4

HTN#12

Hash Table

HTNP#4

Hash Table

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

Standard Malloc

Custom Malloc

Remapping in Depth-First Order

HASH TREE

HTN#1 HTNP#2
HTNP#4HTN#3

HTN#5 LN#6
Itemset#7 LN#8

Itemset#9 HTN#10
HTNP#11 HTN#12

Itemset#14LN#13

HTN#1 HTNP#2

HTN#1 HTNP#2 HTN#10
HTNP#11 HTN#12 LN#13 Itemset#14

HTN#3 HTNP#4
HTN#5 LN#6 Itemset#7

Itemset#9
LN#8

HTN#3
HTNP#4 HTN#5 LN#6 Itemset#7

LN#8 Itemset#9 HTN#10
HTNP#11 HTN#12 LN#13

Itemset#14

HTN#1
Hash Table

HTN#5

HTN#3HTN#10

HTNP#2

HTNP#11

LEGEND: HTN (Hash Tree Node), HTNP(HTN Pointer Array), LN(List Node)
#x Denotes Order of Node Creation

Fig. 5. Improving reference locality via custom memory placement of hash tree.

node points to a hash table, while the leaf nodes have a linked list of candidate
itemsets.

CCPD: The original CCPD code uses the standard malloc library. The different
components are allocated memory in the order of creation and may come from
different locations in the heap. The box on the top right-hand side labeled
Standard Malloc corresponds to this case.

SPP: The box labeled Custom Malloc corresponds to the SPP placement policy.
It should be clear from the figure that no access information is used. The
allocation order of the components is thus the same as in the CCPD case.
However, the custom malloc library ensures that all allocations are contiguous
in memory, and can therefore greatly assist cache locality.

GPP: The last box labeled Remapping in Depth-First Order corresponds to
the GPP policy. In the support counting phase each subset of a transaction
is generated in lexicographic order, and a tree traversal is made. This order
roughly corresponds to a depth-first search. We use this global access information
to remap the different structures so that those most likely to be accessed one
after the other are also contiguous in memory. The order of the components in
memory is now HTN#1, HTNP#2, HTN#10, HTNP#11, etc., corresponding to
a depth-first traversal of the hash tree.

Parallel Association Mining 15

5.2. Reducing False Sharing

A problem unique to shared-memory systems is false sharing, which occurs when
two different shared variables are located in the same cache block, causing the
block to be exchanged between the processors even though the processors are
accessing different variables. For example, the support counting phase suffers
from false sharing when updating the itemset support counters. A processor has
to acquire the lock, update the counter and release the lock. During this phase,
any other processor that had cached the particular block on which the lock was
placed gets its data invalidated. Since 80% of the time is spent in the support
counting step it is extremely important to reduce or eliminate the amount of
false sharing. Furthermore, one has to be careful not to destroy locality while
improving the false sharing. Several techniques for alleviating this problem are
described next.

Padding and aligning: As a simple solution one may place unrelated data that
might be accessed simultaneously on separate cache lines. We can thus align
the locks to separate cache lines or simply pad out the rest of the coherence
block after the lock is allocated. Unfortunately this is not a very good idea for
association mining because of the large number of candidate itemsets involved
in some of the early iterations (around 0.5 million itemsets). While padding will
eliminate false sharing, it will result in unacceptable memory space overhead
and, more importantly, a significant loss in locality.

Segregate read-only data: Instead of padding we chose to separate out the
locks and counters from the itemset, i.e., to segregate read-only data) (itemsets)
from read-write data (locks and counters). All the data in the hash tree that
is read-only comes from a separate region and locks and counters come from
a separate region. This ensures that read-only data is never falsely shared.
Although this scheme does not eliminate false sharing completely, it does
eliminate unnecessary invalidations of the read-only data, at the cost of some loss
in locality and an additional overhead due to the extra placement cost. To each
of the policies for improving locality we added the feature that the locks and the
support counters come from a separate region, for reducing false sharing. There
are three resulting strategies – L-SPP, L-LPP, and L-GPP – which correspond to
the simple placement policy, localized placement policy, and global placement
policy, respectively.

Privatize (and reduce): Another technique for eliminating false sharing is called
software caching (Bianchini and Thomas, 1992) or privatization. It involves making
a private copy of the data that will be used locally, so that operations on that
data do not cause false sharing. For association mining, we can utilize that fact
that the support counter increment is a simple addition operation and one that
is associative and commutative. This property allows us to keep a local array of
counters per processor allocated from a private lock region. Each processor can
increment the support of an itemset in its local array during the support counting
phase. This is followed by a global sum-reduction. This scheme eliminates false
sharing completely, with acceptable levels of memory wastage. This scheme also
eliminates the need for any kind of synchronization among processors, but it has
to pay the cost of the extra reduction step. We combine this scheme with the global
placement policy to obtain a scheme which has good locality and eliminates false

16 S. Parthasarathy et al.

Table 2. Database properties.

Database T I D Total size

T5.I2.D100K 5 2 100,000 2.6MB
T10.I4.D100K 10 4 100,000 4.3MB
T15.I4.D100K 15 4 100,000 6.2MB
T20.I6.D100K 20 6 100,000 7.9MB
T10.I6.D400K 10 6 400,000 17.1MB
T10.I6.D800K 10 6 800,000 34.6MB
T10.I6.D1600K 10 6 1,600,000 69.8MB
T10.I6.D3200K 10 6 3,200,000 136.9MB

sharing completely. We call this scheme the local counter array–global placement
policy, (LCA-GPP). The next section presents an experimental evaluation of the
different schemes for improving locality and reducing false sharing.

6. Experimental Evaluation

All the experiments were performed on a 12-node SGI Power Challenge SMP
machine running IRIX 5.3. Each node is a 100 MHz MIPS processor 16 kB
primary cache and 1 MB secondary cache. There is a total of 256 MB of main
memory of which around 40 MB is reserved for the OS kernel. The databases are
stored on a non-local 2 GB disk and there is exactly one network port for the
machine. As a result disk accesses are inherently sequential.

We used different synthetic databases that have been used as benchmark
databases for many association rules algorithms (Agrawal et al, 1993; Houtsma
and Swami, 1995; Park et al, 1995a; Savasere et al, 1995; Agrawal et al, 1996; Brin
et al, 1997; Zaki et al, 1997c; Lin and Kedem, 1998; Lin and Dunham, 1998).
The dataset generation procedure is described in Agrawal et al (1996), and the
code is publicly available from IBM (http://www.almaden.ibm.com/cs/quest/
syndata.html).

These datasets mimic the transactions in a retailing environment, where people
tend to buy sets of items together, the so-called potential maximal frequent set.
The size of the maximal elements is clustered around a mean, with a few long
itemsets. A transaction may contain one or more of such frequent sets. The
transaction size is also clustered around a mean, but a few of them may contain
many items.

Let D denote the number of transactions, T the average transaction size, I
the size of a maximal potentially frequent itemset, L the number of maximal
potentially frequent itemsets, and N the number of items. The data is generated
using the following procedure. We first generate L maximal itemsets of average
size I , by choosing from the N items. We next generate D transactions of average
size T by choosing from the L maximal itemsets. We refer the reader to Agrawal
and Srikant (1994) for more detail on the database generation. In our experiments
we set N = 1000 and L = 2000. Experiments are conducted on databases with
different values of D, T , and I . The database parameters are shown in Table 2.
Figure 6 also shows the intermediate hash tree sizes. This indicates to what extent
a dataset is amenable to locality placement. In general more improvement is
possible for larger trees. Figure 7 shows the number of iterations and the number
of frequent itemsets found for different databases. This indicates the complexity

Parallel Association Mining 17

0.01

0.1

1

10

100

2 3 4 5 6 7 8 9 10

H
as

h
T

re
e

S
iz

e
(M

B
yt

es
)

Iteration

Hash Tree Size

’T5.I2.D100K’
’T10.I4.D100K’
’T20.I6.D100K’
’T10.I6.D400K’
’T10.I6.D800K’

’T10.I6.D1600K’

Fig. 6. Intermediate hash tree size (0.1% support).

1

10

100

1000

10000

0 2 4 6 8 10 12

N
um

be
r

of
 F

re
qu

en
t I

te
m

se
ts

Iterations

’T5.I2.D100K’
’T10.I4.D100K’
’T15.I4.D100K’
’T20.I6.D100K’
’T10.I6.D400K’
’T10.I6.D800K’

’T10.I6.D1600K’
’T10.I6.D3200K’

Fig. 7. Frequent itemsets per iteration (0.5% support).

of the dataset. In the following sections all the results are reported for the CCPD
parallelization. We do not present any results for the PCCD approach since it
performs very poorly, and results in a speed-down on more than one processor.
This is because in the PCCD approach every processor has to read the entire

18 S. Parthasarathy et al.

T5.I2.D100K T10.I4.D100K T15.I4.D100K T10.I6.D400K T10.I6.D800K T10.I6.D1600K

Optimizations across Databases

-5

0

5

10

15

20

25

30

35

40

45

%
 I
m

p
ro

v
e

m
e

n
t

COMP

 TREE

COMP-TREE

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 Processors
Databases

Fig. 8. Effect of computation and hash tree balancing (0.5% support).

database during each iteration. The resulting I/O costs on our system were too
prohibitive for this method to be effective.

6.1. Computation and Hash Tree Balancing

Figure 8 shows the improvement in the performance obtained by applying the
computation balancing optimization, and the hash tree balancing optimization.
The figure shows the percent improvement over a run on an equivalent number
of processors without any optimizations. The percent improvements shown in all
the experiments are only based on the computation time since we specifically
wanted to measure the effects of the optimizations on the computation. Results
are presented for different databases and on different number of processors. We
first consider only the computation balancing optimization (COMP) using the
multiple equivalence classes algorithm. As expected, this doesn’t improve the
execution time for the uniprocessor case, as there is nothing to balance. However,
it is very effective on multiple processors. We get an improvement of around 20%
on eight processors. The second column (for all processors) shows the benefit of
just balancing the hash tree (TREE) using our bitonic hashing (the unoptimized
version uses the simple mod interleaved hash function). Hash tree balancing
by itself is an extremely effective optimization. It improves the performance by
about 30% even on uni-processors. On smaller databases and eight processors,
however, it is not as good as the COMP optimization. The reason is that the
hash tree balancing is not sufficient to offset the inherent load imbalance in the
candidate generation in this case. The most effective approach is to apply both

Parallel Association Mining 19

T5.I2.D100K T10.I6.D800K T15.I4.D100K T20.I6.D100K

procs across Databases

0

5

10

15

20

25
%

 Im
pr

ov
em

en
t

1

2

4

8

Fig. 9. Effect of short-circuited subset checking (0.5% support).

optimizations at the same time (COMP-TREE). The combined effect is sufficient
to push the improvements in the 40% range in the multiple-processor case. On
one processor only hash tree balancing is beneficial, since computation balancing
only adds extra cost.

6.2. Short-Circuited Subset Checking

Figure 9 shows the improvement due to the short-circuited subset checking
optimization with respect to the unoptimized version. The results are presented
for different numbers of processors across different databases. The results indicate
that while there is some improvement for databases with small transaction sizes,
the optimization is most effective when the transaction size is large. In this case
we get improvements of around 25% over the unoptimized version.

To gain further insight into this optimization, consider Fig. 10. It shows the
percentage improvement obtained per iteration on applying this optimization
on the T20.I6.D100K database. It shows results only for the uni-processor case.
However, similar results were obtained on more processors. We observe that as
the iteration k increases, there is more opportunity for short-circuiting the subset
checking, and we get increasing benefits of up to 60%. The improvements start to
fall off at the high end where the number of candidates becomes small, resulting
in a small hash tree and less opportunity for short-circuiting.

6.3. Parallel Performance

Figure 11 presents the speed-ups obtained on different databases and different
processors for the CCPD parallelization. The results presented on CCPD use

20 S. Parthasarathy et al.

2 3 4 5 6 7 8 9 10 11 12

Iterations

0

10

20

30

40

50

60

%
imp

rov
em

en
t

T20.I6.D100K

Fig. 10. Percent improvement per iteration (# proc = 1, 0.5% support).

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

Ideal
T5.I2.D100K

T10.I4.D100K
T15.I4.D100K
T20.I6.D100K
T10.I6.D400K
T10.I6.D800K

T10.I6.D1600K
T10.I6.D3200K

CCPD

Fig. 11. CCPD: parallel speed-up (0.5% support).

all the optimization discussed in Section 4 – computation balancing, hash tree
balancing and short-circuited subset checking. We observe that as the number of
transactions increase we get increasing speed-up, with a speed-up of almost eight
on 12 processors for the T10.I6.D1600K database, with 1.6 million transactions.

When we look at the break-up of execution time for T5.I2.D100K in the

Parallel Association Mining 21

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D400K T10.I6.D800K T10.I6.D1600K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

LPP

GPP

#proc = 1 (0.5% support)

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D400K T10.I6.D800K T10.I6.D1600K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

LPP

GPP

#proc = 1 (0.1% support)

Fig. 12. Memory placement policies: One processor.

sequential case we find that 40% of the time was spent on disk accesses. In our
set-up disk accesses are inherently sequential, since all processors are accessing
the same non-local disk, so 40% of the execution is inherently non-parallel. This
results in an upper bound on speed-up: a shade above two. We obtain a speed-up
of around two at four processors.

Similarly on examining the break-up of execution time for T10.I6.D1600K
in the sequential case we find that roughly 10% of the time was spent on disk
accesses. Again this results in an upper bound on speed-up: a shade under 10.
Our algorithm obtains a speed-up of close eight on 12 processors.

We observed similar results for the other datasets as well. Other factors, outside
of disk I/O limitations, that play a role in inhibiting speed-up include contention
for the bus, false and true sharing for the heap nodes when updating the subset
counts and the sequential heap generation phase. Furthermore, since variable
length transactions are allowed, and the data is distributed along transaction
boundaries, the workload is not uniformly balanced. We next evaluate how we
can eliminate some of these overheads while further improving the locality of the
algorithm.

6.4. Improving Locality and Reducing False Sharing

6.4.1. Uniprocessor Performance

In the sequential run we compare the three locality enhancing strategies on
different databases. It should be clear that there can be no false sharing in a
uniprocessor setting. The experimental results are shown in Fig. 12. All times are
normalized with respect to the CCPD time for each database. We observe that the
simple placement (SPP) strategy does extremely well, with 40–55% improvement
over the base algorithm. This is due to the fact that SPP is the least complex
in terms of runtime overhead. Furthermore, on a single processor, the creation
order of the hash tree is approximately the same as the access order, that is, the

22 S. Parthasarathy et al.

candidates are inserted in the tree in lexicographic order. Later in the support
counting phase, the subsets of a transaction are also formed in lexicographic order.

The global placement strategy involves the overhead of remapping the entire
hash tree (less than 2% of the running time). On smaller datasets we observe
that the gains in locality are not sufficient in overcoming this overhead, but as we
move to larger datasets the global strategy performs the best. As the size of the
dataset increases the locality enhancements become more prominent since more
time is spent in the support counting phase of the program. However, we also
observe that for decreasing support the size of the intermediate hash tree increases,
resulting in an increase in the remapping cost, which undermines locality gains.
For example, comparing Fig. 12(a) (0.5% support), and 12(b) (0.1% support), we
observe that the gains of GPP over SPP decrease somewhat. Nevertheless, GPP
remains the best overall scheme.

6.4.2. Multiprocessor Performance

We now discuss the experimental results for the multiprocessor case, where
both the locality and false sharing sensitive placement schemes are important.
Figure 13 shows the results for the different placement schemes on four and eight
processors. All times are normalized with respect to the CCPD time for each
database. In the graphs, the strategies have roughly been arranged in increasing
order of complexity from left to right, i.e., CCPD is the simplest, while LCA-GPP
is the most complex. The databases are also arranged in increasing order of size
from left to right. We observe that with larger databases (both in number of
transactions and in the average size of the transaction), the effect of improving
locality becomes more apparent. This is due to the fact that larger databases
spend more time in the support counting phase, and consequently there are more
locality gains. We note that the more complex the strategy, the better it does on
larger datasets, since there are enough gains to offset the added overhead.

On comparing the bar charts for the 0.5% support and 0.1% we note that the
relative benefits of our optimizations become more apparent on lower support
(for the T20.I6.D100K database the relative benefits for 0.1% support case is
30% more than for the 0.5% support case). It is also interesting to note that for
0.5% support the only database in which GPP performs better than SPP is the
largest database in our experiments, whereas for 0.1% support GPP performs
better than SPP for all except the two smallest databases. Both these observations
can be attributed to the fact that the ratio of memory placement overhead to
the total execution time is higher for higher support values. Further, on going
from a lower support (0.1%) to a higher one (0.5%), the net effective benefit of
placement also reduces with reduction in hash tree size.

We will now discuss some policy-specific trends. The base CCPD algorithm
suffers from a poor reference locality due to the dynamic nature of memory
allocations. It also suffers from high amounts of false sharing, due to the shared
accesses to the itemsets, locks and support counters. The simple placement policy,
SPP, which places all the hash tree components contiguously, performs extremely
well. This is not surprising since it imposes the smallest overhead of all the special
placement strategies, and the dynamic creation order to an extent matches the
hash tree traversal order in the support counting phase. We thus obtain a gain of
40–60% by using the simple scheme alone. When SPP is augmented with separate
locks and counters region, i.e., for L-SPP, we obtain slightly better results than
SPP. As with all lock-region based schemes, L-SPP loses on locality, but with

Parallel Association Mining 23

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D800K T10.I6.D3200K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

L-SPP

L-LPP

GPP

L-GPP

LCA-GPP

#proc = 4 (0.5% support)

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D800K T10.I6.D3200K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

L-SPP

L-LPP

GPP

L-GPP

LCA-GPP

#proc = 4 (0.1% support)

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D800K T10.I6.D3200K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

L-SPP

L-LPP

GPP

L-GPP

LCA-GPP

#proc = 8 (0.5% support)

T5.I2.D100K T10.I4.D100K T20.I6.D100K T10.I6.D800K T10.I6.D3200K

Databases

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CCPD

SPP

L-SPP

L-LPP

GPP

L-GPP

LCA-GPP

#proc = 8 (0.1% support)

Fig. 13. Memory placement policies: Four and eight processors.

increasing datasets the benefits of reducing false sharing outweigh the overhead.
The localized placement of L-LPP doesn’t help much. It is generally very close to
L-SPP. From a pure locality viewpoint, the global placement policy performs the
best with increasing data size. It uses the hash tree traversal order to rearrange
the hash tree to maximize locality, resulting in significant performance gains.
Reducing the false sharing of the GPP policy by coupling it with a separate
lock-region in L-GPP does worse than GPP on the smaller datasets due to
its increased overhead. However, for the biggest database, it outperformed the
previous policies. The best overall scheme is LCA-GPP, which has a local counter
array per processor. It eliminates false sharing and synchronization completely,
but it retains good locality. It thus performs the best for the large datasets.

24 S. Parthasarathy et al.

7. Related Work

7.1. Association Mining

7.1.1. Sequential Algorithms

Several algorithms for mining associations have been proposed in the literature
(Agrawal et al, 1993; Manila et al, 1994; Houtsma and Swami, 1995; Mueller,
1995; Park et al, 1995a; Savasere et al, 1995; Agrawal et al, 1996; Toivo-
nen, 1996; Brin et al, 1997; Lin and Kedem, 1998; Lin and Dunham, 1998). The
Apriori algorithm (Agrawal et al, 1996) is the best-known previous algorithm, and
it uses an efficient candidate generation procedure, such that only the frequent
itemsets at a level are used to construct candidates at the next level. However, it
requires multiple database scans. The DHP algorithm (Park et al, 1995a) tries to
reduce the number of candidates by collecting approximate counts in the previous
level. Like Apriori it requires as many database passes as the longest itemset. The
Partition algorithm (Savasere et al, 1995) minimizes I/O by scanning the database
only twice. It partitions the database into small chunks which can be handled
in memory. In the first pass it generates the set of all potentially frequent item-
sets, and in the second pass it counts their global support. The DLG (Yen and
Chen, 1996) algorithm uses a bit-vector per item, noting the transactions where the
item occurred. It generates frequent itemsets via logical AND operations on the
bit-vectors. However, DLG assumes that the bit vectors fit in memory, and thus
scalability could be a problem for databases with millions of transactions. The
DIC algorithm (Brin et al, 1997) dynamically counts candidates of varying length
as the database scan progresses, and thus is able to reduce the number of scans.
Another way to minimize the I/O overhead is to work with only a small sample of
the database. An analysis of the effectiveness of sampling for association mining
was presented in Zaki et al (1997b), and Toivonen (1996) presents an exact algo-
rithm that finds all rules using sampling. The AS-CPA algorithm and its sampling
versions (Lin and Dunham, 1998) build on top of Partition and produce a much
smaller set of potentially frequent candidates. It requires at most two database
scans. Also, sampling may be used to eliminate the second pass altogether. Ap-
proaches using only general-purpose DBMS systems and relational algebra oper-
ations have also been studied (Holsheimer et al, 1995; Houtsma and Swami, 1995).

All the above algorithms generate all possible frequent itemsets. Methods for
finding the maximal elements include All-MFS (Gunopulos et al, 1997), which
is a randomized algorithm to discover maximal frequent itemsets. The Pincer-
Search algorithm (Lin and Kedem, 1998) not only constructs the candidates in a
bottom-up manner like Apriori, but also starts a top-down search at the same time.
This can help in reducing the number of database scans. MaxMiner (Bayardo,
1998) is another algorithm for finding the maximal elements. It uses efficient
pruning techniques to quickly narrow the search space. We recently proposed new
association mining algorithms that usually make only three scans (Zaki et al,
1997c, 1997d). They use novel itemset clustering techniques, based on equivalence
classes and maximal hypergraph cliques, to approximate the set of potentially
maximal frequent itemsets. Efficient lattice traversal techniques based on bottom-
up and hybrid search, are then used to generate the frequent itemsets contained
in each cluster. These algorithms (Zaki et al, 1997c, 1997d) range from those
that generate all frequent itemsets to those that generate the maximal frequent
itemsets.

Parallel Association Mining 25

7.1.2. Parallel Algorithms

Distributed-memory machines: Three different parallelizations of Apriori on IBM-
SP2, a distributed-memory machine, were presented in Agrawal and Shafer (1996).
The Count Distribution algorithm is a straightforward parallelization of Apriori.
Each processor generates the partial support of all candidate itemsets from its
local database partition. At the end of each iteration the global supports are gen-
erated by exchanging the partial supports among all the processors. The Data Dis-
tribution algorithm partitions the candidates into disjoint sets, which are assigned
to different processors. However, to generate the global support each processor
must scan the entire database (its local partition, and all the remote partitions) in
all iterations. It thus suffers from huge communication overhead. The Candidate
Distribution algorithm also partitions the candidates, but it selectively replicates
the database, so that each processor proceeds independently. The local database
portion is still scanned in every iteration. Count Distribution was shown to have
superior performance among these three algorithms (Agrawal and Shafer, 1996).
Other parallel algorithms improving upon these ideas in terms of communication
efficiency or aggregate memory utilization have also been proposed (Cheung et al,
1996a, 1996b; Han et al, 1997). The PDM algorithm (Park et al, 1995b) presents
a parallelization of the DHP algorithm (Park et al, 1995a). The hash-based
parallel algorithms NPA, SPA, HPA, and HPA-ELD, proposed in Shintani and
Kitsuregawa (1996) are similar to those in Agrawal and Shafer (1996). Essentially
NPA corresponds to Count Distribution, SPA to Data Distribution, and HPA to
Candidate Distribution. The HPA-ELD algorithm is the best among NPA, SPA,
and HPA, since it eliminates the effect of data skew, and reduces communication
by replicating candidates with high support on all processors.

In recent work we presented new parallel association mining algorithms (Zaki
et al, 1997e). They utilize the fast sequential algorithms proposed in Zaki et al
(1997a, 1997c) as the base algorithm. The database is also selectively replicated
among the processors so that the portion of the database needed for the com-
putation of associations is local to each processor. After the initial set-up phase,
the algorithms do not need any further communication or synchronization. The
algorithms minimize I/O overheads by scanning the local database portion only
twice. Furthermore they have excellent locality since only simple intersection
operations are used to compute the frequent itemsets.

Shared-memory machines: To the best of our knowledge the CCPD was the first
algorithm targeting shared-memory machines. In this paper we presented the
parallel performance of CCPD, and also the benefits of optimizations like hash
tree balancing, parallel candidate generation, and short-circuited subset checking.
We further studied the locality and false sharing problems encountered in CCPD,
and solutions for alleviating them. Parts of this paper have appeared in Zaki et al
(1996) and Parthasarathy et al (1998). A recent paper presents APM (Chung et
al, 1998), an asynchronous parallel algorithm for shared-memory machines based
on the DIC algorithm (Brin et al, 1997). Our proposed optimizations, and locality
enhancing and false sharing reducing policies, are orthogonal to their approach.

7.2. Improving Locality

Several automatic techniques like tiling, strip-mining, loop interchange and uni-
form transformations (Anderson and Lam, 1993; Carr et al, 1994; Cierniak and

26 S. Parthasarathy et al.

Li, 1995; Li, 1995) have been proposed on a wide range of architectures, to
improve the locality of array-based programs. However, these cannot directly be
applied for dynamic data structures. Prefetching is also a suggested mechanism
to help tolerate the latency problem. Automatic prefetching based on locality on
array-based programs was suggested in work done in Mowry et al (1992). Build-
ing upon this work, more recently in Luk and Mowry (1996), a compiler-based
prefetching strategy on recursive data structures was presented. They propose a
data linearization scheme, which linearizes one data class in memory to support
prefetching, whereas we suggest an approach where related structures are grouped
together based on access patterns to further enhance locality. Our experimental
results indicate increased locality gains when grouping related data structures,
rather than linearizing a single class.

7.3. Reducing False Sharing

Five techniques mainly directed at reducing false sharing were proposed in
Torrellas et al (1990). They include padding, aligning, and allocation of memory
requested by different processors from different heap regions. Those optimizations
result in a good performance improvement for the applications they considered.
In our case study padding and aligning were not found to be very beneficial. Other
techniques to reduce false sharing on array-based programs include indirection
(Eggers and Jeremiassen, 1991), software caching (Bianchini and Thomas, 1992),
and data remapping (Anderson et al, 1995). Our placement policies have utilized
some of these techniques.

7.4. Memory Allocation

General-purpose algorithms for dynamic storage have been proposed and honed
for several years (Knuth, 1973; Kingsley, 1982; Weinstock and Wulf, 1988).
An evaluation of the performance of contemporary memory allocators on five
allocation-intensive C programs was presented in Grunwald et al (1993). Their
measurements indicated that a custom allocator can be a very important opti-
mization for memory subsystem performance. They pointed out that most of the
extant allocators suffered from cache pollution due to maintenance of boundary
tags and that optimizing for space (minimizing allocations) can serve the opposite
end of reducing speed, due to lower locality. All of these points were borne out
by our experimental results and went into the design of our custom memory
placement library. Our work differs from theirs in that they rely on custom al-
location, while we rely on custom memory placement (where related data are
placed together) to enhance locality and reduce false sharing.

8. Conclusions

In this paper, we presented a parallel implementation of the Apriori algorithm on
the SGI Power Challenge shared memory multi-processor. We discussed a set of
optimizations which include optimized join and pruning, computation balancing
for candidate generation, hash tree balancing, and short-circuited subset checking.
We then presented experimental results on each of these. Improvements of more

Parallel Association Mining 27

than 40% were obtained for the computation and hash tree balancing. The
short-circuiting optimization was found to be effective for databases with large
transaction sizes. We also achieved good speed-ups for the parallelization.

Locality and false sharing are important issues in modern multiprocessor
machines due to the increasing gap between processor and memory subsystem
performance – particularly so in data-mining applications, such as association
mining, which operate on large sets of data and use large pointer-based dynamic
data structures, where memory performance is critical. Such applications typically
suffer from poor data locality and high levels of false sharing where shared data is
written. In this paper, we proposed a set of policies for controlling the allocation
and memory placement of such data structures, to achieve the conflicting goal
of maximizing locality, while minimizing the level of false sharing for such
applications.

Our experiments show that simple placement schemes can be quite effective,
and for the datasets we looked at they improve the execution time of our
application by up to a factor of two (50% improvement over the base case). We
also observed that as the datasets became larger (alternately at lower support
values), and there is more work per processor the more complex placement
schemes improve matters further (up to 20% for the largest example). It is likely
that for larger datasets this gain from more complex placement schemes will
increase. While we evaluated these policies for association mining, the proposed
techniques are directly applicable to other mining algorithms such as quantitative
associations, multi-level associations, and sequential patterns.

Acknowledgements. This work was supported in part by an NSF Research Initiation
Award (CCR-9409120) and ARPA contract F19628-94-C-0057.

References

Agrawal R, Manila H, Srikant R, et al (1996) Fast discovery of association rules. In Fayyad U
et al (eds). Advances in knowledge discovery and data mining. AAAI Press, Menlo Park, CA,
pp 307–328

Agrawal R, Shafer J (1996) Parallel mining of association rules. IEEE Transactions on Knowledge
and Data Engineering 8(6):962–969

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In 20th VLDB conference,
September 1994

Agrawal R, Srikant R (1995) Mining sequential patterns. In 11th international conference on Data
Engineering

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large
databases. In ACM SIGMOD conference on management of data, May 1993

Anderson JM, Lam M (1993) Global optimizations for parallelism and locality on scalable parallel
machines. In ACM conference n programming language design and implementation, June 1993

Anderson JM, Amarsinghe SP, Lam M (1995) Data and computation transformations for multipro-
cessors. In ACM symposium on principles and practice of parallel programming

Bayardo RJ (1998) Efficiently mining long patterns from databases. In ACM SIGMOD conference
on management of data, June 1998

Bianchini R, LeBlanc TJ (1992) Software caching on cache-coherent multiprocessors. In 4th sympo-
sium on parallel distributed processing, December 1992, pp 521–526

Brin S, Motwani R, Ullman J, Tsur S (1997) Dynamic itemset counting and implication rules for
market basket data. In ACM SIGMOD conference on management of data, May 1997

Carr S, McKinley KS, Tseng C-W (1994) Compiler optimizations for improving data locality. In
6th international conference on architectural support for programming languages and operating
systems, October 1994, pp 252–262

Cheung D, Han J, Ng V et al (1996) A fast distributed algorithm for mining association rules. In 4th
International conference on parallel and distributed information systems, December 1996

28 S. Parthasarathy et al.

Cheung D, Hu K, Xia S (1998) Asynchronous parallel algorithm for mining association rules on
shared-memory multi-processors. In 10th ACM symposium parallel algorithms and architectures,
June 1998

Cheung D, Ng V, Fu A, Fu Y (1996) Efficient mining of association rules in distributed databases.
IEEE Transactions on Knowledge and Data Engineering 8(6):911–922

Cierniak M, Li W (1995) Unifying data and control transformations for distributed shared-memory
machines. In ACM conference on programming language design and implementation, June 1995

Cierniak M, Zaki MJ, Li W (1997) Compile-time scheduling algorithms for a heterogeneous network
of workstations. Computer Journal 40(6):356–372

Eggers SJ, Jeremiassen TE (1991) Eliminating false sharing. In International conference on parallel
processing, August 1991, pp 377–381

Grunwald D, Zorn B, Henderson R (1993) Improving the cache locality of memory allocation. In
ACM conference on programming language design and implementation, June 1993

Gunopulos D, Manila H, Saluja S (1997) Discovering all the most specific sentences by randomized
algorithms. In International conference on database theory, January 1997

Han E-H, Karypis G, Kumar V (1997) Scalable parallel data mining for association rules. In ACM
SIGMOD conference on management of data, May 1997

Hennessey J, Patterson D (1995) Computer architecture: a quantitative approach. Morgan-Kaufmann,
San Mateo, CA

Holsheimer M, Kersten M, Manila H, Toivonen H A perspective on databases and data mining. In
1st International conference on knowledge discovery and data mining, August 1995

Houtsma M, Swami A Set-oriented mining of association rules in relational databases. In 11th
International conference on data engineering

Kingsley C (1982) Description of a very fast storage allocator. Documentation of 4.2 BSD Unix
malloc implementation, February 1982

Knuth DE (1973) Fundamental algorithms: the art of computer programming (vol 1). Addison-
Wesley, Reading, MA

Li W (1995) Compiler cache optimizations for banded matrix problems. In International conference
on supercomputing, July 1995, pp 21–30

Lin D-I, Kedem ZM (1998) Pincer-search: a new algorithm for discovering the maximum frequent
set. In 6th International conference on extending database technology, March 1998

Lin J-L, Dunham MH (1998) Mining association rules: anti-skew algorithms. In 14th International
conference on data engineering, February 1998

Luk C-K, Mowry TC (1996) Compiler-based prefetching for recursive data structures. In 6th
International conference on architectural support for programming languages and operating
systems

Manila H, Toivonen H, Verkamo I (1994) Efficient algorithms for discovering association rules. In
ASIA workshop on knowledge discovery in databases, July 1994

Mowry TC, Lam MS, Gupta A (1992) Design and evaluation of a compiler algorithm for prefetching.
In 5th International conference on architectural support for programming languages and operating
systems, October 1992, pp 62–73

Mueller A (1995) Fast sequential and parallel algorithms for association rule mining: a comparison.
Technical report CS-TR-3515, University of Maryland, College Park, August 1995

Park JS, Chen M, Yu PS (1995a) An effective hash based algorithm for mining association rules. In
ACM SIGMOD International conference on management of data, May 1995

Park JS, Chen M, Yu PS (1995b) Efficient parallel data mining for association rules. In ACM
International conference on information and knowledge management, November 1995

Parthasarathy S, Zaki MJ, Li W (1998) Memory placement techniques for parallel association mining.
In 4th International conference on knowledge discovery and data mining, August 1998

Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in
large databases. In 21st VLDB conference

Shintani T, Kitsuregawa M (1996) Hash based parallel algorithms for mining association rules. In
4th International conference on parallel and distributed information systems, December 1996

Srikant R, Agrawal R (1995) Mining generalized association rules. In 21st VLDB conference
Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. In ACM

SIGMOD conference on management of data, June 1996
Toivonen H (1996) Sampling large databases for association rules. In 22nd VLDB conference
Torrellas J, Lam MS, Hennessy JL (1990) Shared data placement optimizations to reduce multipro-

cessor cache miss rates. In International conference on parallel processing, August 1990, vol II,
pp 266–270

Weinstock CB, Wulf WA (1988) An efficient algorithm for heap storage allocation. In ACM SIGPLAN
Notices 23(10):141–148

Parallel Association Mining 29

Yen S-J, Chen ALP (1996) An efficient approach to discovering knowledge from large databases. In
4th International conference on parallel and distributed information systems, December 1996

Zaki MJ, Ogihara M, Parthasarathy S, Li W (1996) Parallel data mining for association rules on
shared-memory multi-processors. In Supercomputing’96, November 1996

Zaki MJ, Parthasarathy S, Li W (1997a) A localized algorithm for parallel association mining. In
9th ACM symposium on parallel algorithms and architectures, June 1997

Zaki MJ, Parthasarathy S, Li W, Ogihara M (1997b) Evaluation of sampling for data mining of
association rules. In 7th International workshop on research issues in data engineering, April
1997

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997c) New algorithms for fast discovery of association
rules. In 3rd International conference on knowledge discovery and data mining, August 1997

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997d) New algorithms for fast discovery of association
rules. Technical report URCS TR 651, University of Rochester, April 1997

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997e) Parallel algorithms for fast discovery of
association rules. In Data Mining and Knowledge Discovery (special issue on scalable high-
performance computing for KDD) 1(4):343–373 .

Author Biographies

Srinivasan Parthasarathy is currently an assistant professor of computer science at the Ohio State
University. He received an M.S. degree in electrical engineering from the University of Cincinnati in
1994, and an M.S. and Ph.D. in computer science from the University of Rochester in 1996 and 1999,
respectively. His research interests include parallel and distributed systems and data mining.

Mohammed J. Zaki received his Ph.D. in computer science from the University of Rochester in
1998. He is currently an assistant professor of computer science at Rensselaer Polytechnic Institute.
His research interests focus on developing efficient parallel algorithms for various data mining and
knowledge discovery tasks.

Mitsunori Ogihara (also known as Ogiwara) received a Ph.D. in information sciences from Tokyo
Institute of Technology in 1993. He is currently an associate professor of computer science at the
University of Rochester. His research interests are computational complexity, DNA computing, and
data mining.

Wei Li received his Ph.D. in computer science from Cornell University in 1993. He is currently
with Intel Corporation. Before that, he was an assistant professor at the University of Rochester.
His current technical interests include Java compilation, software for network computing, and data
mining.

Correspondence and offprint requests to: M. J. Zaki, Computer Science Department, Rensselaer Poly-

technic Institute, Troy, NY 12180-3590, USA. Email: zaki@cs.rpi.edu

