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Abstract

Python 3 is a highly dynamic language, but it has introduced

a syntax for expressing types with PEP484. This paper ex-

plores how developers use these type annotations, the type

system semantics provided by type checking and inference

tools, and the performance of these tools. We evaluate the

types and tools on a corpus of public GitHub repositories. We

reviewMyPy and PyType, two canonical static type checking

and inference tools, and their distinct approaches to type

analysis. We then address three research questions: (i) How

often and in what ways do developers use Python 3 types?

(ii) Which type errors do developers make? (iii) How do type

errors from different tools compare?

Surprisingly, when developers use static types, the code

rarely type-checks with either of the tools. MyPy and PyType

exhibit false positives, due to their static nature, but also flag

many useful errors in our corpus. Lastly, MyPy and PyType

embody two distinct type systems, flagging different errors

in many cases. Understanding the usage of Python types can

help guide tool-builders and researchers. Understanding the

performance of popular tools can help increase the adoption

of static types and tools by practitioners, ultimately leading

to more correct and more robust Python code.

CCS Concepts: • Software and its engineering → Lan-

guage features; • Theory of computation→ Type struc-
tures.

Keywords: Python, type checking, type inference
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1 Introduction

Dynamic languages in general and Python in particular
1

are increasingly popular. Python is particularly popular for

machine learning and data science
2
. A defining feature of

dynamic languages is dynamic typing, which, essentially, for-
goes type annotations, allows variables to change type and

does nearly all type checking at runtime. This is in contrast

to static typing, which (typically) requires type annotations,

fixes variable types, and does nearly all type checking before

program execution. Dynamic typing allows for rapid proto-

typing, whereas static typing flags errors early and generally

improves program correctness and robustness.

To enable static checking, Python has introduced PEP

484 [18], which gives a syntax for optional type annotations.
It leaves the semantics of type checking largely unspecified,

and multiple type checking and inference tools have been

developed [3, 9, 10, 12, 15, 20]. MyPy
3
and PyType

4
appear

to be the canonical tools in this space
5
. They are relatively

robust, actively developed and maintained, and they have

established themselves as baseline tools for the evaluation

of new Python type inference analyses [3, 10].

This paper presents a study of Python 3 type usage by

developers, as well as a study of the performance of MyPy

and PyType on a corpus of 2,678 repositories (with a total of

173,433 files) that have partial type annotations. Surprisingly,

only a small percentage, 2,678 out of over 70,000 repositories

1
see http://pypl.github.io/PYPL.html

2
see https://www.aitrends.com/data-science/here-are-the-top-5-
languages-for-machine-learning-data-science/
3http://mypy-lang.org/
4https://github.com/google/pytype
5
PEP 484 “is strongly inspired by mypy”

https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1145/3426422.3426981
http://pypl.github.io/PYPL.html
https://www.aitrends.com/data-science/here-are-the-top-5-languages-for-machine-learning-data-science/
https://www.aitrends.com/data-science/here-are-the-top-5-languages-for-machine-learning-data-science/
http://mypy-lang.org/
https://github.com/google/pytype
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we started out with, have (partial) type annotations. Also

surprisingly, annotated repositories rarely type-check. This

paper is accompanied by a web page with detailed data
6
.

We believe that our study can benefit the Python com-

munity in two ways. Understanding the usage of types can

help guide type-system designers and tool builders. Under-

standing the performance of popular tools can help increase

developers’ adoption of static types and tools, and ultimately

lead to more correct and robust Python code. While there

are other studies of the behavior of dynamic languages, ours

is the first study of Python 3 types in the wild.

This paper reviews the semantics of MyPy and PyType and

contrasts the two type systems. It then proceeds to address

three research questions:

• RQ1: How often and inwhat ways do developers use types?

• RQ2: Which type errors do developers make?

• RQ3: How do type errors from different tools compare?

We find that developers write type annotations that are

user-defined class types more frequently than individual sim-

ple types (e.g., int, str). Developer-written type annotations
are difficult to infer, while at the same time PyType can infer

non-trivial types for a large number of variables that lack

developer-written annotations. We find that MyPy and Py-

Type exhibit false positives, due to their static nature, but at

the same time they flag many likely runtime errors. Among

other findings, we observe that the Optional[<type>] type,
which indicates that a variable is either None or of type, is a
significant source of both false positives and likely runtime

errors. Lastly, we perform a larger-scale empirical study of

MyPy and PyType errors and show that the two type sys-

tems flag largely disjoint sets of errors. Arguably, having

two fundamentally different type systems violates the Zen of

Python
7
, which famously states that “There should be one–

and preferably only one –obvious way to do it.”

2 Background

This section describes a core Python syntax and the seman-

tics of MyPy and PyType as gleaned from the documentation

and trial and error. We stress that our intention is not to

give complete formal treatment of the two type systems. For

instance, we omitted class definitions and included only lim-

ited forms of assignments to properties or indices. MyPy,

PyType, and the Python language are expansive and rapidly

evolving. Our intention is to highlight the two type systems,

compare and contrast them, and set the stage for our study

of Python types and Python type checking in the wild.

MyPy and PyType both combine manual type annotations

based on PEP 484 [18] with type checking; however, their

approaches to type checking differ. Philosophically, MyPy

provides a conventional static type system in which variables

can be declared to have fixed types, and misuse of such types

6
https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/

7
https://www.python.org/dev/peps/pep-0020/

β ::= int | float | str | bool | None base types

τ ::= β | C | C[σ ] | Optional[σ ] + constructed types

| List[σ ] | Dict[σ1,σ2] | Tuple[σ ]
| Callable[[σ1],σ2] | Union[σ ]

σ ::= τ | TypeVar | Any + type variables and Any

Figure 1. Type syntax (simplified). C is a user-defined class.

f ::= def f(x : σ1) → σ2 : s function definition

v ::= x : σ = e variable declaration

e ::= const | x | e .attr | e1[e2] | e1(e2) expressions

| [e1, ...en] | {e1 : e
′
1
, ..., en : e ′n}

s ::= x = e | x.attr = e | x[e1] = e2 statements

| s | if e : s1 else : s2 | return e

Figure 2. Language syntax (simplified).

is an error. PyType conforms more to legal Python usage,

where types can change in a function. More concretely, there

are three broad differences in their semantics: (1) MyPy’s

analysis is intra-procedural, while PyType does some inter-

procedural reasoning, (2) PyType is generally less strict than

MyPy, and (3) MyPy reports errors early whereas PyType

delays error reporting.

2.1 Syntax

Fig. 1 defines a core Python type syntax. It defines a hierarchy

of types where types in τ can be instantiated and types in

σ − τ cannot be instantiated. Types in σ can be used as type

annotations and as arguments of generics.

We consider the core Python syntax in Fig. 2 and proceed

to describe the semantics of MyPy and PyType over this

syntax. As is standard, each system evaluates expressions and

statements in a type environment Γ where Γ maps variables

to types. Expressions have no effect on Γ but declarations

and statements may change Γ, as MyPy and PyType infer

types for variables.

2.2 Expressions

Table 1 illustrates expression typing. Given a type environ-

ment Γ, helper function type(Γ, e) returns the type of expres-
sion e . For expressions, type is essentially the same for MyPy

and PyType. (List and dictionary literals are an exception.)

However, even though the semantics of retrieval are essen-

tially the same, the types that are retrieved generally differ

because the two type systems construct Γ in different ways.

As an example, given e1[e2], the system retrieves the type of

e1 from its environment, and if the type is indexable, i.e., it is

either List[σ ] or Dict[_,σ ], it returns the element type σ .
MyPy and PyType differ in how they type list literals

[e1, ..., en] and dictionary literals {e1 : e ′
1
, ..., en : e ′n}. To

implement the join (∨), PyType creates a Union, whereas
MyPy finds the least common ancestor in the subtype lattice.

https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/
https://www.python.org/dev/peps/pep-0020/
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Table 1. Expression typing.

Expression MyPy and PyType typing Code example Type for example

const type(Γ, const) 1 type(1) = int
x Γ(x) x = ’Ni’ type(x) = str
e .attr type(Γ, e .attr) a.f = 1 type(a.f) = int
e1[e2] σ , where type(Γ, e1) = List[σ ] or type(Γ, e1) = Dict[_,σ ] li = [1,2] type(li[i]) = int
e1(e2) σ , where type(Γ, e1) = Callable[_,σ ] def id(x)->int:return x type(id(5)) = int
[e1, ..., en] List[type(Γ, e1) ∨...∨ type(Γ, en )]] [1,2 ] type([1, 2]) = List[int]
{e1 : e

′
1
, ..., en : e ′n} Dict[type(Γ, e1) ∨...∨ type(Γ, en ), type(Γ, e ′

1
) ∨...∨ type(Γ, e ′n )] {’Ni’: 1 } type({’Ni’:1 })=Dict[str, int]

Table 2. Statement typing.

Statement MyPy PyType

x = e Γ[x← type(Γ, e)], if x < Γ Γ[x← type(Γ, e)]
–, if type(Γ, e) <: Γ(x)
error, otherwise

x.attr = e Γ[x.attr ← type(Γ, e) ∨ σ ] where Γ(x.attr) = σ Γ[x.attr ← type(Γ, e) ∨ σ ] where Γ(x.attr) = σ
x[e1] = e2 –, if type(Γ, e2) <: σ , where Γ(x)=List[σ ] or Dict[_,σ ] Γ[x← type(Γ, e2) ∨ σ ], where Γ(x)=List[σ ] or Dict[_,σ ]

error, otherwise

if e: s1 else: s2 require same type on both branches compute the join (∨) after the if/else

Table 3. Typing examples.

x = e x.attr = e x[e1] = e2

1 def foo(x, y : int):

2 i = input()

3 if (i == 'Camelot'):

4 z = 1

5 else:

6 z = 'coconut'

7 #MyPy: ERROR in line 6

8 #PyType: OK,

9 # type(z) = Union[int, str]

10

11 x = 1

12 x = 'coconut'

13 #MyPy: OK, type(x) = Any

14 #PyType: OK, type(x) = str

1 ...

2 a = A(1)

3 b = a

4 i = input()

5 if (i == 'Camelot'):

6 a.attr = 'coconut'

7 else:

8 a.attr = 1

9 #MyPy: OK,

10 # type(a.attr) = object

11 # type(b.attr) = Any

12 #PyType: OK,

13 # type(a.attr) = type(b.attr)

14 # = Union[str, int]

1 li = [1]

2 #MyPy: OK, type(li) = List[int]

3 #PyType: OK, type(li) = List[int]

4

5 li[1] = 'coconut'

6 #MyPy: ERROR

7 #PyType: OK,

8 # type(li) = List[Union[int,str]]

Consider the list literal [42,’parrot’]. PyType types li as

List[Union[int,str]] butMyPy types it as List[object],
which is the join of int and str and the top of the type

hierarchy. Now let i be an integer variable. PyType types

expressions li[i] and li[0] as Union[int,str] and int,
respectively (the latter is somewhat surprising). MyPy types

both expressions as object. On a side note, PyType types

[1,1.5 ] as List[Union[int,float]], whileMyPy types it

as List[float]. Dictionary literals are treated analogously.

2.3 Statements

Table 2 illustrates statement typing. Statements build Γ, and
MyPy and PyType differ significantly. Consider assignment

x = e . MyPy updates Γ only if x is not in Γ (i.e., (1) it is not

annotated by the user, (2) it is not assigned earlier in the

code, and (3) it is not an unannotated function parameter,

in which case MyPy assigns type Any). If the type of the

right-hand side expression e is a subtype of the type of x in

Γ, MyPy leaves Γ intact and proceeds; otherwise, it issues

an error (more on the error code later). PyType, on the other

hand, unconditionally updates Γ for any subsequent code.

Table 3 shows code examples that illustrate the key differ-

ences between the MyPy and PyType type systems. Consider

the left-most column, which illustrates the case x = e . MyPy

assigns a single type to a given variable, a standard practice

in many type systems. It therefore reports an error in Line 6,

at z = ’coconut’, because z has already beenmapped to int
in Line 4. In contrast, PyType maintains separate environ-

ments for the true and false branches; it updates z along the

false branch, then merges the two environments to type z as
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Union[int,str]. Thus, PyType maintains different typings

for the same variable at different program points; however, it

is not clear precisely how it does this
8
, and there is no formal

definition in the documentation. Note that MyPy does not

issue an error on Line 12; this is because x is a parameter,

and untyped parameters always map to Any. Had x been just

an unannotated local variable, Line 12 would have triggered

an error. PyType, on the other hand, treats x just as it would

have treated a local variable — it updates the type at the

reassignment.

Next, consider the middle column, illustrating x.attr = e .
Both MyPy and PyType compute the join (∨), but they do

so differently. While MyPy types a.attr as object, PyType
assigns a more specific type, Union[str,int]. While MyPy

does not detect that a.attr and b.attr are aliases and types
b.attr with the default attribute type Any, PyType detects
the aliasing and types b.attr as Union[str,int].

Finally, consider the right-most column, which illustrates

x[e1] = e2. MyPy sets the type of the list element at list initial-

ization and disallows the addition of incompatible elements.

In contrast, PyType refines the type of the list element as we

add new elements.

2.4 Subtyping

We write σ1 <: σ2 to denote that σ1 is a subtype of σ2 in
the sense of MyPy and PyType. The key idea is that σ1 is a
subtype of σ2 if “a σ1 object can be used where a σ2 object
is expected”. This is the standard notion of true subtyping.
Below is a core subset of subtyping rules:

1. Subtype checks involving Any always succeed: σ <: Any
and Any <: σ . This immediately renders the type system

unsound, in the sense that an expression may produce a

value whose type differs from its static type.

2. Subtyping is reflexive: σ <: σ .
3. Class types form a hierarchy as defined by the subclassing

relation: C(...,B[T],...) implies that C[σ ] <: B[σ ]. For
example, List[A] <: Sequence[A].

4. Generic instantiations are invariant in their type argu-

ments except for the case when one of the arguments is

Any. E.g., List[int] ≮: List[float], but List[int] <:
List[Any] and List[Any] <: List[int] both hold.

5. Union[σ1, ...σn] <: Union[σ
′
1
, ...σ ′m] iff for every σi ∈

{σ1, ...σn} there is a σj ∈ {σ
′
1
, ...σ ′m} such that σi <: σj .

2.5 Error Codes

Table 4 describes the error codes of MyPy and PyType. As

discussed earlier, MyPy reports errors at assignments, specif-

ically, if the right-hand side of the assignment is not com-

patible with the left-hand side. In contrast, PyType never

reports errors at assignments. Instead, it updates the type of

8
trivial aliasing can result in wrong types, see https://github.com/google/
pytype/issues/616

Table 4. Error codes.

Expr/Stmt MyPy error code PyType error code

e .attr attr-defined or union-attr attribute-error

if type(Γ, e), or one of its mem-

bers, has no attribute attr
e1[e2] index unsupported-

if type(Γ, e1) is neither List[_]
nor Dict[_, _]

operands

e1(e2) operator not-callable

if type(Γ, e1) , Callable[_, _]
e1(e2) arg-type wrong-arg-types

if

type(Γ, e1) = Callable[[σ ], _]
and type(Γ, e2) ≮: σ

x = [] var-annotated if x < Γ –

x = {} var-annotated if x < Γ –

x = e assignment –

if type(Γ, e) ≮: Γ(x)
x.attr = e assignment –

if type(Γ, e) is not compatible

with attr annotation
x[e1] = e2 list-item or dict-item –

if Γ(x) = List[σ ] or Γ(x) =
Dict[_,σ ] and type(Γ, e2) ≮: σ

return e return-value bad-return-type

if type(Γ, e) is not compatible

with function annotation

the left-hand side, disregarding user annotations when nec-

essary. PyType is “more dynamic” in nature, as it propagates

the object “downward” and delays error reporting until the

object is actually used, e.g., as an argument, as a function

value, or as an indexable value. To illustrate:

1 def f(x : int):

2 z : int = 1

3 z = 'coconut'

4 return z

This example fails in MyPy but is type-correct in PyType be-

cause the final type of z does not conflict with the return type
of f, which is not manually annotated and hence defaults to

Any. In contrast,

1 def foo(x: int):

2 print(x)

3 def f(x : int):

4 z : int = 'coconut'

5 return foo(z)

fails in Line 5 because the actual argument type str is in-

compatible with the formal parameter type int. Somewhat

surprisingly, but consistently with the semantics we outlined

above, PyType disregards the int annotation on z.
We classify the error codes into the following categories

(for mapping concrete error codes into each category, see

Fig. 6 and 7):

https://github.com/google/pytype/issues/616
https://github.com/google/pytype/issues/616
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1. Syntax errors. These are standard parse errors. For exam-

ple, MyPy’s syntax flags Python parse errors.

2. Shallow semantic errors.While these are flagged by seman-

tic analysis, that analysis is less sophisticated than full-

fledged type analysis. For instance, it can mostly perform

its reasoning locally or based on names. Typically there

are no false positives. An example is MyPy’s call-arg

which checks that the number and names of arguments at

the function call match the function definition.

3. Deep semantic errors.These are standard type errors, where
flagging the error requires deep semantic analysis that

infers a type for variables/expressions. For example, MyPy

raises attr-defined at expression e.attr if its inferred type
for e does not have attribute attr . Tab. 4 lists the essential
deep semantic errors in MyPy and PyType.

4. Import/other errors. These are import or other (rare) errors

that do not fit into the above categories.

While there is no universally agreed upon distinction be-

tween these error categories, we found the categorization

useful for the purpose of this paper. The distinction is not

always that sharp, but it helps characterize type errors and

tools. Sect. 4 makes use of this categorization of MyPy and

PyType error codes.

3 How Often and in What Ways Do

Developers Use Python 3 Types? (RQ1)

We examine a collection of 70,826 Python repositories from

public GitHub from 49,546 organizations. Only 2,678 had

(partial) Python 3-style type annotations. We refer to this

set as the set of typed repositories. Of these, 195 are mal-

formed repositories, meaning that MyPy could not further

type check the repositories due to specific errors “duplicate

module” and “no parent module”. We used a flag to sup-

press unresolved imports; however, some subsequent errors,

such as attr-defined: “Module has no attribute xyz” and

name-defined will still be reported. We analyzed all user

annotations on variables across the 2,678 typed repositories

which contain 173,433 files.

3.1 Statistic Across Typed Repositories

While the repositories are from GitHub, we collected them

with a query to Google BigQuery that focused on recent

Python repositories that had been watched more than once.

The query
9
was issued in August 2019, but reflects a capture

of GitHub from March 20, 2019, by Google; it was meant to

fetch Python code in the wild, so they are an arbitrary fetch

of Python code and we did not filter for type annotations.

Indeed, one goal of our study is to find out howmuch Python

types are currently used.

Overall, we were able to find little configuration of the

tools we evaluate. The initial query gathered only Python

9https://github.com/wala/graph4code/blob/master/extraction_queries/
bigquery.sql

Figure 3. Number of type annotations per file across 2,678

repositories (log scale).

Figure 4. Histogram of the average number of type annota-

tions per file per repo, across 2,678 repositories.

files, but, by checking the current version of the repositories

on GitHub, only 101 out of 2,678 typed repositories have the

standardmypy.ini at the top level. Furthermore, we examined

50 random repositories. Three of them have mypy.ini, and six

of them either have MyPy in their requirement or mention

it in the repository. Similarly, ten repositories have PyLint

in their requirement, or mention it somewhere. Only one

repository mentioned PyType, and did so in an issue.

Fig. 3 and Fig. 4 illustrates the concentration of annotations

over 2,678 typed repositories. Fig. 3 shows the concentration

by file. About 80% of all files do not have any type annota-

tion, 5% have fewer than 11 annotations, and only 0.5% have

more than 40 annotations. Fig. 4 shows the concentration by

repository. 1,144 repositories have an average of less than 1

annotation per file, and 50 repositories have more than 20

annotations per file. Overall, the vast majority of files and

repositories have a low concentration of type annotations;

few files and repositories use type annotations extensively.

3.2 How Do Developers Write Types?

Fig. 5 groups developer-written type annotations into the

most popular categories of types, including simple types

https://github.com/wala/graph4code/blob/master/extraction_queries/bigquery.sql
https://github.com/wala/graph4code/blob/master/extraction_queries/bigquery.sql
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Figure 5. User type hints. The top graph is a histogram of

annotations per type (log scale); the bottom graph shows the

distribution of individual type annotations among function

parameters, function return types, and assignments.

such as str, int, etc., and built-in composite types such

as List, Dict, etc. Category “Other Typing” includes the

types defined in the typing package
10

but excludes List,
Dict, and the other frequent types that are plotted separately.
Type annotations that do not fall into any of these categories

are counted in “User-defined”. “User-defined” includes user-

defined classes, classes defined in built-in Python modules

and third-party modules, as well as type variables and type

aliases. In general, it is impossible to accurately distinguish

these subcategories based on string matching, as develop-

ers can use arbitrary names for user-defined classes, type

variables, type aliases, etc. While a deeper semantic analysis

may be able to tease those apart, this is beyond the scope of

our current work.

Fig. 5 (top) illustrates the frequency of each type cate-

gory. As expected, str, int, and bool feature prominently.

Built-in collections List, Dict, and Tuple and their legacy

counterparts list, dict, and tuple feature prominently as

well. MyPy accepts the lowercase annotations and treats

them as Any-instantiated versions of their uppercase coun-

terparts. There are 69,063 annotations with types in cate-

gory “User-defined”. We examined two repositories, and the

user-defined types were predominantly non-local classes.

There are 11,114 Optional types, making Optional one of

10https://docs.python.org/3/library/typing.html

Table 5.Comparing developer-written types against PyType-

inferred types over a set of 4,079 files.

user 
type

inferred type

Any None match (but not Any or None) other

exact Optional top-level non-match

Any 34.0% 13.0% 0 0 0 37.0%

None 0.3% 1.0% 0 0 0 0.0%

not Any 
or None

13.0% 0.0% 1.0% 0.0% 0.4% 0.6%

(a) Inferred or user-annotated types (76,313)

user 
type

inferred type

Any None match (but not Any or None) other

exact Optional top-level non-match

Any 1.6% 0 0 0 0 0.1%

None 1.8% 6.0% 0 0 0 0.1%

not Any 
or None

77.0% 0.3% 6.1% 0.2% 2.6% 3.6%

(b) Only user-annotated types (12,529)

the most prominent annotations. Fig. 5 (bottom) illustrates

the distribution of annotations among function parameters,

function return types, and global assignments. Parameters

dominate nearly every category because they account for

the largest share of all type annotations. However, None and

Tuple (unsurprisingly) are predominantly used in function

return types.

To further understand the nature of developer-written

annotations, we conducted an additional experiment. We se-

lected 4,079 random files out of the 173,433 typed-repository

files, stripped the annotations, and ran PyType on each file,

which essentially amounts to intra-module type inference.

Tab. 5 shows the results. Tab. 5(a) compares all places in the

code that had either developer-written or PyType-inferred

types. Tab. 5(b) focuses only on places where the original

code had an explicit developer-written type annotation. Py-

Type infers a “meaningful” type (i.e., non-Any and non-None)

for 39% of all developer-written or PyType-inferred type an-

notations (sum of all columns except Any and None). On the

other hand, looking at the developer-written annotations

alone, inference matches a “meaningful” user type for only

6.1%; when we include Any and None matches, it matches

13.7% (Tab. 5(b)). It fails to infer a type for 77% of the user-

written annotations. This leads to the conclusion that (1) user

annotations are infrequent (as they are only a small fraction

of the PyType-inferred ones) and (2) user annotations are

https://docs.python.org/3/library/typing.html
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difficult to infer and are therefore likely to be informative

(as annotations appear to carry non-local information that is

beyond the power of PyType’s abstract interpretation-based

static analysis). This matches the results of our earlier exper-

iment (Fig. 5), where we found that there is a large number

of “User-defined” types and that those user-defined types

tend to be non-local classes.

3.3 Are Typed Repositories Type Correct?

Only 318, or 15%, of the 2,678 repositories are type correct in

MyPy; the remaining repositories produce a total of 41,607

errors of which 22,556 are non-import related errors. Fig. 6

shows the distribution of errors across typed repositories.

A key question arises: why are so few repositories type-

correct? One hypothesis that we extend is that MyPy, by

virtue of being a static type system, may be too conservative,

producing false-positive warnings more often than catching

actual run-time errors. Therefore, developers are discouraged

from spending valuable time fixing type errors. At the same

time, developers still see value in writing type annotations as

they serve as documentation. We conduct additional studies

towards this question and present our results in Sect. 4.

Another hypothesis that we extend is that MyPy is not the

tool of choice for developers and that developers type-check

their code with other tools that are less strict or more readily

available in popular IDEs. Specifically, we studied PyLint

and PyType. We explored several questions. Does the code in

typed repositories type-check with any of these alternative

tools? How do these tools compare to each other, e.g., do

they catch the same set of errors or do they catch distinct

sets of errors? We conduct additional studies and present

our results in Sect. 4.3 and in Sect. 5.

4 Which Type Errors Do Developers Make?

(RQ2)

When a developer goes through the trouble of addingmanual

type annotations, why are there so many type errors from

MyPy? Are these errors mostly false positives, or do devel-

opers really make that many mistakes? What happens to the

false positive rate when using PyType instead of MyPy for

type-checking? How do the answers to the above questions

vary when we break them down by different error codes?

This section examines type errors in 2,678 Python github

repositories, each of which contains at least one Python 3

type annotation. We first count errors by their error codes,

which can be done automatically and is thus easy to do at

scale. Then, we classify errors into three categories: false

positives vs. two kinds of true positives, namely likely run-

time error vs. incorrect type annotation. This latter analysis

requires manual inspection and cannot be fully automated,

so we sampled 15 errors for each of several of the most com-

mon or most interesting error codes, and hand-inspected

those.

Figure 6. MyPy error code distribution (log scale). Solid

black bars denote deep semantic errors, dotted bars denote

syntax errors, striped bars denote shallow semantic errors,

and solid red bars denote import/other errors.

Figure 7. PyType error code distribution (log scale).

4.1 Error Code Distributions

Figure 6 shows error code distributions for MyPy and Fig-

ure 7 shows error code distributions for PyType. In both

cases, we ran the respective tool to type-check all 2,678 typed

repositories. Each occurrence of an error counted separately;

for instance, when one of the repositories had 100 errors of a

given error code, we add 100 to the count for that error code.

Overall, the raw numbers are higher for PyType, because

MyPy ignores untyped functions.

There are nine MyPy error codes with more than 1,000

errors each. Out of these, four indicate deep semantic errors:

assignment, arg-type, union-attr, and return-value.

There are also nine PyType error codes with more than 1,000

errors each. Out of these, three indicate deep semantic er-

rors: wrong-arg-types, unsupported-operands, and bad-

return-type. We hand-analyze all of these in the following

subsections.We also hand-analyzedMyPy’s var-annotated

errors. These are mostly caused by initializing variables from

empty collections (e.g., lst = [] or dct = {}) and do not

constitute deep semantic errors, so we did not include them
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in the discussion below. We did not hand-analyze name-

defined, misc, and attr-defined from MyPy or attribute-

error from PyType, because these errors are largely caused

by missing imports and thus shed little light on the quality

of type annotations or type checking tools.

4.2 Examples of MyPy Errors

This section presents our hand-analysis of MyPy errors into

false positives, likely runtime errors, and incorrect type an-

notations. Furthermore, this section exemplifies each error

code with snippets of idiomatic Python code written by pro-

grammers that do not pass the MyPy type checker. Doing so

may help programmers use MyPy more effectively and may

help designers of type checkers improve their tools.

4.2.1 assignment. There are 3,104 assignment errors.

We sampled 15 and found 15 false positives, 0 likely runtime

errors, and 0 incorrect type annotations. In all but one case,

the false positive was due to the issue of redefinitions with

incompatible types.
11
Below is a typical example:

1 values = map(repr, result[0].values())

2 values = zip(labels, values)

3 values = [... for (label, value) in values]

MyPy infers type Iterator[str] for variable values based
on the signature for map. This clashes with the type MyPy

infers for the expression in Line 2, based on the signature of

zip: Iterator[Tuple[Any, str]]. This is a false positive,
as the use of values in Line 3 is consistent with the return

value of zip.

4.2.2 union-attr. There are 1,592 union-attr errors.

We sampled 15 and found 5 false positives, 10 likely runtime

errors, and 0 incorrect type annotations. A typical example

for a likely runtime error is:

1 m = re.match(RE_COMP_LOCUS, raw)

2 d = m.groupdict()

3 d['length'] = int(d['length'])

It leads to the error ‘"None" of "Optional[Match[Any]]" has
no attribute "groupdict"’. If re.match fails to find a match

and returns None, there is a runtime error at Line 2. Inter-

estingly, in 4 out of 10 references to groupdict in the same

file, the developers had added a check for None:

1 if m is None:

2 return {'definition': None}

3 d = m.groupdict()

We conjecture that the code failed during testing leading to

the addition of the None-check. In contrast, paths with no

runtime checks may have not been exercised with a None

value during testing. In 5 cases, the type error was a false pos-

itive, because there was a runtime check for None. Typically,

the check immediately preceded the access of the attribute,

11https://mypy.readthedocs.io/en/stable/common_issues.html#
redefinitions-with-incompatible-types

as in the above example. 89% of the union-attr errors, 1,418

out of 1,592, involved Optional[ type] and None.

4.2.3 arg-type. There are 1,851 arg-type errors.We sam-

pled 15 and found 8 false positives, 5 likely runtime errors,

and 2 incorrect type annotations. The 5 likely runtime errors

we observed were analogous to the errors in Sect. 4.2.2—

passing an Optional[ type] argument for a parameter ex-

pecting type. In 2 cases, the type error was due to an incor-

rect annotation. For example, error ‘Argument 1 to "Fernet"
has incompatible type "ByteString"; expected "bytes"’ at

1 ..., encryption_key, ... = encryption_attrs(

2 hw_session, label)

3 fer = Fernet(encryption_key)

is due to the incorrect annotation ByteString in the return

type of encryption_attrs(...). That function retrieves

encryption_key from base64.b64decode(), which is of

type bytes. The actual type of encryption_key is bytes as
expected by the Fernet constructor.

Out of the 8 false positives, 7 were caused by a None check

immediately preceding the call that passed the variable of

type Optional[ type] as an argument. Optional[ type]
featured prominently in arg-type errors as well; there were

647 errors that involved Optional[ type].
The last false-positive error was ‘Argument 1 to "to_bytes"

of "int" has incompatible type "object"; expected "int"’ for

1 int.to_bytes(o['valueSat'], 8, byteorder='little')

where o is the following dictionary:

1 { 'address': 'XmqUtfzxgSx7WzYkEd14ug2UrJgaCmANzV',

2 'valueSat': 1664710 }

As shown in Sect. 2, MyPy infers type object for the dic-

tionary element which is the join of all element types. It

cannot distinguish that the reference element at ’valueSat’
is indeed int, as expected. This is expected behavior of a

static type system though.

4.2.4 return-value. There are 1,399 return-value er-

rors. We sampled 15 and found 1 false positive, 0 likely run-

time errors, and 14 incorrect type annotations. Those 14 were

caused by a mismatch between the returned value and the

return type annotation. For example:

1 def load_proper_noun_data() -> List[str]:

2 ...

3 ret = set()

4 ...

5 return ret

triggers type error ‘Incompatible return value type (got
"Set[Any]", expected "List[str]")’. It is unclear whether any
of these will trigger a runtime error, it depends on the expec-

tations of the caller. We observed several cases where the

return annotation was incorrect and was ignored by the code

https://mypy.readthedocs.io/en/stable/common_issues.html#redefinitions-with-incompatible-types
https://mypy.readthedocs.io/en/stable/common_issues.html#redefinitions-with-incompatible-types
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as the callers expected the actual return type (see bytes vs.
ByteString example in Sect. 4.2.3.

4.3 Examples of PyType Errors

Like the previous section did for MyPy, this section presents

our hand-analysis of PyType errors into false positives, likely

runtime errors, and incorrect type annotations. We again

illustrate these with real-world examples, which we hope are

useful for the users and developers of type-checking tools.

4.3.1 wrong-arg-types. There are 4,938 wrong-arg-

types errors. We sampled 15 and found 8 false positives, 6

likely runtime errors, and 1 incorrect type annotation. One

reason for false positives is incorrect or missing library stubs.

For example, in

1 new_tree = ET.ElementTree(new_root)

2 ET.dump(new_tree)

ET.dump does accept an ElementTree argument, however

PyType issues awrong-arg-types error. Another reason for

false positives is intricate control flow checks that render the

code safe, checks that one cannot reasonably expect a static

type system to reason about. For example, PyType issues a

wrong-arg-types error at call

1 optimize_all(expression, None,

2 specific=False, general=True)

This is because the second parameter of optimize_all, rels,
is of type ContextDict but is passed None. Any static type

system is expected to flag this as an error. There is no runtime

error though, because all access to rels in optimize_all is

guarded by specific==True, and in this context of invoca-

tion we have specific=False.
We observed many likely runtime errors as well. They

were overwhelmingly due to misuse of standard libraries:

1 dotfile = NamedTemporaryFile(suffix='.dot')

2 dotfile.write('digraph G {\n')

Here NamedTemporaryFile.write expects a bytes argu-

ment and passing a string results in a runtime error. We

observed the string/bytes misuse several times, across differ-

ent repositories. In one interesting case, PyType recognized

that built-in function open was used with the binary flag

b, and it flagged several write’s to the corresponding file

because they passed str arguments instead of bytes ar-

guments. We also observed library functions with Boolean

formal parameters being called with actual parameters that

are integers 0 or 1.

4.3.2 unsupported-operands. There are 2,887 errors.

We sampled 15 and found 6 false positives, 9 likely runtime

errors, and 0 incorrect type annotations. In several cases, the

error was due to a mismatch of library versions.

1 tb = traceback.extract_stack()

2 for back in tb:

3 key = back[:3]

Table 6. Summary of hand-examined error reports.

false positives true positives

likely runtime

errors

incorrect

annotations

MyPy 52 (49%) 29 (28%) 24 (23%)

PyType 34 (44%) 32 (42%) 11 (14%)

The above code was written against version 2.4 of Python’s

traceback library, where traceback.extract_stack() re-
turns a list of (filename, line number, function name,
text) tuples, each tuple representing a stack frame summary.

In version 3.5 of the library, the signature changes and now

traceback.extract_stack() returns a list of FrameSummary
objects. PyType, which checks against extensive Python 3

stubs, issues an unsupported-operands error in line 5 as

FrameSummary is not indexable.

There were interesting likely runtime errors in scipy:

1 w = fftfreq(n)*h*2*pi/period*n

2 w[0] = 1

3 w = 1j/tanh(w)

4 w[0] = 0j

w, which is initialized as a complex number in Line 3, is not

indexable. PyType reports an unsupported-operands error

in Line 4. If the function executes, there is a runtime error.

With respect to the false positives, we again observed

mostly complex control flow we cannot expect a static type

system to handle. Consider another example from scipy:

1 arglist = get_arglist(I_type, T_type)

2 if T_type is None:

3 dispatch = "%s" % (I_type,)

PyType reports an error inside get_arglist because T_type,
which is an Optional type, is used in a string concatena-

tion. A detailed look reveals that the string concatenation

is guarded by checks (on different values, not the T_type
parameter), and the checks ensure that T_type is not None
at the string concatenation.

4.3.3 bad-return-type. There are 2,627 bad-return-

type errors. We sampled 15 and found 4 false positives, 2

likely runtime errors, and 9 incorrect type annotations. Un-

surprisingly, the nature of the errors we saw is similar to

that of MyPy’s return-value errors.

4.4 Discussion and Analysis

Sect. 4 started by asking why there are so many type errors

from MyPy. Given what we have learned, the answer is

that many programmers do not run MyPy on their code

and MyPy has many false positives. While programmers can

make false positives go away by changing their code, it is less

work to just ignore them. Tab. 6 summarizes the quantitative

findings from our manual inspection of 105 MyPy errors and

77 PyType errors. In addition to the 60 MyPy errors discussed
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in Sect. 4.2 and the 45 PyType errors discussed in Sect. 4.3,

we also inspected various other categories of deep semantic

errors from both tools, omitted from the detailed discussion

but included in Table 6.

About 49% of the MyPy errors and 44% of the PyType

errors we examined were false positives. MyPy’s false pos-

itives were overwhelmingly due to either redefinition of

variables with incompatible types or Optional[<type>] be-
ing guarded by None checks. One highly frequent error,

var-annotated, does not catch actual runtime errors, and

another frequent error, assignment, exhibits false positives.

We found less frequent error categories, particularly union-

attr and override, to be more likely to report type errors

that may lead to runtime errors.

Even though PyType avoids the false positives of MyPy’s

assignment, list-item, and dict-item as it pushes errors

down towards operations, its false positive rate is not much

lower. This indicates that false positive MyPy assignment

errors have likely turned into false positive PyType wrong-

argument-types or unsupported-operands errors.

Both MyPy’s arg-type and PyType’s wrong-argument-

types flagged a good number of likely runtime errors each,

and the nature of errors was similar. In both cases, false pos-

itives often involved Optional[<type>] types. MyPy and

PyType flagged potential flows of None values to operations

that expected non-None arguments but they were rendered

false positives due to sometimes complex non-None checks.

Both MyPy’s return-value and PyType’s bad-return-

type revealed large percentages of incorrect user annota-

tions: a method m actually returns a value incompatible with

the annotation on the return.

We conclude that MyPy would benefit if it allowed redef-

inition of variables with incompatible types in some form.

This could be accomplished by using Static Single Assign-

ment (SSA) form for local variables in straight-line code. For

example, if it could rewrite the earlier example as follows:

1 values1 = map(repr, result[0].values())

2 values2 = zip(labels, values1)

3 values3 = [... for (label, value) in values2]

MyPy would infer separate types for values1, values2, and
values3, and check corresponding usage with these types.

The above example is type correct, but suppose for the sake

of argument values2 was used as a string in Line 3. MyPy

would flag the error at the usage point in Line 3. assignment

errors we observed typically involved straight-line code like

this, which will benefit from simple SSA.

Another lesson learned is that Optional[<type>] fea-

tures prominently, both in user annotations (see Fig. 5) and

in MyPy and PyType type errors. Optional[<type>] was

a large source of error messages, particularly, 90% of the

union-attr errors were due to the option of None. In some

cases the error messages signaled a likely runtime error,

for example, passing an Optional argument, which can be

None, to a library method that expected a non-None param-

eter. In other cases the errors were false positives, as the

runtime check for non-None value immediately preceded

the expected non-None assignment. We conjecture that both

MyPy and PyType would benefit from reasoning about local

checks for non-None values. The long history of work on

non-null types in Java [1, 2, 5, 14] can bring insights into

Python type checking.

Both type systems produce useful warnings as well. Even

those errors that were false positives may have been true

positives at first and only made safe with complex checks

after developers experienced runtime errors.

5 How Do Type Errors From Different

Tools Compare? (RQ3)

Do different type-checking tools just differ at the surface,

e.g., by using different error codes for the same errors? If yes,

what is the mapping between error code? When one tool

reports more errors than another, does it more-or-less report

a superset? Or if no, do the tools differ more fundamentally,

using error codes with little correspondence or overlap? We

countedmatches between errors reported on the same source

code line to answer these questions. This section directly

compares MyPy to PyType. We also include PyLint as it is

the default linter in Visual Studio Code and other IDEs and

has received praise in developer blogs
12
. This section studies

the same repositories as the earlier sections in this paper. We

first describe how we run the tools, then compare MyPy to

PyType in Sect. 5.1 and MyPy to PyLint in Sect. 5.2.

Tools. MyPy, PyType, and PyLint each have a plethora of

command-line options that impact the number and kinds of

messages reported, so we detail our exact usage here. We

use MyPy 0.770 with the following flags:

mypy --show -error -codes --namespace -packages

--ignore -missing -imports --show -column -numbers

PATH/file1.py PATH/file2.py PATH/file3.py ...

We use PyType 2020.04.01 with the following flags:

pytype --keep -going PATH/file1.py

We run PyType on each file because it stops checking

when it finds the first error in a file.

We use PyLint 2.5.2 with the following flags:

pylint -d all -e typecheck

--unsafe -load -any -extension=y

PATH/file1.py PATH/file2.py PATH/file3.py ...

We are interested in errors reported by MyPy, PyType,

and PyLint on the same line of code13 in order to compare the

tools. This section counts errors differently than Sect. 4: Fig. 6

12
see https://en.wikipedia.org/wiki/Pylint and https://www.slant.co/topics/

2692/~best-python-code-linters for a summary.

13
Only MyPy and PyLint can report more-precise positions.

https://en.wikipedia.org/wiki/Pylint
https://www.slant.co/topics/2692/~best-python-code-linters
https://www.slant.co/topics/2692/~best-python-code-linters
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and Fig. 7 counted every error, while here multiple errors of

the same category on the same line count as one error.

5.1 MyPy vs. PyType

Excluding import-related errors, MyPy reports 23,665 errors

and PyType reports 65,938 errors. For example, there are 617

of MyPy’s operator errors versus 2,887 of PyType’s similar

unsupported-operands errors.

5.1.1 Deep Semantic Errors. Fig. 8 contrasts deep se-

mantic errors from the two tools. Our supplementary repos-

itory, Py3TypeInTheWildDLS20, contains a dynamic ver-

sion of this figure (graph 1 ), which breaks down each

MyPy category into corresponding matching PyType sub-

categories. There is a good connection between MyPy’s

arg-type, union-attr, return-value and the correspond-

ing PyType error codes. Other error codes such as assign-

ment are not captured by PyType. Most notably, the fig-

ure shows that the vast majority of MyPy errors remain

unmatched by PyType, and analogously, the majority of Py-

Type errors remain unmatched by MyPy. In the repository

Py3TypeInTheWildDLS20 (graph 8 ) plots only match-

ing errors, excluding the dominating No Match category;

they emphasize matching errors across all error categories.

We detail the deep semantic error categories below.

return-value: Out of 1,399 MyPy return-value errors,

535 match with PyType’s bad-return-type. The remaining

864 errors are due to the different semantics (Sect. 2). To

illustrate, consider the following code:

1 def f(a:int=None) -> str:

2 a = 'str'

3 return a

MyPy rejects this function, flagging both the assignment at

Line 2 and the return in Line 3.
14
PyType, however, does not

report an error.

On the other hand, there are 2,577 total PyType bad-

return-type. Most of those unmatched with MyPy errors

have two causes. PyType views a function consisting of

a pass statement as returning None and rejects any mis-

matched return type. MyPy allows this.
15
The second cause

is that MyPy does not type-check unannotated functions.

E.g.,

1 def g(b):

2 return 1

3 def f(a:int) -> str:

4 return g(a)

PyType infers that g returns int and flags a bad-return-

type error. MyPy does not check g assigning return type Any
which agrees with str.

14
As a side note, MyPy automatically upgrades the type of parameter a to

an Optional[int]. Had a been a local variable, the assignment of None
would have been a type error, as in Sect. 2.

15
They recognize this in https://github.com/python/mypy/issues/2350

Operator: There are 32 matching pairs between the 617

MyPy operator errors and 2,525 PyType unsupported-

operands. The overlap is relatively small due to the dif-

ference in the inference semantics. Apart from unary and

binary operations, unsupported-operands also checks if

the variable type supports indexing, which map to 105 out

of 820 MyPy’s index errors. For example

1 def __ne__(self, other):

2 if hasattr(other,"__getitem__") and len(other)==2:

3 return self.x != other[0] or self.y != other[1]

4 else:

5 return True

PyType has inferred that other has type int. Although
Line 2 prevents invalid indexing, PyType still reports aunsup-

ported-operands false positive error at Line 3. MyPy does

not check this function because it is unannotated.

Arg-type: There are 345 matching pairs between 1,554

MyPy arg-type errors and 4,657 PyType wrong-arg-types

errors. Both categories detect actual argument types that

are incompatible with the corresponding formal parameter

type. Similar to other deep semantic errors, the difference

in the number of errors is due to the different inference

semantics, and MyPy not checking unannotated functions.

The large number of PyType wrong-arg-types errors is

partly because PyType delays the error report until the object

is actually used; when the object is passed as an argument,

it is used and PyType flags the error.

Var-annotated: There are 2,743 MyPy var-annotated

errors but only 6 of them match with PyType errors. (var-

annotated is a shallow semantic error, but since it is one of

MyPy’s most frequent errors, we have included it in Fig. 8.)

The 6 matches are unrelated to the var-annotated error

on the same line. As shown in Sect. 2, MyPy reports var-

annotatedwhen an empty list or dictionary is assigned to a

new variable without annotation; PyType does not consider

this an error.

assignment, list-item, and dict-item: As discussed in

section Sect. 2, PyType allows changing the type of a variable

and the type of a collection element. Thus, these three MyPy

error codes have no matching PyType categories.

5.1.2 Shallow Semantic Errors. There is little overlap

between MyPy’s and PyType’s shallow semantic errors, as

shown in Py3TypeInTheWildDLS20 (graph 3 and 4 ).

85.2% of MyPy’s shallow semantic errors do not match with

PyType’s errors, and 95.7% of PyType’s do not match with

MyPy’s. The number of shallow semantic errors is small.

There are 2,472 and 3,132 MyPy and PyType errors respec-

tively compared to 19,145 and 45,856 deep semantic errors.

There is one noticeable matching error. MyPy’s call-arg

checks the number and names of arguments at function calls.

Out of 411 errors, 45 match to PyType’s missing-parameter

and 29 match to wrong-arg-count.

https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MytoTyDeepFull
https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MATCHEDMytoTycut
https://github.com/python/mypy/issues/2350
https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MyFulltoTySha
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Figure 8. Comparison between MyPy’s and PyType’s errors that appear on the same line. Left: matches between MyPy’s

19,145 deep semantic errors and PyType. Right: matches between PyType’s 45,856 deep semantic errors and MyPy.

Each tool has different categories for uncommon cases.

For example, there are 3 MyPy exit-return errors that get

reported because the __exit__ function that always returns

False has return type bool. PyType does not catch this error.

5.1.3 Syntax Errors. In Py3TypeInTheWildDLS20

(graph 8 ), 2 of the 5 large categories, valid-type and syn-

tax, account for 631 and 417 matching pairs, or 18.6% and

12.3% of total matchings. They catch wrong annotation syn-

tax and wrong language syntax. 97.0% of valid-type and

93.0% of syntaxmatch to one of 3 PyType categories: invalid-

annotation, python-compiler-error, and name-error.

For example:

1 def __init__(self, title: string,

2 size: int, parent=None): ...

fails bothwithMyPy’s valid-type andwith PyType’s invalid-

annotation. The tight connections between these 2 MyPy

error codes and 3 PyType error codes indicates that MyPy

and PyType capture syntax errors in a similar way.

5.1.4 Import Errors. Py3TypeInTheWildDLS20

(graph 7 ) shows the overall relationship betweenMyPy and

PyType errors when excluding the dominating no match

category. Out of 3,270 MyPy misc matching errors, 84.2%

and 11.7% match to PyType import-error and invalid-

annotation, respectively. There are 7,839 name-defined er-

rors, 2,488 of those match to PyType errors, and 97.5% match

to PyType’s name-error. MyPy’s attr-defined matches

with PyType’s import-error and attribute-error for 65.7%

and 20.2% respectively. Both tools are fairly consistent with

reporting import-related errors.

5.1.5 Conclusion. The results of the comparison support

our argument from Sect. 2 that MyPy and PyType are essen-

tially two different type systems. For most major program-

ming languages, such a finding would come as a shock, so

it is somewhat surprising to find Python in this situation.

One of the lessons learned is that MyPy behaves more like a

traditional type system and Pytype behaves more like a static

analysis tool. These seem like two directions that types can

https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MATCHEDMytoTycut
https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MATCHEDMytoTyALL
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Figure 9. PyLint error code distribution of typecheck sub-

category across 2,673 Python-3 style annotated repositories.

go for dynamic languages like Python. This leads to differ-

ences in reported errors, as well as in when and where errors

get detected. MyPy and PyType would serve the Python

community better if they increased the overlap between re-

ported errors. We hope that the comparisons in this section

can serve as a starting point for such a convergence journey.

There is overlap in deep semantic errors arg-type/wrong-

arg-types and return-value/bad-return-value, but there

are also significant numbers of no-matches. The tools define

different kinds of shallow semantic errors that generally do

not overlap. For syntax errors, the tools overlap. Lastly, Py-

Type reports larger numbers of errors because unlike MyPy,

it also checks unannotated functions.

5.2 MyPy vs. PyLint

Next, we compare error messages from MyPy and PyLint.

PyLint is a static analyzer that offers awide range of checking.

Unlike the other tools, PyLint checks the quality of the code;

for example, it enforces a coding standard and reports code

smells. There are about 200 error codes. We are interested

in the error codes in the typecheck category, which most

closely relates to the MyPy and PyType errors we study.

Fig. 9 illustrates the distribution of errors in typecheck.

The largest error category, no-member, is reported when

an unknown member in a variable is accessed. Similarly to

MyPy, many are import-related. Moreover, no-member is

one of the most common false positive errors in PyLint
16
.

Thus, we excluded this category from the comparison.

5.2.1 Deep Semantic Errors. Out of MyPy’s 19,145 deep

semantic errors, 89.9% do not match with PyLint’s errors and

9.1% match with no-member. Py3TypeInTheWildDLS20

(graph 9 ) illustrates. For the remaining 1%, there is a small

overlap betweenMyPy’s index and PyLint’sunsubscriptable-

object which account for 0.3% of the MyPy errors.

16https://github.com/PyCQA/pylint/issues/3512

5.2.2 Matching Errors. Excluding import-related errors,

there are only 190 MyPy errors (out of 23,665) that match

with PyLint’s typecheck errors.Py3TypeInTheWildDLS20

(graph 14 ) plots the matching MyPy errors.

5.2.3 Conclusion. Generally, PyLint fails to detect deep

semantic errors. It catches some shallow semantic errors but

the overlap is relatively small. The advantage of PyLint is

that it offers quality checking which can be appealing to

users who are looking for a linter as well as some shallow

semantic checking.

6 Related Work

Our paper should be viewed in a tradition of studies about

the behavior of dynamic programming languages in the wild.

Such studies help guide language designers, compiler writ-

ers, and tool builders with data on how certain language

features actually get used. Holkner and Harland [11] mea-

sured the dynamic behavior of Python programs, finding that

use of dynamic objects (e.g., adding fields) and dynamic code

(e.g., eval) is not only prevalent during program startup but

continues throughout program execution. Unlike our paper,

theirs does not focus on Python 3 types; it pre-dates PEP

484 [18]. Richards et al. analyze runtime traces of JavaScript

programs and find that dynamic objects and eval are ram-

pant [16]. Bierman et al. define a core calculus for TypeScript,

which adds types to JavaScript via a compile-and-erase ap-

proach [7]. Just like with Python 3, this means type annota-

tions are ignored at runtime, leading to unsoundness. The

type checker does not statically check downcasts or conver-

sions to and from the Any type, nor are they checked at run-

time, and thus, the type of a runtime value of an expression

can differ from its static type. Their paper does not include

a corpus study. Morandat et al. study the R programming

language and find that besides dynamic types in the usual

sense, a distinguishing feature of R is lazy evaluation [13].

To the best of our knowledge, ours is the first study of how

real-world programs use Python 3 types.

There have been multiple interesting typed Python di-

alects. RPython [4] is a Python subset that was initially de-

signed for PyPy [17], a Python just-in-time compiler written

in Python. RPython restricts Python’s dynamic features to

simplify type inference and enable efficient execution on the

CLI and the JVM. Cython is a Python superset that is used

in popular libraries for scientific computing and machine

learning [6]. Cython adds explicit type annotations to enable

compiling to efficient C code. Reticulated Python offers grad-

ual typing for Python: it statically type-checks code based on

type annotations, then inserts dynamic checks at the bound-

aries to untyped code [19]. Having been published in the

same year as PEP 484 [18], it uses different type names than

those supported by Python 3 today. Whereas these papers

offer typed Python dialects, our paper studies types in the

mother language from which these dialects calved.

https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MytoPyDeepFull
https://github.com/PyCQA/pylint/issues/3512
https://py3typeinthewilddls20.github.io/Py3TypeInTheWildDLS20/#MATCHEDMycuttoPy
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There have been several papers on type inference for

Python, in spite of (or perhaps because of?) Python’s dy-

namic features and the unsoundness of Python 3 types. Maia

et al.’s type inference pre-dates Python 3 type annotations

and focuses on RPython instead, offering fairly standard

type rules [12]. Xu et al. augment standard type rules with a

probabilistic approach to exploiting additional information

such as identifier naming conventions [20]. Fritz and Hage

implement type inference via abstract interpretation and

experiment with tuning the precision by modifying flow sen-

sitivity and context sensitivity [9]. Hassan et al. implement

type inference via a MaxSMT solver, maximizing optional

equality constraints while satisfying all mandatory type con-

straints [10]. Dolby et al. use type inference to find bugs in

Python-based deep learning code by inferring tensor shapes

and dimensions [8]. Allamanis et al. use deep learning to

implement Python type inference, based on manual type

annotations as ground truth labels [3]. TypeWriter infers the

argument types and return types of functions using prob-

abilistic type prediction and search-based refinement [15].

In contrast, our paper studies how types are being used and

how MyPy and PyType (the most popular practical type

checking and inference tools) behave on a large corpus of

open-source repositories.

7 Conclusion

This paper presents a study of a comprehensive corpus of

open-source code with Python 3 type annotations. The pic-

ture is mixed. On the one hand, types can already help catch

many bugs, such as in the use of Optional types that may

be None and in function return type annotations. On the

other hand, type checking tools frequently disagree with

user annotations and with each other. Most open-source

projects do not yet use Python 3 types, and of those that

do, few type-check. We hope that our paper will help guide

practitioners to make the best use of what is available today

while inspiring researchers to improve upon the status quo.

With apologies to Dickens: It was the best of types, it was the
worst of types ...
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