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ABSTRACT
Projected clustering has become a hot research topic due to
its ability to cluster high-dimensional data. However, most
existing projected clustering algorithms depend on some crit-
ical user parameters in determining the relevant attributes of
each cluster. In case wrong parameter values are used, the
clustering performance will be seriously degraded. Unfor-
tunately, correct parameter values are rarely known in real
datasets. In this paper, we propose a projected clustering al-
gorithm that does not depend on user inputs in determining
relevant attributes. It responds to the clustering status and
adjusts the internal thresholds dynamically. From experi-
mental results, our algorithm shows a much higher usability
than the other projected clustering algorithms used in our
comparison study. It also works well with a gene expres-
sion dataset for studying lymphoma. The high usability of
the algorithm and the encouraging results suggest that pro-
jected clustering can be a practical tool for analyzing gene
expression profiles.

1. INTRODUCTION
Clustering is a popular data mining technique for various
applications. One of the reasons for its popularity is the
ability to work on datasets with minimum or no a priori
knowledge. This makes clustering practical for real world
applications. Recently, high dimensional data has aroused
the interest of database researchers due to its new challenges
brought to the community. In high dimensional space, the
distance from a record to its nearest neighbor can approach
its distance to the farthest record [6]. In the context of clus-
tering, the problem causes the distance between two records
of the same cluster to approach the distance between two
records of different clusters. Traditional clustering methods
may fail to identify the correct clusters.

In high dimensional datasets, clusters can be formed in sub-
spaces. Only a subset of attributes is relevant to each clus-
ter, and each cluster can have a different set of relevant
attributes. An attribute is relevant to a cluster if it helps
identify the member records of it. This means the values at
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the relevant attributes are distributed around some specific
values in the cluster, while the records of other clusters are
less likely to have such values. Finding clusters and their
relevant attributes from a dataset is known as the projected
(subspace) clustering problem. For each cluster, a projected
clustering algorithm determines a set of attributes that it
assumes to be most relevant to the cluster. We will call
such attributes the “selected attributes” of the cluster.

Projected clustering is potentially useful in analyzing gene
expression profiles. In these datasets, the transcript levels of
many genes in different samples are recorded. We can view
the expression levels of different genes as attributes of the
samples, or the samples as the attributes of different genes.
Clustering can be performed on genes or samples [7]. A set
of related genes may coexpress simultaneously in only some
samples. Alternatively, a set of related samples may have
only some of the genes coexpressed simultaneously. Identify-
ing the relevant attributes may help improve the clustering
accuracy. The selected attributes may also suggest a smaller
set of genes/samples for researchers to focus on, possibly re-
duces the efforts spent on expensive biological experiments.
As in the case of traditional clustering, the goal of pro-
jected clustering algorithms is to form clusters with optimal
quality. However, the traditional functions used in evaluat-
ing cluster quality may not be applicable in the projected
case. For example, if the average within-cluster distance to
centroid is used within the selected subspace, the fewer at-
tributes being selected, the better evaluation score will be
resulted. The algorithms will therefore tend to select too
few attributes for each cluster, which may be insufficient for
clustering the records correctly. In some previous works on
projected clustering (e.g. [1], [3] and [12]), the clusters are
evaluated by using one or more of the following criteria:

1. How small are the distances between values at the se-
lected attributes

2. How large is the number of selected attributes in the
cluster

3. How large is the number of member records in the
cluster

Intuitively, a small average distance between attribute val-
ues in a cluster indicates that the member records agree on
a small range of values, which can make the records easily
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identifiable. A large number of selected attributes indicates
that the records are similar at a high dimensional subspace,
so they are very likely to belong to the same real cluster1.
Finally, a large number of records in the cluster indicates
there is a high support for the selected attributes, and it
is unlikely that the small distances are merely by chance.
All three are indicators for a good cluster, but there is ac-
tually a tradeoff between them. For example, given a fixed
set of records, if we select only attributes that tend to make
the average distance among records small, fewer attributes
will be selected. Similarly, for a fixed distance requirement,
putting more records into a cluster will probably decrease
the number of attributes being selected.

To simplify the problem, some previous projected clustering
algorithms try to optimize only some of the quantities, and
leave the others as user parameters. CLIQUE [3] fixes the
minimum density of each dense unit (related to criterion 1)
by a user parameter, and searches for clusters that maximize
the number of selected attributes (criterion 2).
PROCLUS [1] requires a user parameter l to determine the
number of attributes to be selected (criterion 2). The algo-
rithm is based on k-medoid, with additional logic for select-
ing on average l smallest-average-distance attributes for each
cluster (criterion 1). With the aim of forming a specified
number of disjoint clusters, the number of member records
in each cluster (criterion 3) is irrelevant to the evaluation
function.

ORCLUS [2] modifies the PROCLUS algorithm by adding a
merging process of clusters and asking each cluster to select
principal components instead of attributes. Essentially, the
algorithm is still based on fixing the value of criterion 2 by
a user parameter and minimizing the value of criterion 1 by
algorithmically refining the partitioning of records.
The DOC and FastDOC algorithms [12] fix the maximum
distance between attribute values (criterion 1) by a user
parameter on the width of the bounding hypercubes, and
search for clusters that maximize a function involving crite-
ria 2 and 3.

In all these algorithms, there is a critical user parameter
that determines the attributes to be selected, and hence the
clusters to be formed. We will show in Section 4 that when
wrong parameter values are supplied, the clustering accu-
racy can drop severely. Unfortunately, the correct values are
rarely available in real applications. It would be preferable,
therefore, to avoid introducing such critical parameters.
While we agree that it is hardly possible to have a projected
clustering algorithm with no user parameter, an algorithm
will be more usable if it has minimum dependency on the
parameters. We elaborate the idea as the following three
usability requirements:

1. The number and minimum quality of selected attributes
are not directly specified by user parameters.

2. The clustering accuracy is not sensitive to small changes
of parameter values.

3. Changing some data parameters (such as increasing
the dimensionality of the dataset) does not increase
the difficulty of finding proper user parameter values.

1We will use the term “real cluster” to mean the correct
clusters defined according to domain knowledge.

In the remaining of this paper, we will present a highly us-
able hierarchical projected clustering algorithm2 based on
these three requirements. Although hierarchical cluster-
ing algorithms have a high time complexity intrinsically, its
merging process is the key in avoiding the use of critical
user parameters. We will justify the use of the hierarchical
approach in more details later.

Before describing the algorithm, we will first introduce an
index for measuring the relevance of an attribute to a cluster
in Section 2. The index will be used in attribute selection of
the algorithm as well as the construction of a similarity func-
tion. We will also describe the mutual disagreement problem
and its prevention. In Section 3, the whole algorithm will
be presented. Various kinds of experimental results will be
presented in Section 4. A discussion on the performance
issues will be given in Section 5, followed by a description
of possible future works and the conclusions of the paper in
Sections 6 and 7.

2. RELEVANCE INDEX
All the algorithms described so far calculate the relevance of
an attribute to a cluster according to the distance between
attribute values. It can thus be quantified by the variance of
attribute values in the cluster, which we will call the “local
variance” of the attribute in the cluster, as opposed to the
“global variance”, which is the variance of attribute values in
the whole dataset. We find that low local variance does not
necessarily imply high relevance. Consider the attributes a1

and a2 in Table 1. In cluster C, the local variance of a1 is
smaller than a2. However, the global variance of a1 is even
smaller than the local variance. This means the values of
a1 in C are unlikely to be clearly distinguishable from other
values, and therefore a1 has a low relevance to C. On the
other hand, although a2 has a higher local variance in C,
it has a large variance improvement from the whole dataset
and thus a high relevance to C.

Variance of attribute values a1 a2

Cluster C 0.2 0.5
Whole dataset 0.1 5.0

Table 1: Local variance does not necessarily imply relevance.

Based on the observation, we define the relevance index ac-
cording to the global-to-local variance improvement. The
relevance index of attribute a with respect to cluster C is
defined as follows:

R(C, a) = 1 − σ2(C, a)/σ2(D, a),

where D is the whole dataset and σ2(S, a) is the variance of
attribute a in the record set S.

For simplicity, we define σ2(C, a) = 0 when there is only
one record in C. We also assume no attribute has a global
variance of 0 (otherwise, the attribute is useless and should
be removed). The index has a maximum value of 1, and
a higher index value indicates a higher relevance. When
the local variance is just as high as the global variance, the
attribute is not likely to help identify the records of the clus-
ter, and the index value will be 0. This defines the baseline
2In this paper, whenever we use the term “hierarchical clus-
tering”, we always mean “agglomerative hierarchical clus-
tering”.

BIOKDD03: 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2003 page 42



for an attribute to be regarded as relevant to a cluster. We
will make use of this idea in the attribute selection process
described later. The relevance index does not assume any
data distribution model, so it is not restricted to any specific
kinds of data.
When analyzing gene expression profiles, it is common to
perform some preprocessing before applying the algorithms.
It can be observed that the effect of relevance index is sim-
ilar to performing standardization to each attribute. When
relevance index is used, the concept of attribute relevance is
automatically incorporated in the clustering process. This
is important because according to our experience, standard-
izing the attributes can greatly improve the accuracy of pro-
jected clustering algorithms.
The relevance index will be used in two different parts of our
algorithm: attribute selection and similarity calculation. In
attribute selection, each cluster selects all attributes that
have a relevance index above an internal threshold. The
threshold is not supplied by user, but is determined directly
from data and dynamically adjusted throughout the cluster-
ing process. The details will be given in the next section.

In hierarchical clustering, the merge order is determined by
the similarity between different clusters. Traditional similar-
ity measures may not work in projected clustering because
two clusters can have different selected attributes. It is not
well defined which attributes should be involved in the cal-
culations. As in [2], we propose a function that makes use of
the selected attributes of the merged cluster in determining
the similarity between two clusters. Suppose C1 and C2 are
two clusters, and if they merge to form Cn, ACn will be the
new set of selected attributes. The similarity between C1

and C2 is then defined as

RSim(C1, C2) =
X

a∈ACn

R(Cn, a),

which measures the quality of Cn using criteria 1 and 2
(relevance and number of selected attributes) described in
the last section.

2.1 Mutual disagreement
Using RSim, it is guaranteed that every next merge pro-
duces the cluster of highest quality among those producible
by all the possible merges. However, we notice that some
merges can be unfavorable due to a phenomenon that we
call “mutual disagreement”. This means two merging clus-
ters are not really similar, but they receive a high similarity
score. There are two situations that mutual disagreement
will occur: unbalanced cluster size and unbalanced number
of selected attributes. When a large cluster merges with
a small cluster, the selection of attributes in the resulting
cluster is mainly decided by the records of the large cluster.
The local variance of values at the attributes can be very
small in the new cluster even the records in the small clus-
ter take completely different values from those in the large
cluster. Similarly, if one cluster has many selected attributes
and the other has few, the former may “lose” a substantial
amount of its selected attributes if the clusters merge. The
resulting cluster can have a “high quality” if the new cluster
has small local variances at its selected attributes, but the
merge is obviously unfavorable.

In order to oppose the effect of mutual disagreement, we
construct a function to measure the mutual disagreement

between two clusters, and disallow them to merge if the value
is high. First, we define the relative relevance of attribute a
to cluster C with respect to the potential new cluster Cn as
follows:

R(C, a|Cn) = 1 −
(µ(C, a) − µ(Cn, a))2 + σ2(C, a)

σ2(D, a)
,

where µ(C, a) is the mean value of attribute a in C. The
above formula calculates how relevant is attribute a to the
records of cluster C in the new cluster Cn. If C is merged
with a cluster with the same mean value and local variance
at a, the two clusters agree on the values at a and the relative
relevance will be high. On the other hand, if there is a large
difference between their mean values, the relative relevance
will be low even the two clusters both have a small local
variance at a.

When mutual disagreement occurs, only one of the two clus-
ters prefer the new mean value. The severity of mutual dis-
agreement can thus be computed by the ratio of relative
relevance values between the clusters:

MD(Ci, Cj) =
1

|ACi ∪ ACj |

X

a∈ACi
∪ACj

(1 − M(Ci, Cj , a)),

where ACi and |ACi | are the set and number of selected at-
tributes of Ci respectively, and

M(Ci, Cj , a) =
8

<

:

0 if R(Ci, a|Cn) ≤ 0 or
R(Cj, a|Cn) ≤ 0

min{R(Ci,a|Cn),R(Cj ,a|Cn)}

max{R(Ci,a|Cn),R(Cj ,a|Cn)}
otherwise

MD takes a value between 0 and 1. A value of 0 means there
is no mutual disagreement and a value of 1 means there is
severe mutual disagreement. It can be easily seen that the
function captures both situations described earlier. We will
use MD to reject merges with heavy mutual disagreement.
Suppose clusters Ci and Cj merge to form Cn with average
relevance Rn at the selected attributes, the MD-adjusted
average relevance will be Rn × (1 − MD(Ci, Cj)). If the
adjusted average relevance is lower than the threshold men-
tioned before, the merge will be rejected. The details will
be given immediately in the next section.

3. THE ALGORITHM
In this section we describe our projected clustering algo-
rithm HARP (a Hierarchical approach with Automatic Rel-
evant attribute selection for Projected clustering). As indi-
cated by the name, it does not depend on user parameters in
determining the relevant attributes of each cluster. Instead,
it tries to maximize the relevance index of each selected at-
tribute and the number of selected attributes of each cluster
at the same time. As discussed earlier, while both quanti-
ties indicate the quality of a projected cluster, maximizing
one can have the other compromised. It is the merging pro-
cess of hierarchical clustering that allows us to implement a
dynamic threshold adjustment scheme that maximizes both
criteria simultaneously.

At any time, there are two thresholds |A|min and Rmin that
restrict the minimum number of selected attributes for each
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cluster and the minimum relevance index values of them.
An attribute is selected by a cluster if and only if its rele-
vance index with respect to the cluster is not less than Rmin.
Under this scheme, if an attribute is not selected by either
of two clusters, it will also not be selected by the new clus-
ter formed by merging them. However, if an attribute is
selected by one or both of two clusters, it may or may not
be selected in the new cluster, depending on the variance
of the mixed set of values at the attribute. Two clusters
are allowed to merge if and only if the resulting cluster has
at least |A|min selected attributes. Initially, both thresholds
are set at the highest possible values (the dataset dimension-
ality and 1 respectively), so that all allowed merges are very
likely to involve records from the same real cluster. At some
point, there will be no more possible merges with the current
threshold values. This signals the algorithm to loosen the
values and start a new round of merging. The process re-
peats until no more merging is possible, or a target number
of clusters is reached. By dynamically adjusting the thresh-
old values in response to the merging process, the number
and relevance of the selected attributes are both maximized.

Table 2 shows the details of the algorithm. Initially, each
record is a cluster by itself. The whole clustering process
is divided into threshold loosening steps. At the beginning
of each step, |A|min and Rmin are loosened linearly towards
the baseline values (1 and 0 respectively). The merge score
between each pair of clusters is calculated by a similarity
function Sim, which can be the RSim function defined ear-
lier, or any other appropriate functions. All potential merges
that have a high mutual disagreement or produce a cluster
with fewer than |A|min selected attributes are ignored (Ta-
ble 4). To speed up the clustering process, the merge scores
are cached in score heaps similar to those used in [9]. Each
cluster keeps a local heap that stores the merge scores be-
tween the cluster and all other clusters, and the best score is
propagated to the global heap. After calculating the merge
scores of all allowed merges, the information of the best
merge will be extracted from the global heap and the two
involved clusters will be merged to form a new cluster. The
score heap entries involving the two clusters will be removed,
and the merge scores between the new cluster and all other
clusters will be inserted into the heaps. The process repeats
until no more possible merges exist, and a new clustering
step will begin.

Checking the usability requirements listed in Section 1, as
the dynamic threshold adjustment mechanism involves no
user parameter, HARP readily satisfies all of them. This is
an advantage of the hierarchical approach. The algorithm
only takes the target number of clusters k as input, which is
an acceptable parameter and is required by many clustering
algorithms. In addition, the whole clustering process can be
logged as a dendrogram. This offers an option for users to
set k to 1 to produce a single merge tree of all records, and
get the results at different k values by cutting the merge
tree correspondingly. This prevents running the algorithm
many times, which is unavoidable for most non-hierarchical
algorithms. The dendrogram also shows the relative sim-
ilarity between different records, which can be very useful
in analyzing gene expression profiles with unclear cluster
boundaries [7].

These benefits justify the use of the hierarchical approach
in spite of its high time complexity. This is especially true
when accuracy is the first priority and the dataset size is not

// d: dataset dimensionality
// |A|min: min. no. of selected attributes per cluster
// Rmin: min. relevance index of a selected attribute
Algorithm HARP(k: target no. of clusters)
Begin
1 // Initially, each record is a cluster
2 For step := 0 to d − 1 do {
3 |A|min := d − step
4 Rmin := 1 − step/(d − 1)
5 Foreach cluster C
6 SelectAttrs(C,Rmin)
7 BuildScoreHeaps(|A|min,Rmin)
8 While global score heap is not empty {
9 // Cb1 and Cb2 are the clusters involved in the
10 // best merge, which forms the new cluster Cn

11 Cn := Cb1 ∪ Cb2

12 SelectAttrs(Cn,Rmin)
13 Update score heaps
14 If clusters remained = k
15 Goto 18
16 }
17 }
18 Output result
End

Table 2: The HARP algorithm.

Procedure SelectAttrs(C,Rmin)
Begin
1 Foreach attribute a
2 Select a if R(C, a) ≥ Rmin

End
Table 3: The attribute selection procedure.

Procedure BuildScoreHeaps(|A|min,Rmin)
Begin
1 Foreach cluster Ci do {
2 Foreach cluster Cj 6= Ci do {
3 Cn := Ci ∪ Cj

4 SelectAttrs(Cn,Rmin)
5 // |ACn | is the no. of selected attributes of Cn

6 If |ACn | ≥ |A|min and
P

a∈ACn
R(Cn,a)

|ACn |
× MD(Ci, Cj) ≥ Rmin

7 Insert Sim(Ci, Cj) into local heaps of Ci and Cj

8 }
9 Insert maxj Sim(Ci, Cj) into the global heap
10 }
End

Table 4: The score heaps building procedure.
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very large. In order to cope with large datasets, we will also
discuss some methods to increase the speed performance of
HARP later.

Finally, we briefly describe the outlier handling mechanism
of HARP. We implement a scheme similar to that in [8]
with two phases. Phase one is performed when the num-
ber of clusters remained reaches a fraction of the original
number. Clusters with very few records are removed. Phase
two is performed near the end of clustering. All clusters
that are much smaller than others are removed. As pointed
out in [8], the time to perform phase one outlier removal is
critical. Having it too early may remove many non-outlier
records, while having it too late may have some outliers al-
ready merged into clusters. We add a record fill back step
to reduce the error caused by an incorrect time to perform
phase one outlier removal. Phase one is performed relatively
earlier so that most outliers are removed, possibly with some
other records also removed. When phase two is performed,
the removed records try to fill back to the most similar clus-
ter subject to the current threshold requirements. Due to
the requirements, outliers are unlikely to be filled back. In
our experiments, the fill back step usually increases the ac-
curacy of outlier removal.

4. EXPERIMENTS
In this section we present various experimental results. We
will start with a brief description of the datasets, algorithms,
similarity functions and performance metrics used in the
experiments.

4.1 Datasets, algorithms, similarity functions
and performance metrics

Synthetic datasets: The parameters used generating syn-
thetic datasets are summarized in Table 5.

Data parameter Values used
Number of records (N) 500-10000
Dataset dimensionality (d) 20-100
Number of clusters (k) 5
Cluster dimensionality 20-60% of d
Cluster size 15-25% of N
Local variance of relevant attributes 0-1% of the domain
Artificial data errors (e) 10-20%
Artificial outliers (o) 0-5%

Table 5: Data parameters of the synthetic datasets.

When generating a dataset, the size of each cluster and the
domain of each attribute were first determined randomly.
Each cluster then randomly picked its relevant attributes,
where the number of relevant attributes was chosen from
the allowed range randomly. For each relevant attribute of a
cluster, a local mean was chosen randomly from the domain.
Each record in the cluster determined whether to follow the
relevant attribute values according to the data error rate.
This was to simulate experimental and measurement errors.
If it was determined to follow, an attribute value would be
chosen from a Gaussian distribution with the local mean and
a variance chosen from the variance parameter. Otherwise,
values were generated randomly as in irrelevant attributes.

We used the synthetic datasets to compare the clustering re-
sults of HARP and different projected clustering algorithms.

We chose PROCLUS [1], ORCLUS [2] and FastDOC [12] for
the study, because they have reasonable worst case time and
can produce disjoint clusters. FastDOC creates clusters one
at a time. We used it to produce disjoint clusters by re-
moving the clustered records before forming a new cluster.
After forming the target number of clusters, the unclustered
records were treated as outliers. To be fair to each algo-
rithm, we performed standardization on each attribute of
the datasets3. We like to note that the sizes of the synthetic
datasets imitate the size of normal gene expression datasets.
Real dataset: Except the performance on synthetic data,
we also want to study whether projected clustering is ap-
plicable to real gene expression profiles. In this paper we
present the results on one of the datasets used in studying
distinct types of diffuse large B-cell lymphoma (Figure 1 of
[4]). The dataset contains 96 samples, each with 4026 ex-
pression values. We clustered the samples with the expres-
sion values of the genes as attributes. The samples are cat-
egorized into 9 classes according to the category of mRNA
sample studied. We will use the class labels to evaluate the
clustering results.

For this dataset, we used PROCLUS and HARP as the rep-
resentatives of projected clustering algorithms as they need
less execution time. We compared the results with non-
projected clustering algorithms, including a hierarchical al-
gorithm (HARP with attribute selection and mutual dis-
agreement prevention disabled), two partitional algorithms
CLARANS [11] and KPrototype [10], and CAST [5], a pop-
ular algorithm for clustering gene expression profiles. We
believe our choice of algorithms covers a wide variety of clus-
tering approaches. The experiments were performed on both
raw and attribute-standardized data.

Similarity functions: We used Euclidean distance and
Pearson correlation as the similarity functions for non-projected
algorithms. Pearson correlation is commonly used in clus-
tering gene expression datasets (see for example [7]). CAST
requires a similarity function with known value range, so
only Pearson correlation was used. As all projected cluster-
ing algorithms define attribute relevance according to value
distance, Pearson correlation was not used. For the two
hierarchical algorithms, the RSim function was also used.

Performance metrics: We will use the Adjusted Rand In-
dex [14] as the performance metric for clustering accuracy. It
is based on the Rand Index [13], with the expected baseline
value also taken into account. Denote U as the partition
of records according to the real clusters based on domain
knowledge and V as the partition of records in a clustering
result. Let a be the number of record pairs that are in the
same cluster in both U and V, b be the number of pairs that
belong to the same real cluster in U, but are wrongly put
into different clusters in V, c be the number of pairs that
belong to different real clusters in U, but are wrongly put
into the same cluster in V, and d be the number of pairs
that are in different clusters in both U and V. The Adjusted
Rand Index is then defined as follows:

ARI(U,V ) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
.

The Adjusted Rand Index gives a value of 1 when two par-
titions are identical (in our case, one partition is the known

3The mean and standard deviation of the values of each
attribute become 0 and 1 respectively.
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clustering and the other is the clustering result), and 0 when
the Rand Index equals the expected value of a random par-
tition. Between the two extremes, a higher value indicates
a higher similarity between the partitions. When evaluating
the selected attributes of a projected clustering algorithm,
the precision and recall measures commonly used in machine
learning will be used. For each cluster, precision measures
the number of selected relevant attributes divided by the
total number of selected attributes. Recall measures the
number of selected relevant attributes divided by the to-
tal number of relevant attributes. The reported values of a
clustering result are the average of all the clusters.

Practical setup: All algorithms that make use of random
numbers (i.e., all except HARP and non-projected hierar-
chical) were run 5 times on each dataset. The results that
give the best values of algorithm-specific criterion functions
were reported.

4.2 Comparing the projected clustering algo-
rithms

We first show the clustering results on the synthetic datasets.
We started with a small dataset with 5% outliers. It was no-
ticed that PROCLUS, ORCLUS and FastDOC all discarded
too many records as outliers and made the comparison dif-
ficult. Therefore in the subsequent datasets, we did not
introduce any artificial outliers. Due to the way that Fast-
DOC produces disjoint clusters, its outlier removal function
could not be disabled. The results are summarized in Ta-
ble 6. In the table, the numbers outside the brackets are
the Adjusted Rand Indices and the bracketed values are the
percentage of records discarded as outliers. Except HARP,
the best and average results of each algorithm with different
parameter values are shown. We used 20 sets of parameters
for FastDOC per dataset, and 10 sets for PROCLUS and
ORCLUS each.

In all datasets, the results of HARP are always among the
best ones. More importantly, as reflected by the low accu-
racies of the average results, the other three algorithms only
achieved their best results when correct parameter values
were used. For example, PROCLUS only attained its best
result when l was very close to the correct number. Also,
the accuracies of all three algorithms are very sensitive to
the parameter inputs. A small perturbation brought down
the accuracies a lot. We notice that it is especially difficult
to set the parameters of FastDOC as each relevant attribute
can have a different local variance value. The projected clus-
ters do not appear to take the form of hypercubes. It also
has a tendency of discarding too many records as outliers.
In comparison, HARP produced each result in a single run
without the need to try many different parameter values.

Another important performance metric of the projected clus-
tering algorithms is the accuracy of the selected attributes.
Table 7 compares the selected attributes of HARP and the
best results of PROCLUS. Since FastDOC discards too many
records and ORCLUS selects principal components instead
of attributes, it is difficult to compare their selected at-
tributes with those of HARP.
The table shows that HARP has excellent recall values, in-
dicating its ability to select the relevant attributes. The
precision is relatively lower since HARP begins with select-
ing all attributes and stops once the target number of clus-
ters is reached. Some extra attributes may be selected, but
they have only limited impact on the clustering accuracy. In

contrast, PROCLUS has lower recall values, showing that it
often misses some relevant attributes. The clustering ac-
curacy was also affected. In other results of PROCLUS in
which the l values used deviate from the correct one, the
attribute selections were even more inaccurate.

4.3 Analyzing real data
For the lymphoma dataset, 56 results were produced by the 6
algorithms. Table 8 shows the best results of each algorithm-
similarity pair sorted by Adjusted Rand Index.

Adjusted Rand Index Algorithm Similarity
0.70 HARP RSim
0.64 PROCLUS Euclidean
0.59 HARP Euclidean
0.55 CLARANS Pearson
0.55 CAST Pearson
0.48 KPrototype Euclidean
0.44 Hierarchical Pearson
0.37 KPrototype Pearson
0.37 Hierarchical RSim
0.05 Hierarchical Euclidean
0.05 CLARANS Euclidean

Table 8: The best results of each algorithm-similarity pair
on the lymphoma dataset.

HARP and PROCLUS have the best performance, which
suggest that projected clusters may exist in the dataset.
However, among the 22 results of PROCLUS produced by
using different l values, the average Adjusted Rand Index is
only 0.27 and only 2 results have an index value larger than
0.5. This confirms that PROCLUS requires accurate param-
eter values to produce satisfactory results. For HARP, no
parameter is needed to guide its attribute selection.

The result of HARP with RSim has on average 3022 se-
lected attributes per cluster, accounting for 75% of all at-
tributes. We sorted the selected attributes of each cluster
according to their relevance indices, and search for the ranks
of some signature genes that are known to be meaningful to
the clusters (Figure 2 of [4]). It was found that many sig-
nature genes got a high rank in the list. For example, it
is known that DLBCLs in general had higher expression of
the genes in the proliferation signature [4]. The clustering
result of HARP contains a large cluster mainly consists of
DLBCLs with 3715 selected genes. The genes in the prolifer-
ation signature received high ranks in the list. For example,
Ki67, p16 (clone 550316) and SOCS-1 (clone 430097) re-
ceived ranks 7, 9 and 12, with relevance indices 0.86, 0.85
and 0.84 respectively.

The advantage of RSim over Euclidean distance is also ob-
served from the results of HARP and the non-projected hi-
erarchical algorithm.

We notice that similar to FastDOC, CAST has many records
left unclustered with most parameter values. The result re-
ported in Table 8 is the best one with less than 10% unclus-
tered records. In general the results produced by CAST are
good, but the large number of unclustered objects can be a
potential problem.

5. PERFORMANCE ISSUES
The worst case time complexity of HARP can be shown to
be O(N2d(d + logN)), where N and d are the dataset size
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Algorithm N = 500, N = 500, N = 10000, N = 500,
d = 20, o = 5% d = 20, o = 0% d = 20, o = 0% d = 100, o = 0%

FastDOC (best) 0.94 (35.6%) 0.95 (75.2%) 0.56 (72.90%) 0.91 (82.80%)
FastDOC (avg.) 0.60 (59.1%) 0.46 (62.5%) 0.38 (63.00%) 0.43 (91.30%)
HARP 0.97 (5.4%) 0.84 (0.0%) 0.98 (0.00%) 0.99 (0.00%)
ORCLUS (best) 1.00 (99.0%) 0.86 (0.0%) 0.86 (0.00%) 1.00 (0.00%)
ORCLUS (avg.) 0.68 (74.9%) 0.41 (0.0%) 0.65 (0.00%) 0.19 (0.00%)
PROCLUS (best) 0.86 (50.8%) 0.76 (0.0%) 0.82 (0.00%) 0.93 (0.00%)
PROCLUS (avg.) 0.63 (34.0%) 0.55 (0.0%) 0.63 (0.00%) 0.75 (0.00%)

Table 6: Clustering results on synthetic datasets.

Dataset Avg. Cluster HARP PROCLUS (best)
Dimensionality Avg. Sel. Attr. Precision Recall l Precision Recall

N = 500, d = 20, o = 5% 11 13.2 83.3% 100% 10 72.1% 61.9%
N = 500, d = 20, o = 0% 8.8 11.6 75.1% 100% 10 77.6% 90.9%
N = 10000, d = 20, o = 0% 8.4 9.2 90.8% 100% 10 85.6% 100%
N = 500, d = 100, o = 0% 28.8 44 65.4% 100% 30 83.2% 85.9%

Table 7: Accuracy of the selected attributes.

and dimensionality respectively. The execution time with
various N and d values are shown in Figures 1 and 2, which
show that the theoretic time complexity is a loose upper
bound of the real time complexity. For normal gene ex-
pression profiles, HARP is always faster than ORCLUS and
usually faster than FastDOC for some parameter values. We
also want to emphasize that in order to obtain a satisfactory
result, non-deterministic algorithms have to be run on each
dataset a number of times. Since HARP gives deterministic
results, repeated runs are not necessary and the actual ex-
ecution time is comparable to many other algorithms when
running on normal gene expression datasets.

Figure 1: Execution time of HARP with various N .

Figure 2: Execution time of HARP with various d.

When N is very large, HARP can be run on a random sam-
ple of records. After completion, all records in the dataset
are assigned to the most similar cluster. When d is very
large, HARP can be modified to use a smaller number of
threshold loosening steps to reach the baseline values. To
study the feasibility of these approaches, we performed some
experiments on the two synthetic datasets with 10000 records
and 100 attributes. The relative execution time and accu-
racy are shown in Figures 3 and 4.

Figure 3: Relative execution time and accuracy of HARP
with various sample sizes.

Figure 4: Relative execution time and accuracy of HARP
with various no. of threshold loosening steps.

A significant speed up is obtained with a reasonable loss of
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accuracy when the sampling and reduction of step count are
moderate. The approaches are shown to be feasible.

6. FUTURE WORKS
The dynamic threshold adjustment scheme of HARP uses a
simple linear loosening. While it works pretty well accord-
ing to the experimental results, we believe a more advanced
scheme is possible, which may improve the speed perfor-
mance and further boost the accuracy. Another interesting
topic to study is an attribute selection procedure that is not
based on value distance. For example, the relevance of an
attribute to a cluster can be measured by its correlation with
other attributes of the cluster. This can be useful in detect-
ing genes that are co-regulated, but with different magni-
tudes or even directions. Some studies have been started
in the community, and we are looking for a more general
framework.

7. CONCLUSIONS
In this paper, we have described a projected clustering al-
gorithm HARP with high usability. Unlike some existing
projected clustering algorithms, it does not depend on user
inputs in determining the relevant attributes of clusters.
This is very important in real applications, since the correct
values for the parameters are usually unknown and when
wrong values are used, the performance can drop signifi-
cantly. HARP makes use of relevance index and the merg-
ing process of hierarchical clustering to dynamically adjust
the internal thresholds and decide the attributes to be se-
lected for each cluster. According to the experimental re-
sults, HARP performs much better than the projected clus-
tering algorithms being compared in terms of parameter-
sensitivity, and is in general superior in terms of clustering
accuracy and the selection of relevant attributes. Experi-
ments on the lymphoma dataset also suggest that projected
clustering can be useful in analyzing gene expression profiles.
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